
1

2

3

4

DHQ: Digital Humanities Quarterly
Preview
2022
Volume 16 Number 1

Tesserae Intertext Service

Nozomu Okuda <nozomuok_at_buffalo_dot_edu>, SUNY University at Buffalo, Department of Classics
Jeffery Kinnison <jkinniso_at_nd_dot_edu>, University of Notre Dame, Department of Computer Science and Engineering

Patrick Burns <Patrick_dot_Burns_at_austin_dot_utexas_dot_edu>, University of Texas at Austin, Department of Classics

Neil Coffee <ncoffee_at_buffalo_dot_edu>, SUNY University at Buffalo, Department of Classics
Walter Scheirer <walter_dot_scheirer_at_nd_dot_edu>, University of Notre Dame, Department of Computer Science and
Engineering

Abstract

The Tesserae Intertext Service Application Programming Interface (TIS-API) enhances the
machine-accessibility of the intertext discovery capabilities of the Tesserae software. Instead of
requiring inputs through a human-accessible webpage, the TIS-API accepts inputs according to
a web development standard. Two case studies demonstrate the contributions of the TIS-API to
computer-assisted literary criticism, particularly in increased software development and
maintenance flexibility as well as in easier integration of Tesserae software into research
workflows. Those interested in integrating the TIS-API into their digital projects can find
documentation at https://tesserae.caset.buffalo.edu/docs/api/. For exact implementation details,
the source code is available at https://github.com/tesserae/apitess.

Introduction
The term “intertext” is used to name a passage of text that gives evidence of one author using another author’s words.
Scholarly consensus indicates that intertexts exist ([Juvan 2008] [Allen 2011] for Latin literature, see [Edmunds 2001]
[Coffee 2012a] for Greek literature, see [Berti 2016]). While there is great variation in the motivation for the use of an
intertext, perhaps the reuse signals an author’s erudition or enhances the effect of an expression. For example, when
Vergil in his epic Aeneid describes the sound of a horse galloping across the fields:

quadrupedante putrem sonitu quatit ungula campum (Aeneid 8.596).

The horses’ hooves shake the soft-soiled plain with four-footed thunder.

He is adapting a line from his epic predecessor Ennius:

. . . summo sonitu quatit ungula terram. (Ennius Annals 8.264)

The horses’ hooves shake the earth with great thunder.

With this recollection, Vergil is reusing available poetic materials, demonstrating familiarity with his predecessor Ennius,
and inviting the reader to compare the parallel passages.

Various attempts have been made at computer-assisted intertext discovery ([Lee 2007], [Mastandrea 2011], [Büchler

2013], [Chaudhuri 2015])[1], but none have made a conscious effort to standardize machine-accessibility of the intertext
discovery process and results. This paper presents the Tesserae Intertext Service Application Programming Interface

http://www.digitalhumanities.org/dhq/preview/bios.html#okuda_nozomu
mailto:nozomuok_at_buffalo_dot_edu
http://www.digitalhumanities.org/dhq/vol/16/1/000602/000602.html
http://www.digitalhumanities.org/dhq/preview/bios.html#kinnison_jeffery
mailto:jkinniso_at_nd_dot_edu
http://www.digitalhumanities.org/dhq/vol/16/1/000602/000602.html
http://www.digitalhumanities.org/dhq/preview/bios.html#burns_patrick
mailto:Patrick_dot_Burns_at_austin_dot_utexas_dot_edu
http://www.digitalhumanities.org/dhq/vol/16/1/000602/000602.html
http://www.digitalhumanities.org/dhq/preview/bios.html#coffee_neil
mailto:ncoffee_at_buffalo_dot_edu
http://www.digitalhumanities.org/dhq/vol/16/1/000602/000602.html
http://www.digitalhumanities.org/dhq/preview/bios.html#scheirer_walter
mailto:walter_dot_scheirer_at_nd_dot_edu
http://www.digitalhumanities.org/dhq/vol/16/1/000602/000602.html
https://tesserae.caset.buffalo.edu/docs/api/
https://github.com/tesserae/apitess

5

6

7

8

9

10

(TIS-API), which specifies the rules of machine-accessibility for the intertext discovery tool known as “Tesserae”.

