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The formation of patterns in non-equilibrium
growth

Eshel Ben-Jacob & Peter Garik

Crystal growth under non-equilibrium conditions can give rise to complex patterns which are generically
similar to those found in processes such as viscous fingering, aggregation and electrochemical deposition.
Recent theoretical understanding focuses on the interplay between the macroscopic driving force

associated with the phase transition and the microscopic interfacial dynamics.

THE formation of patterns and shapes in the natural world has
long been a source of fascination. Examples are many and
varied, ranging from the growth of a snowflake to the aggregation
of a soot particle, from oil recovery by fluid injection to
solidification of metals, and from the formation of a coral reef
to cell differentiation during embryonic development. The chal-
lenge is to understand the spontaneous formation of patterns
from a disordered environment'™. Is each of these diverse
patterns the result of unique causes and effects, or are there
unifying underlying principles? The past few years have seen
the emergence of a rough outline of such principles. These
developments offer the hope that a unified theoretical framework
can be formulated to provide a coherent picture of pattern
formation.

The cornerstone of these developments is the recognition that
growth patterns may be determined by the interplay between
microscopic interfacial dynamics and external macroscopic
(‘thermodynamic’) forces. Most research has focused on systems
in which the macroscopic dynamics are determined by a
diffusion field. For such systems, the patterns that form may be
grouped into a small number of typical ‘essential shapes’ or
morphologies, observed in different systems and over many
length scales (from metres to micrometres). Some examples of
these (faceted®, dendritic*, dense-branching® and fractal’®) are
shown in Fig. 1.

The transfer of information from the microscopic to the
macroscopic level is self-evident in the growth of a snowflake'®,
where the sixfold symmetry of the underlying ice crystal lattice
is manifest in the dendritic branches of the flake. (In the forma-
tion of real snowflakes, however, other factors such as latent
heat also play a role.) How is the macroscopic form influenced
by microscopic effects in this way? One can obtain a qualitative
understanding by considering the dynamics of non-equilibrium
growth. In a system out of equilibrium a stable phase will
propagate into an unstable or metastable one. In the formation
of snowflakes, for example, the stable solid phase propagates
into the unstable supersaturated water-vapour phase. The rate
of growth of the stable phase is limited by a diffusion process,
in this case the diffusion of water molecules from the gas phase
into the crystal. In this process, the kinetics of diffusion tend to
drive the system towards the formation of ‘decorated’ and
irregular shapes. Diffusion kinetics determine the macroscopic
approach towards equilibrium, and influence the structures
created on many length scales. By contrast, the microscopic
dynamics occurring at the interface (determined by surface
tension, surface kinetics and anisotropy; see Box A) are associ-
ated with microscopic length scales and are influenced by
molecular-scale symmetries. The final interfacial pattern results
from the interaction between the microscopic and macroscopic
levels. For example, if the system is sufficiently far from equilib-
rium, the interface can advance so rapidly that the stable phase
does not have time to reach its lowest-energy state on the
microscopic level, and a metastable microstructure results. The
growth of quasicrystals is an example of such a process.
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Box A: Microscopic interfacial dynamics

Surface tension reflects the microscopic forces between
atoms (or molecules) at an interface®®. It lowers the
temperature, T,, of the curved parts of the interface

according to:
L
T.=T,— (—) dyx
C

p

Here L is the latent heat of the liquid-solid transition,
C, is the heat capacity of the liquid at constant pressure,
T, is the melting temperature of a flat interface, « is
the local curvature of the interface, and d,, is the capillary
length (proportional to the surface tension), typically of
the order of nanometres. This equation (the Gibbs-
Thompson relation) is a statement of local equilibrium
for a curved interface. At local equilibrium, the free
energy of the melt and the solid are the same, and there
is no driving force either for melting or for solidification.
For the interface to advance, there must be a degree of
undercooling. We assume a linear relationship between
interfacial (normal) velocity v, and undercooling:
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The last term is meant to phenomenologically embody
the microscopic dynamics of surface kinetics'®, although
experimentally the relationship seems to be more com-
plicated*®.