We argue that machine-accessibility to Tesserae’s capabilities, as provided by the TIS-API, is an enhancement to the
existing Tesserae software. We first demonstrate that the TIS-API does, in fact, make Tesserae’s capabilities machine-
accessible by showing how the TIS-API is designed on standard principles in the web development community, and by
walking through an example of how the TIS-API can be used to conduct a Tesserae search in a machine-accessible
way. Two case studies further explore how the TIS-API enhances the Tesserae software. The first case study
demonstrates how the TIS-API aids collaboration among members of the Tesserae project team, particularly in the
implementation of the new Tesserae website interface. The second case study demonstrates how someone outside of
the Tesserae project team sees value in the TIS-API for making the software easier to integrate into research workflows
that aid reproducibility in literary criticism research.

Tesserae
The Tesserae Project develops software for discovering intertexts, with particular focus on the intertexts that appear in
ancient Greek and Latin literature [Coffee 2012b]. The project’s main tool, called Tesserae
(https://tesserae.caset.buffalo.edu/), accomplishes this by analyzing and comparing two texts for regions of word reuse.

For example, in order to find intertexts between Vergil’s Aeneid and Lucan’s Bellum Civile, Tesserae goes through both
works line-by-line to find where pairs of words occur in lines from both works. Because the Aeneid precedes the Bellum
Civile in publication, we can assume that theAeneidserved as a source text from which the later poet could draw upon
for poetic raw material. Accordingly, the results from this Tesserae search can help us find places where Lucan may
have borrowed words from Vergil (see [Coffee 2012b] for examples).

Given the highly inflected nature of both ancient Greek and Latin, Tesserae also allows for matching by stem. This
allows for finding examples of Lucan reusing Vergil’s words in different grammatical and morphological forms. It is also
useful to exclude common words, that is stopwords, from Tesserae searches, on the grounds that the reuse of common
words signals not so much Vergil’s influence on Lucan as much as the common language available to the poets in
composing their respective works. In summary, when Tesserae is given (1) two texts to compare, (2) a manner in which
to compare the words of the texts (i.e., by exact word match or by stem), and (3) a list of stopwords to ignore, instances
of text reuse can be found, which in turn can serve as evidence of intertexts.

Originally conceived of as a command line tool, the advent of the Tesserae website interface in 2009
(https://tesseraev3.caset.buffalo.edu/) made the delivery of its intertext discovery capabilities much more human-
accessible [Coffee 2012b]. However, this same interface made machine-accessibility difficult for two main reasons.
First, the submission of Tesserae searches relied on user input via web forms. Second, the results of the Tesserae
searches were returned as an HTML webpage. While these two reasons did not make the Tesserae results impossible
to access automatically, they did present difficulties with the automatic submission of search queries and the parsing of
results because there were no guarantees that the input forms or the results webpage would remain unchanged. Any
tools built on the Tesserae site looking and performing in exactly one way would most likely fail in the face of website
updates that changed the input forms or the layout of the search results. The lack of a machine-accessible design
created a situation in which Tesserae could be difficult to integrate with other digital projects, short of installing and
hosting a standalone instance of Tesserae.

The TIS-API eases the burden of integrating Tesserae’s intertext discovery capabilities into other projects by permitting
queries to Tesserae’s database of texts, submission of Tesserae search requests, and retrieval of search results — all in
a machine-accessible way. The TIS-API was designed, developed, and deployed at the SUNY University at Buffalo, in
collaboration with developers at the University of Notre Dame, where backend libraries on which the TIS-API relies were
developed. The University of Notre Dame also developed a web frontend powered by the TIS-API, demonstrating one
instance in which the TIS-API eased the burden of integrating Tesserae’s intertext discovery capabilities into new
software. As an important perspective from outside of the Tesserae Project, a researcher at the Quantitative Criticism
Lab (University of Texas at Austin) has tested and commented on the TIS-API.

https://tesserae.caset.buffalo.edu/
https://tesseraev3.caset.buffalo.edu/

11

12

13

14

TIS-API Design
Following standard practice for machine-accessible communication across the Internet, the TIS-API was designed
according to the five REpresentational State Transfer (REST) principles [Fielding 2000], [Fielding 2017]. Since the basic
rules for communication over the Internet are already defined by the HyperText Transfer Protocol (HTTP), the five REST
principles provide further guidelines on how to use HTTP for effective machine-to-machine communication.

The fundamental assumption of the five REST principles is that the only thing a machine can request from another
machine is a resource (Figure 1).

Figure 1. Diagram of the fundamental communication pattern in REST. The machine on the left, known as
the “client,” makes a request for a resource. The machine on the right, called the “server”, responds to the
client’s request. The language used between the computers is known as HTTP.

In the original vision of the five REST principles, a resource typically took the form of a webpage or some multimedia
asset, like an image. For Tesserae’s intertextual discoveries, one resource would be the discoveries themselves — the
results from a Tesserae search. Other resources, such as text information and search options, aid in the production of
those discoveries.

Starting from these basic assumptions about resources, the first REST principle is to have a name for every resource
(Figure 2).

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure1.png

15

16

Figure 2. First REST principle: every resource that a server makes available must have a name. One
resource that the TIS-API makes available is the catalog of texts that Tesserae has access to, which can be
accessed by the name “/texts/”. Furthermore, metadata for each text in the catalog can also be requested.
Therefore, the TIS-API assigns a name to each resource. In the example figure, the name “0” is associated
with Aeneid, the name “1” is associated with Bellum Civile, and so forth. Note that these example names are
not the ones used in the actual deployment currently running through the Tesserae project.

This allows one machine to make a request on a specific resource from another machine. For example, the name
http://www.buffalo.edu/ refers to the resource that is the main web page for the University at Buffalo. The TIS-API
specifies naming conventions for the resources necessary to carry out Tesserae searches. For example, the naming
conventions require that “/texts/” be part of the name for resources referring to texts available in a Tesserae database.
More examples of names and the TIS-API naming conventions will be shown later in the paper.

The second REST principle is that the way one specific request behaves for one resource is similar to the behavior of
the same request on a different resource (Figure 3).

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure2.png
http://www.buffalo.edu/

17

18

Figure 3. Second REST principle: requests should behave similarly across resources. In this example, the
client has requested a resource named “/texts/a”. In response, the server provides information on “a”. When
the client requests for a resource named “/texts/b”, the server responds in a similar fashion, except that it
provides information on “b” instead of on “a”.

Within the rules of HTTP, there are various requests that can be made. One common request is GET, which requests
retrieval of the resource. Going back to the University at Buffalo main web page example, a computer requesting a GET
for http://www.buffalo.edu/ is asking another computer to retrieve the University at Buffalo main webpage. The TIS-API
specifies that requesting a GET for “<webhost>/texts/” (where “<webhost>” is replaced with the URL referring to a
server on which the TIS-API is installed) will retrieve information about the texts available in a Tesserae database.

The third REST principle is that modification of a resource is mediated through instructions, which are called
representations (Figure 4).

Figure 4. Third REST principle: modifications to a resource are mediated through instructions, known as a
representation. When a client requests that a Tesserae search be run, the TIS-API modifies the “parallels”
resource by appending newly found intertexts. What intertexts should be added to “parallels” is determined by
the representation that the client sent (shown as the blue icon), which contains instructions specifying how
the search is to be run.

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure3.png
http://www.buffalo.edu/
http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure4.png

19

20

21

22

23

For the TIS-API, this principle is highlighted particularly in the way Tesserae searches are submitted. To submit a
Tesserae search, a machine must request a POST (like GET, POST is one of the requests that can be made through
HTTP) on the “<webhost>/parallels/” resource and provide Tesserae search options in a particular format. The
particularly formatted search options would be a representation to which the third REST principle refers.

The fourth REST principle is that representations are self-descriptive. Admittedly, the TIS-API does not conform to this
principle directly. However, one way in which the TIS-API adheres to the spirit of this principle is in the search results
resource. Search results resources are defined to contain the search options used to produce the results available in
the resource. In this way, it would be possible to know exactly what options produced these results (Figure 5). This also
enables caching of results, which can lead to a better user experience in the form of reduced search times.