The effects of surface tension and surface kinetics
appear (with a different functional form) in almost all
non-equilibrium growth processes. For example, in the
He(’lczzéShaw cell the pressure along the interface is given
by

P,=P,—d,k = Bov]

Here P, is the applied pressure. The ‘surface kinetics’
term arises from the excess pressure needed to overcome
the frictional drag of the fluid against the cell plates.

The third player in the game is anisotropy'®. The
average bonding energy between atoms at the interface
depends on the orientation of the interface. Hence, it
costs different amounts of energy to bend the interface
in different orientations. The functional dependence is
characteristic of the specific system. A tractable two-
dimensional form is obtained by substituting d, for
dy(1~d, cos(m8)), where d, is the magnitude of the
m-fold anisotropy and 6 is the angle between some fixed
direction in space and the direction normal to the inter-
face. Surface kinetics are also a function of 6: an atom
will attach itself to the interface at different rates,
depending on the surface orientation, leading to a similar
dependence on 6.
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FIG. 1 The ‘essential shapes’ of non-equilibrium growth processes. a,
Faceted growth® during solidification of copper sulphate. b, Dendrites formed
during solidification from supersaturated solution. ¢, Dendrites grown by
electrochemical deposition. d The dense-branching morphology® in the
annealing of amorphous material (no anisotropy). e, A fractal-like shape
produced by electrochemical deposition at low voltage, similar to the struc-
tures produced in diffusion-limited aggregation®°2425,

The selection problem for dendritic growth

The principal problem that we try to resolve here is how micro-
scopic dynamics, operative on the scale of angstroms, are
amplified to such an extent that in a system out of equilibrium
they control the macroscopic shape on a scale of centimetres.
The natural inclination, however, is to strive for theories of
growth that emphasize macroscopic dynamics and relegate the
microscopic dynamics to a subsequent refinement; this was how
the theory of dendritic growth initially evolved. Ivantsov
showed'' that for a solid forming from an undercooled melt,
the propagating crystal front is parabolic when the process is
controlled by heat diffusion alone (that is, when surface tension
and surface kinetics are neglected). Both the parabolic shape
of the tip and the predicted constant velocity are consistent with
obsetvations of dendritic growth. However, Ivantsov’s solution
specifies only the product of the dendrite tip’s radius of curvature
and its velocity; it cannot predict either one alone. Does this
mean that dendrites with different tip curvatures and corre-
sponding tip velocities, given by Ivantsov’s criterion, coexist at
a specified undercooling? Glicksman et al'? demonstrated that,
for a given undercooling, only one dendrite (that is, one tip
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velocity and radius of curvature) is observed. This poses a
‘selection problem’: for given undercooling, the Ivantsov sol-
ution admits a continuous family of parabolic solutions, and
yet for specified experimental conditions only one is seen.
Moreover, it is known that these Ivantsov solutions are ‘linearly
unstable’, meaning that they are unable to maintain their shape
during growth®.

The first attempts to resolve the stability problem were based
on a hope that incorporation of surface tension would involve
only a minor modification in shape of the Ivantsov parabolic
fronts, while still producing stable solutions below a characteris-
tic length scale. Oldfield”® proposed that the selected dendrite
was the one moving with the minimum speed (or maximum tip
radius), which is stabilized by surface tension. Building on this
idea, Langer and Miiller-Krumbhaar'* performed calculations
to find this ‘marginally stable’ solution and further advanced
the concept of such a selection principle.

A more complete incorporation of microscopic dynamics has
had to await developments in computing and mathematical
methods. The surprising result of these studies is that surface
tension and surface kinetics are ‘singular’ perturbations in the
dynamical equations for interface evolution, in the sense that
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they may totally alter the character of the solutions and so must
be incorporated from the outset. Thus, the microscopic dynamics
cannot be treated as small perturbations of macroscopic sol-
utions; on the contrary, when microscopic dynamics are incor-
porated from the start, dendritic growth does not occur when
surface tension and surface kinetics are isotropic. Instead, tip-
splitting fingers develop, leading to the ‘dense-branching mor-
phology’ discussed below. For dendritic growth, anisotropy is
required in the interfacial dynamics'®.