Figure 5. Fourth REST principle: representations should be self-descriptive. Although the TIS-API is not strict
in following this principle, one way in which it practices the spirit of this principle is in the server response to a
request for search results. The representation used in submitting the current search (shown as the blue icon)
is given as part of the server’s response.

The fifth and final REST principle is that application state information should not be stored; instead, it should be passed
as a representation. To unpack the meaning of this, it is important to consider another assumption about the REST
principles: when one computer communicates with another computer, the two are in a server-client relationship. The
server is the computer that holds the resource that a client wishes to make a request on. As a result, the client always
initiates contact with the server. Application state refers to a step in some process that the server and client navigate
together.

A common server-client application is online shopping. The first step is for the client to submit a set of items to
purchase; then, the server needs to calculate various things (like whether the items are in stock, how much the order
will cost, taxes to collect, and other business-related tasks); then, the client needs to provide authorization to pay for the
purchase; finally, the server should notify the client that the order has been placed and that the purchase has been
billed. According to the fifth REST principle, neither the client nor the server should store information specifying which
step they are on. Rather, the exchange of information they conduct as part of that process should specify which step
they are on.

The TIS-API exhibits compliance with the fifth REST principle in the way it handles Tesserae search submissions
(Figure 6).

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure5.png

24

25

26

Figure 6. Fifth REST principle: application state should not be stored in the API. In the example of running a
Tesserae search, the application is expected to 1) run a search as specified and 2) display the results. The
TIS-API separates these two states of the application into individual requests, thereby avoiding the need to
store application state either on the client or the server. Instead, the application state is mediated by
representation: the client knows how to request search results based on information the server has given
(shown as the red icon). Note that the client is not required to immediately request search results; because it
is not tied to an application state, it can make other requests, such as requests for certain texts or for a new
stopwords list, before requesting the search results.

For the Tesserae search application, the client first submits a Tesserae search; the server then needs to run the search
and store the results; finally, the client should be able to access the results. Since Tesserae search may take longer
than a user is willing to wait, it seemed important to design the search application in such a way that the client would not
be stuck waiting for the server to respond with search results. Designing the application so that the server would first
respond to the client with the resource name for completed search results not only freed the client from waiting on the
server but also made storing application state in either the server or the client unnecessary. The client can make a
request on the completed search results, and if the server responds that they aren’t ready yet, the client can wait to
make a request later.

The previous points demonstrate that each of the five REST principles were considered in certain aspects of the TIS-
API. While these examples do not describe all the ways in which the five REST principles were employed in the design
of the TIS-API, these examples should serve to substantiate the claim that the five REST principles were important
considerations during the design of the TIS-API. Because of this, the TIS-API provides machine-accessibility to
Tesserae’s capabilities.

Tesserae Search via the TIS-API
Though claims of machine-accessibility can be made through the REST principles, it can be more convincing to show
machine-accessibility by walking through the process of submitting a Tesserae search through the TIS-API (see Figure
7 for a high-level workflow of the process). For those who prefer directly reading the behavior prescribed by the TIS-API
instead of going through this example, the TIS-API documentation site is available at

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure6.png

27

28

29

https://tesserae.caset.buffalo.edu/docs/api/. For those who want to know exact details about how the TIS-API was
implemented, source code is available at https://github.com/tesserae/apitess.

Figure 7. A high-level overview of the workflow used to submit a Tesserae intertext search through the TIS-
API. This image is also used at https://tesserae.caset.buffalo.edu/docs/api/getting-started/workflow/, where a
similar workflow is described.

Anatomy of a Tesserae Search Query
To start the discussion of how the TIS-API can be used to perform a Tesserae search, the component parts of a
Tesserae search query should be reviewed. Although the details for the Tesserae search process have already been
described [Forstall 2014], the focus here is to have a simplified but strong conceptual grasp on the parts involved in a
Tesserae search. By understanding what the building blocks are for defining a search, it will be easier to understand
how each of these blocks are addressed by the TIS-API. The aspects of the Tesserae search input discussed in this
paper are:

To frame the discussion of these inputs, it will be helpful to state what the Tesserae search is supposed to do: the
objective of Tesserae search is to find intertexts between two works. Thinking of Tesserae search in this way, it
becomes immediately obvious that two works need to be specified in the input. Because Tesserae was originally
developed as a tool for intertext detection, a relationship between the two works is assumed: namely, that one work
influenced the other. For this reason, a Tesserae search query is formulated in terms of a “source text” (i.e., the work
that influences the other) and a “target text” (i.e., the work that was influenced by the other).