The dense-branching morphology

The Hele-Shaw cell’®*® provides a simple means of studying
pattern formation. It consists of two closely spaced plexiglass
plates sandwiching a layer of viscous fluid (we use dyed glycer-
ine). The top plate is circular and open to the air at its edge.
Through a tube at the centre of the plate a second, less viscous
fluid (air or water) is injected to displace the glycerine.

Figure 2a shows an example of the dense-branching mor-
phology (DBM) in the Hele-Shaw cell. It consists of fingers of
well defined width confined within a roughly circular envelope.
The splitting at the tip distinguishes the fingers from dendrites.
This tip-splitting results from the interplay between the macro-
scopic diffusion field (corresponding to pressure in the Hele-
Shaw cell), which tends to make the interface irregular, and the

microscopic effects of isotropic surface tension and surface.

kinetics, which tend to keep the velocity uniform and the inter-
face smooth. The velocity of a point on the interface in the
direction normal to the interface is proportional to the pressure
gradient at that point. If the less viscous fluid is air, for which
the viscosity can be assumed to be zero, the pressure within the
injected bubble is constant. In the more viscous fluid (here
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FIG. 2 Morphologies observed in the Hele-Shaw cell®?®, 4, The dense-branching morphology.
The top circular plate is 26 in. in diameter and 1 in. thick, and the spacing between the plates
is ~0.4 mm. The fluid is dyed glycerine. Air is injected through the hole at the centre of the
cell at a pressure of ~150 mbar. b, ¢, Examples of ‘snowflake’ growth in anisotropic Hele-Shaw
cells with four- and sixfold symmetries, respectively. Decoration of the needle crystal in ¢
resulted, in part, from deliberate variation of the applied pressure. d A DLA-like shape developed
with large noise and no surface tension. A random array of ruled channels on the bottom
plate provides the noise. The top plate is placed flush against the lower one; thus, fluid in two
adjacent channels is unconnected, leading to effectively no surface tension paralle! to the plates.

Box B: The boundary-layer model

The velocity of the solidification front, v, , is determined
by energy conservation of the latent heat generated at
the interface and its diffusion into the melt (ignoring
heat diffusion in the solid): v,=—(DC,/L)V,T, where
D is the thermal diffusion constant®. To calculate the
velocity and predict the interfacial shape, the tem-
perature throughout the melt must be known at all times.
(The dynamics is nonlocal in both space and time
because the interface is a free boundary.) For this full
solidification (diffusion) problem, the diffusion equation
aT/at = DV T must be solved with the boundary condi-
tions that far away from the interface T, = T,,, — A, where
A is the undercooling and the interface temperature T;
(including microscopic effects) is described in Box A.
The boundary-layer model (BLM) simplifies the
diffusion problem by assuming that the entire tem-
perature change occurs within a narrow layer of width
I, near the interface. In terms of I, the interface velocity
is then v, = (DC,/L)(T,/1). We must now describe the
time evolution of I, and this is done using a pheno-
menological approach. We define the heat content of

the boundary layer per unit interfacial length, H =

C,(T,— T,)l The time evolution of H is determined by
heat balance within the boundary layer (along the nor-
mal direction) as the interface advances:

i e Tm)un—xunH+D—a—<’~0—T—'> (1)
de |, as \ as

From left to right, the terms represent (1) the production
of latent heat; (2) the heat needed to warm the next
layer of melt to the surface temperature; (3) the change
in heat owing to the increase in arc length, ds, along the
interface; and (4) the change in heat resulting from the
lateral diffusion of heat along the interface. Each inter-
facial point moves along the normal to the surface with
velocity v,,.
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glycerine) the pressure gradient is analogous to the concentra-
tion gradient in a very dilute solution at the boundary with a
phase of different concentration. The pressure and concentration
fields satisfy the Laplace equation®®. In many physical cases the
Laplace equation may be regarded as the ‘infinite diffusion
length’ limit of the diffusion equation. The diffusion equation
itself (see Box B) describes many examples of non-equilibrium
growth: for example, solidification from an undercooled metal,
precipitation from supersaturated solution or phase separation
during amorphous annealing.