Another aspect fundamental to specifying a Tesserae search query is defining what counts as an intertext. For purposes

source text
target text
type of feature used to find matches
stopwords

https://tesserae.caset.buffalo.edu/docs/api/
https://github.com/tesserae/apitess
http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure7.png
https://tesserae.caset.buffalo.edu/docs/api/getting-started/workflow/

30

31

32

33

34

35

36

37

of the Tesserae search algorithm, an intertext is defined by the matching of at least two features between two passages,
where one passage comes from the source text, and the other passage comes from the target text. Thus, it becomes
necessary to specify which type of feature to compare when looking for matching features.

One feature type is the lemma type, which can be thought of as a dictionary headword. When looking up the definition
of a given word in the dictionary, it is sometimes necessary to change the spelling of the word to find the correct entry.
For example, the definition for the word “love” in “I love to swim” is found in the dictionary under the lemma “love”. In this
example, no spelling change is necessary to find the lemma. However, the definition for the word “loves” from “He loves
swimming” is also found under the lemma “love”. It is necessary to remove the final “s” from “loves” in order to find the
lemma.

If lemmata (the plural of lemma) are used to search for intertexts, only passages that share at least two different
lemmata will be considered a potential intertext. For example, suppose we have the following passages (again):

Note that passage 1 contains the words “love” and “swim”, both of which also look identical to their lemmata. Passage 2
likewise contains the lemmata “love” (from “loves”) and “swim” (from “swimming”). From this information, it can be seen
that a Tesserae search searching for intertexts based on the lemma feature would find that these two passages are a
potential intertext.

A final aspect to consider in this simplified conception of the inputs to a Tesserae search is the matter of stopwords.
Often, there are features we believe will be unimportant in determining whether one passage refers to another. For
example, we may find common words like articles and prepositions to be irrelevant. In this case, we would like a
Tesserae search to ignore passages that match only because of articles and prepositions. To specify features that we
think are not interesting, we can use a stopwords list to prevent those features from being counted when determining
whether two passages are a potential intertext.

Knowing now that a source text, a target text, a feature definition, and a stopwords list are important options to specify
in a Tesserae search, it is clear that these options will need to be specified to the TIS-API when submitting a Tesserae
search query.

API Concepts
Before discussing how to use the TIS-API to perform Tesserae search, some terminology and conventions should be
noted. First, the meaning of “TIS-API” should be more carefully stated. The TIS-API, in its strictest sense, is a set of
rules that defines server behavior in response to client requests. An implementation of the TIS-API, therefore, is code
that, when run, behaves in accordance with the rules that were defined. When this code is running, we can say that a
computer is “running an instance of the TIS-API.” Since the code allows a computer to follow the rules of the TIS-API
and since the deployed software exhibits the behaviors defined by the rules of the TIS-API, the use of “TIS-API” can slip
from its strict sense into a more inclusive (and therefore ambiguous) sense that may denote either the rules, the code,
or the deployed software.

The angle brackets (“<,” “>”) convention used in resource names should also be explained explicitly. Just as earlier in
the paper, the angle brackets (“<,” “>”) denote a placeholder; the word(s) within the angle brackets hint at what should
replace this placeholder. For example, as seen earlier, “<webhost>/texts/” specifies a name for interacting with text
resources. However, the name does not literally contain “<webhost>”; rather, “<webhost>” should be replaced with an
identifier to a running instance of the TIS-API. For example, if https://tesserae.caset.buffalo.edu/api is the URL to a
running instance of the TIS-API, https://tesserae.caset.buffalo.edu/api/texts/ (note that “/texts/” has been added to the
URL) is the name referring to the text resources available in that instance.