A key macroscopic effect of the pressure field at the interface
is the diffusive (Mullins-Sekerka) instability*', illustrated in
Fig. 3b. We consider an interface that is initially circular but
develops a bulge. The pressure gradient along the interface is
greatest at the tip of the bulge because it is the closest point on
the interface to the outer boundary (the local pressure gradient
is the pressure drop between the interface and the boundary
divided by the distance to the boundary). Because the velocity
of a point on the interface is proportional to the local pressure
gradient, the bulge grows faster than other parts of the interface.
If this instability is the only mechanism acting, then noise or
fluctuation in the diffusion field will cause the interface to break
up into many growing bulges; these will develop smaller bulges,
and so on ad infinitum. The result is an invasion of the more
viscous phase by the less viscous one without ordering or a
characteristic length scale. Experimental realizations of this
situation are possible by making the interfacial tension very
small, for example by using two miscible fluids*® or by adding
glass beads®. It is also the process that operates during diffusion-
limited aggregation (DLA), in which case the diffusive instability
leads to a fractal structure’ 292425,

The microscopic effects of surface tension and surface kinetics
compete with the diffusive instability. Surface tension acts to
reduce the pressure at the highly curved parts of an interface,
and surface kinetics reduce the pressure on the faster-moving
portions (see Box A). In Fig. 3¢ we show the calculated rate of
growth or decay of small-amplitude perturbations imposed on
the interface, with these effects incorporated (a ‘linear stability
analysis’®?%?"). For simplicity, we consider wave perturbations
(Fig. 3b) characterized by the mode number m, the number of
waves that fit on the interface. The effects of surface tension
and surface kinetics are seen to be too weak to stabilize a circular
interface.

Linear stability analysis can be used to investigate the branch-
ing rate of the fingers, which may be the best way to characterize
the DBM. This branching rate can be studied by finger counting
or by Fourier analysis. Figure 3¢ shows that there is a fastest
growing perturbation, with mode number m*, which produces
an interface modulated by m™ finger-like bulges. The value of
m* is determined by the pressure gradient across the system
and the surface parameters. As a finger develops, the pressure
at the tip is reduced by surface tension and surface kinetics,
slowing it down. The finger flattens and eventually splits. It is
natural to expect, and has been found experimentally®2°, that
the rate of tip-splitting is such that the number of fingers can
be approximated by m*. Hence m* embodies the characteristic
length scale of the DBM, and reflects the competition between
the diffusive instability and microscopic effects®®.

The circular envelope of the DBM (observed with circular
boundary conditions) is an integral part of the dynamics of the
pattern. A naive understanding of how it arises is that if one
finger outgrows the others it has more space to spread out; part

FIG. 6 Morphology transition in electrochemical deposition of zinc from
0.05M ZnS0O, solution between piexiglass plates spaced about 0.3 mm
apart®®, The outer anode has a triagonal shape (8 cm edge). The first
transition (a > b) is from tip-splitting growth to dendritic growth. The change
in colour reflects the change in the microscopic structure of the two
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morphologies. The second transition (¢ - d) is due to the effect of the
copper ions from the outer electrode affecting the microstructure of the
deposit. Transitions between two dense-branching morphologies with
different branch densities are also observed in electrochemical deposition
of copper®®.
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FIG. 3 The DBM and linear stability analysis. a Computer simulation of the
time evolution of an isotropic Hele-Shaw ceil experiment, showing two
cascades of tip-splitting®. b, Schematic illustration of the Mullins-Sekerka
instability?. The solid curve is a fourfold deformation (m=4) of a circular
interface (dashed line). The four bulges are closer to the outer boundary
(circle with radius Ry), so the pressure gradient and the velocity (arrows) is
larger at their tips. ¢, Results of the linear stability analysis, showing the

of the flow goes sideways and the finger flattens and slows down.
We believe that a nonlinear analysis will be required to under-
stand the growth of this envelope. Recently, a linear stability
analysis was proposed to explain the DBM as seen during
electrochemical deposition®.

Experiments indicate that, in the absence of pronounced
anisotropy, tip-splitting is the generic mode of growth; it is
observed, for example, in growth by electrochemical deposi-
tion®?! precipitation from supersaturated  solution,
solidification from undercooled melts*?, amorphous annealing®
and spherulitic growth®’. The most pressing unsolved problem
is the determination of the branching rates*~* and velocity?*-*3¢

of DBM growth. The latter is especially intriguing because a
selection mechanism may operate to give a constant interfacial
velocity.
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initial growth rate as a function of the mode number m for sinusoidal
perturbations of a circular interface. Line 1 is for constant pressure along
the interface without surface tension or surface kinetics; line 2 is with
surface tension included; line 3 is with surface kinetics; and line 4 is with
both surface tension and surface kinetics. In the first case there is no
fastest-growing mode.

Anisotropy and dendritic growth

The Hele-Shaw cell can also be used to study anisotropic growth,
which is analogous to the solidification of a crystalline material.
Crystalline anisotropy may be mimicked very simply in the cell
by engraving channels on one of the plates®”. The fluid velocity
is proportional to the square of the plate spacing; because
channels modulate the spacing between the plates, the directions
along the channels become the preferred growth directions. With
an engraved lattice of sixfold symmetry (three sets of parallel
channels oriented at 120° to each other), the air bubble adopts
shapes reminiscent of snowflakes, with six dendritic arms.
(Because snowfall on Mars is composed of CO, flakes with
fourfold anisotropy, lattices with fourfold symmetry mimic
‘Martian snowflakes’.) The formation of dendrites in the

FIG. 4 Morphology diagram for a sixfold anisotropic Hele-Shaw
cell?®37. The anisotropy of the cell is quantified by the ratio
& =b,/{(by+b,), where b, is the depth of the grooves
(0.0151n.), and b, is the spacing between the top plate and
the top of the grooved plate. The morphology regions are: (1)
faceted growth; (Il) surface-tension dendritic growth (the den-
drites are inclined at an angle of 30° to the grooves); (lll)
tip-splitting growth; and (IV) kinetic dendritic growth (the
dendrites grow paraliel to the grooves). Cross-hatching on
morphology boundaries indicates the possible existence of
narrow regions of other morphologies. (For more details see
ref. 28). At pressures between regions () and (IV), the
anisotropies of surface tension and surface kinetics are of
comparable strength and cancel each other, leading to vanish-
ing effective anisotropy and thus to tip-splitting growth.
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FIG. 5 a The morphology diagram and the needle-crystal selected velocity
v* (dimensioniess units) for competing anisotropies in the BLM?2, Surface-
tension and surface-kinetics anisotropies have preferred growth directions
offset by 30°, as in the sixfold Hele-Shaw celi. Crosses indicate the selected
velocity of needle crystals pointing in the preferred direction of the surface-
tension anisotropy, and diamonds are for crystals pointing in the surface-
kinetics preferred direction. The nearly horizontal dashed line represents
our calculation of the DBM velocity. The solid line is the selected velocity
for the ‘surface-tension’ needle crystal in the absence of kinetic anisotropy,

Hele-Shaw cell®’ provides a graphic demonstration of the role
of anisotropy in dendritic growth.