Finally, the term “endpoint” should be defined. Note that the initial part of the URL is largely irrelevant to the defined
behavior for the TIS-API. In other words, whether https://tesserae.caset.buffalo.edu/api or https://www.tis-api.com is

1. I love to swim
2. He loves swimming

https://tesserae.caset.buffalo.edu/api
https://tesserae.caset.buffalo.edu/api/texts/
https://tesserae.caset.buffalo.edu/api
https://www.tis-api.com/

38

39

40

41

42

used to work with texts, the TIS-API will respond in a similar manner — and it would behave exactly the same if both
web hosts had the same text information in their respective databases. Therefore, the part of the name that
distinguishes behavior is what comes after the web host’s identifier. These distinguishing patterns that come at the end
of the URL are known as “endpoints.” By convention, these endpoints are referred to not by their full URL; rather, they
are referred to by the portion of the URL that comes after the web host’s URL. For example, “/texts/” is the TIS-API
endpoint that deals with texts.

Using the TIS-API to Run a Tesserae Search
With a clear picture of Tesserae search options as well as the vocabulary used to express APIs, it is possible to
consider how the TIS-API can be used to build and submit a Tesserae search query. The first endpoint to consider is
“/parallels/”, which accepts Tesserae search requests. By performing a POST request on the “/parallels/” endpoint and
providing the Tesserae search options in a particular machine-readable format, a Tesserae search query can be
submitted. Exact details on this particular machine-readable format can be found by consulting the documentation; for
purposes of this paper, it is sufficient to know that the “/parallels/” endpoint accepts Tesserae search query submissions.

Ignoring the specifics of the Tesserae search query submission format for the “/parallels/” endpoint, earlier discussion
has shown that a source text, a target text, a feature to search by, and a stopwords list must be specified. The TIS-API
can be useful in choosing these options.

Since Tesserae can perform intertext discoveries only between texts already in its database, we can only reference a
source text and a target text already in the Tesserae database when submitting a Tesserae search. How does the TIS-
API provide access to information about texts in the Tesserae database? As mentioned earlier, text information can be
obtained at the “/texts/” endpoint. Again, there are specific details about the “/texts/” endpoint that may be useful (such
as querying the Tesserae database for texts written by a particular author) which can be found by consulting the
documentation. But for purposes of this paper, it is sufficient to know that the “/texts/” endpoint can be used to discover
what texts are available to be used as a source or target text. From the information returned by performing a GET
request on the “/texts/” endpoint, identification codes used by the database to refer to specific texts can be obtained.
These identifiers can specify a source and a target text in the information submitted in a POST to “/parallels/”.

Although the TIS-API does not specify a convenient endpoint for determining which search features can be specified,
the documentation does specify valid options. Furthermore, the TIS-API defines that when an invalid option is given, the
response will include information indicating invalidity of the request.

The TIS-API, however, does have a “/stopwords/” endpoint that can be useful in choosing a stopwords list. Recall that
stopwords lists are often composed of items that appear most frequently in the language. Given the appropriate
information (as defined in the documentation), the “/stopwords/” endpoint consults the Tesserae database and returns
the most frequently appearing features (Figure 8).

43

44

45

46

Figure 8. Diagram describing steps taken to obtain stopwords.

In other words, the “/stopwords/” endpoint can be used to collect the top N most frequently appearing features, where N
is a number that can be specified. That list can be used as the stopwords list given to “/parallels/” when submitting a
Tesserae search query.

It has been shown that the TIS-API provides the “/parallels/” endpoint for submitting a Tesserae search query, as well as
the “/texts/” and “/stopwords/” endpoints to aid in choosing Tesserae search options. To retrieve search results, the TIS-
API specifies the “/parallels/<uuid>/” endpoint, where “<uuid>” is replaced by a search submission identifier (“UUID” is
an acronym for “Universally Unique IDentifier”, which refers to a string of letters and numbers used to identify
something). The identifier for a particular search can be found in the response data given by the “/parallels/” endpoint on
a successful query submission. In particular, a URL that ends in “/parallels/<uuid>/” will be specified. In other words, a
successful Tesserae search submission will provide the URL to retrieve the search results. Importantly, that URL is
transmitted in a standard, machine-readable way.