As the applied pressure (the driving force) is varied, the air
bubble assumes other shapes. Similarly, as the ‘microscopic’
conditions are altered, different morphologies emerge. For
example, the ‘strength’ of anisotropy can be changed by varying
the spacing between the plates. One can devise a ‘morphology
diagram’ to organize these observations®. Figure 4 depicts a
morphology diagram for a cell with sixfold anisotropy. For
different values of the applied pressure, one may obtain faceted
growth, the DBM or two types of dendrites. As explained below,
the existence of two different types of dendrites is particularly
significant in an understanding of morphology transitions. Mor-
phology diagrams have also been formulated for electrochemical
deposition experiments**>!, Hele-Shaw cells using liquid crys-
tals as the viscous fluid®®, and solidification from supersaturated
solutions®’.

Several questions now arise. When does anisotropy trigger
dendritic rather than tip-splitting growth? What is the difference
between the dendrites appearing close to equilibrium and those
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and the dotted line is that for the ‘kinetic’ needle crystal with no surface-
tension anisotropy. b, Time-dependent simulation of a surface-tension den-
drite in regime |[; ¢, Tip-splitting growth in regime II; and d surface-kinetic
dendrite in regime Iil. Above a critical undercooling A., surface-kinetics
dendrites have the higher growth velocity and are the observed morphology.
There is a discontinuous jump in the velocity at A_, indicating a first-order
transition from the DBM to surface-kinetics dendrites. The transition from
surface-tension dendrites to the DBM is second order.

far from equilibrium? Is there a general principle that allows
one to predict the mode of growth for specified conditions from
the available morphologies, and thus to explain the morphology
diagram?

We can construct an heuristic, albeit far from definitive,
argument to understand the selection of tip-splitting or dendritic
growth, and the role of anisotropy. Consider a crystal solidifying
with a parabolic interface and a finite surface tension. The tip
is the coldest point on the interface (see Box A). Thus there is
a heat gradient along the interface, and heat flows towards the
tip. This warming slows the advance of the interface, while the
corresponding cooling of points at the sides of the tip causes
these points to advance faster and to overtake the tip. Such
interfacial heat-balance dynamics probably accounts for tip-
splitting growth. For dendrites to form, heat flow towards the
tip must be suppressed; this happens in the presence of crystal-
line anisotropy. For large enough anisotropy (of the order of
one part in a hundred), the tip is no longer the coldest point
along the interface, and a subtle interplay may develop between
the anisotropy and the shape selection of the needle crystal. For
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Box C: Microscopic solvability criterion

We seek steady-state (constant-velocity and shape-
preserving) solutions of the BLM with a needle-crystal-
like shape®®*’. If an interface advancing in the § =0
(ordinate) direction with constant velocity v, preserves
its shape, then the interface velocity in the normal direc-
tion is v, = v, cos §, and in the tangential direction is
v, = vy sin 6. The properties of the boundary layer are
stationary in the moving frame: in other words, the time
derivative of H at fixed arclength vanishes. That is,

H dH aH
an| ol (o), o
de |, dt i, 3s

and the derivative along the normal direction is equation
(1) (Box B). In the absence of surface tension and sur-
face kinetics, the interfacial temperature is constant,
T.=T,,, and equation (1) can be solved exactly. For a
given value of undercooling there exists a continuous
family of parabolic Ivantsov-like solutions. The singular
nature of surface effects manifests itself in the fact that
these solutions are destroyed when either surface tension
or surface kinetics are inctuded. These singular perturba-
tions change completely the nature of the solution and
lead to tip-splitting rather than needle-crystal growth.
Anisotropy is also a singular perturbation. The surpris-
ing discovery is that when it is included needle-crystal-
like solutions are recovered.

To demonstrate the existence of such solutions,
equation (2) is rewritten as three first-order coupled
nonlinear differential equations*’. These equations
describe a ‘flow’ in the three-dimensional space whose
coordinates are 6, T, and A =dT,/ds. There are two
special fixed points: (d8/ds=dT,/ds=dAr/ds=0) at
0==x7m/2, T,=T, and A =0. A needle-crystal solution
is a trajectory connecting these two fixed points. The
problem is posed in terms of A(s=0), the ‘mismatch
function’. Because the temperature must be symmetric
about the origin (s =0, 6 =0), the mismatch function
must vanish for an eigenvalue v, if a needle crystal is
to exist. In the absence of anisotropy there is no selected
needle crystal. But for any finite level of anisotropy there
is a discrete set of eigenvalues, {v,}, for which the mis-
match function vanishes. The phrase ‘microscopic solva-
bility’ reflects the subtle interplay, in the determination
of these eigenvalues, between the macroscopic driving
force of the undercooling and microscopic interfacial
effects.

a given anisotropy, only a needle crystal with a particular tip
velocity and curvature will have its coldest point at the appropri-
ate temperature and distance from the tip to exactly balance the
tip-splitting tendency. This is the origin of the ‘solvability’
criterion (Box C). It is found that, instead of the original (Ivant-
sov) continuous family of parabolas, only a discrete set of (nearly
parabolic) needle-crystal solutions can satisfy this criterion. A
stability argurhent is required to select one solution from this
discrete set. If a needle crystal is perturbed, say by introducing
a bulge near the tip, the perturbation will grow as a result of
the diffusive instability. This bulge grows outwards at a fixed
position in space, so as the tip advances the bulge moves back-
wards relative to the tip. Only for the fastest-growing needle
crystal does the bulge move backwards faster than its growth
rate, allowing the tip to regain its original shape. Thus, only the
fastest growing needle crystal can survive the effect of the
diffusive instability.

This microscopic solvability criterion was discovered indepen-
dently using the geometrical®® and boundary-layer*® models. It
has since been shown that the same mechanism is present in
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the full solidification problem, and analytical methods have
been developed to calculate the selected velocity in the limit of
small undercooling and small anisotropy*'~**. There is good
agreement with time-dependent supercomputer simulations of
the full solidification problem®; the selection hypothesis is,
however, yet to be tested comprehensively against experiment.

A complete theory of dendritic growth must also explain the
dynamic development of side branches. Much attention is being
given to this question®>*®; the debate focuses on the relative
roles of noise and deterministic dynamics. The question is
whether side branches grow as a result of noise that triggers a
diffusive instability (such that a linear stability analysis would
be sufficient to predict their evolution) or whether, as we believe,
an additional solvability principle is required.

Selection hypothesis for morphology transitions

With the discovery of the microscopic solvability criterion out-
lined in Box C, the problem of dendritic growth seemed to be
solved. But the anisotropic Hele-Shaw experiment and the boun-
dary-layer model (BLM) (see Box C) expose a problem: den-
drites are not always observed when anisotropy is present. As
the driving force (pressure in the Hele-Shaw cell and undercool-
ing in the BLM) is decreased, tip-splitting occurs below a critical
value. (Similar behaviour is observed experimentally in the
solidification of water’Z.) The selection principle for dendritic
growth, however, predicts that whenever anisotropy is present,
a specific dendrite (corresponding to the fastest-growing needle
crystal) exists and is linearly stable. The observation of tip-
splitting under growth conditions appropriate to dendrites raises
the possibility that morphologies can coexist. As only one mor-
phology is selected experimentally, microscopic solvability must
be incomplete—a more general principle is needed.

A plausible extension of the solvability criterion is the more
general principle that the dynamically selected morphology is
the fastest-growing one?®. That is, if more than one morphology
is possible, only the fastest one is nonlinearly stable and hence
observable. Thus, we infer that below a critcal driving force the
velocity of the DBM is greater than the velocity of the dendritic
solution predicted for the same parameters, and so the former
is selected. To test this hypothesis, we have studied the efiect
of competing anisotropies using the BLM. We included
anisotropies in both surface tension and surface kinetics, with
preferred growth directions offset by 30°. The results for the
selected velocity along both the surface-tension and surface-
kinetics directions (Fig. 5) show that above a critical undercool-
ing both types of dendrites are possible, but those with highest
velocity are controlled by the surface kinetics. Time-dependent
simulations of the BLM demonstrate that the ‘surface-kinetics’
dendrites do indeed comprise the dynamically selected mor-
phology in this regime. Further studies of experimental systems
and comparison with theoretical models are required to test this
‘fastest-growing’ selection hypothesis.

An analogy can be drawn between phase diagrams and mor-
phology diagrams. At equilibrium, the phase that minimizes the
free energy, for a given set of state variables, is the selected
one, irrespective of the prior history of the system. By contrast,
non-equilibrium growth processes are time dependent, so it is
not clear a priori that a morphology diagram can exist. The
question is whether appropriate control parameters describing
the growth conditions, analogous to the state variables of
thermodynamics, can be identified such that the morphology
depends only on these parameters and not on initial conditions.
One finds that morphology diagrams can indeed be mapped out
for experimental systems, and are reproducible as a function of
the control parameters. It follows that a corresponding selection
principle, which would permit theoretical prediction of growth
morphologies, must exist.

The analogy between equilibrium phase diagrams and mor-
phology diagrams can be carried further. Two types of
morphology transition can be identified®®: the first shows a
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discontinuous jump in the velocity at the transition point (and
is hence classified as a first-order morphology transition),
whereas for the other (characterized as second-order), the veloc-
ity itself is continuous as the morphology changes but there is
a discontinuity in its derivative. Such morphology transitions
are found both experimentally and theoretically. In a study of
solidification from supersaturated NH,Cl solutions, Chan et
al®” found that there was either a jump discontinuity (first order)
or a discontinuity in the slope (second order) of the observed
dendritic velocity as a function of supersaturation, correspond-
ing to changes in crystallographic orientation of the growing
dendrites. First- and second-order morphology transitions in
the BLM are shown in Fig. 5.

Experiments on growth by electrochemical deposition pro-
duce results that are in qualitative agreement with this charac-
terization of morphology transitions. Sawada et al.*® have plotted
the interfacial velocity against applied voltage and found sudden
changes in slope when the morphology changes. We have
observed discontinuities in both slope and magnitude of the
interfacial velocity, depending on the growth parameters. The
morphology transition in electrochemical deposition shown in
Fig. 6 demonstrates two key aspects of such transitions: the
transition is sharp and is accompanied by a change in the
microstructure of the growing deposit (in this case coincident
with a colour change). These observations lend support to the
concept of morphology transitions.

Concluding remarks

The existence of a morphology diagram indicates that a selection
principle must exist. Is this principle the ‘fastest-growing mor-
phology’ hypothesis that we have proposed? We believe that
this may not be the most general principle but is at least a step
in the right direction.

When a system is driven out of equilibrium by the imposition
of a gradient in one of the thermodynamic variables (such as
the temperature or the concentration), the response of the system
is described by the conjugate flux (the heat flux and particle
flux, respectively). These fluxes may in general be viewed as the
rate of entropy production, or the rate of approach towards
global equilibrium. In growth processes specifically, the driving
force (for example, the undercooling in solidification) is the
equivalent of the thermodynamic gradient. The average velocity
measures the rate of approach towards equilibrium, and there-
fore represents a response function. But the global rate of change
of the free energy (at the interface) is given by the integral of
the velocity along the interface. Thus, by ‘average velocity’ we
mean the velocity weighted according to the geometry of the
interface, and thus we take into account the global shape of the
object. We speculate that the average velocity is an important
variable but is by no means the only one. It should have a
conjugate variable (at present unknown) that will be characteris-
tic of the equilibrium properties of the interface and the selected
growth morphology.

The ‘fastest-growing’ selection principle is probably a good
approximation to the general selection principle when the system
is far from equilibrium, in which case the growth rate is the
dominant factor in the competition between morphologies. An
analogy can be drawn with the high-temperature limit of an
equilibrium system coupled to a heat bath, where entropy is
dominant: thus, we expect that far from equilibrium, entropy
production is dominant in morphology selection. O
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