For search queries that involve very small texts, going directly to the URL as soon as the response from “/parallels/”
comes back may permit retrieving the search results immediately. However, when longer texts are chosen, Tesserae
search may take more time to complete. In that case, results would not immediately appear. Instead, requesting a GET
at the result URL would yield a response indicating that the resource is not available. To ensure that the search has
been submitted, the “/parallels/<uuid>/status/” endpoint, which retrieves status information on the search submission
(such as whether the search is in process or if it failed), could be used. When the status indicates that the search is
complete, it would be possible to go to the results URL and find the search results.

Case Study: Running Search on the New Tesserae Website
Having seen a theoretical use case for the TIS-API, it seems worthwhile to consider a practical use case for the TIS-API
as well. To this end, we present the new Tesserae website, which is available at https://tesserae.caset.buffalo.edu/
(Figure 9 shows what the website looks like at the time of writing when displaying results). This example demonstrates
how the TIS-API, though designed for machine-accessibility, can still be used to simulate the traditional human-
accessible experience that Tesserae has offered and that its user base in classics scholarship (of widely varying

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure8.png
https://tesserae.caset.buffalo.edu/

47

technical comfort) has become familiar with.

Figure 9. Various parts of the new Tesserae website communicate with the API.

In order to perform a Tesserae search, the user first needs to choose source and target texts. The new website displays
the source and target text options in dropdown menus, found in the top left part of the interface (see Figure 10). Behind
the scenes, the website uses the “/texts/” endpoint to find what texts are available for comparison from the TIS-API. It
then populates the dropdown lists with the information received from the “/texts/” endpoint. The user can then select
source and target texts with these dropdown menus. In the example image (Figure [uiscreenshot]), the user has
selected Vergil’sAeneidas the source text and Lucan’s Bellum Civile as the target text.

Figure 10. Along the top-left of the page are drop down menus that communicate with the “/texts/” endpoint.

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure9.png
http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure10.png

48

Figure 11. The widgets in the bottom-left of the page communicates with the “/stopwords/” endpoint to create
a stopwords list.

The user might also wish to have stopwords for the Tesserae search. On the new website, the number of stopwords to
be used can be specified under the “Advanced Options” (see Figure 12). Behind the scenes, the website uses the
parameters specified under “Advanced Options” to calculate a stopwords list using the “/stopwords/” endpoint. In the
example image (Figure 13), the user has left the slider bar under “Stoplist Size” at the default of 10 stopwords. The
example image further shows that the stopwords will be calculated based on the corpus available to the TIS-API, as
shown by the selection under “Stoplist Basis”.

Figure 12. The button labeled “SEARCH” at the middle-left of the page sends the query to the “/parallels/”
endpoint. (In this image, the search button is greyed out because the query has already been sent.)

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure11.png
http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure12.png

49

50

51

52

Figure 13. The majority of the screen has been populated with the results of a search, obtained from the
“/parallels/<uuid>/” endpoint.

To submit the Tesserae search for processing, the user simply hits the “SEARCH” button (see Figure 12). This action
causes the website to submit the search parameters to the “/parallels/” endpoint. Once the search is complete, the
website automatically calls on the “/parallels/<uuid>/” endpoint to retrieve the results of the search and displays those
results on the main part of the interface (see Figure 13).

One tangential benefit of defining the new website’s functionality in terms of the TIS-API was development flexibility.
Because the TIS-API defines expected behavior, the website developer could work on the website at the same time that
the API developer was implementing the expected behavior. This allowed for important feedback informed by the
website developer’s user experience. That feedback resulted in additional behaviors (e.g., paging of the search results,
more detailed search status information) that improved the API and website together. As the two efforts came together
for deployment of the new Tesserae website, the integration of the website with the TIS-API implementation required
relatively little work (deployment itself, along with making sure that the user interface looked right, took most of the
development time). This demonstrates the utility of the TIS-API internal to the Tesserae Project. Other digital humanities
developers may want to consider this benefit when deciding whether they too can afford to improve their software’s
ability to integrate with other software.

Case Study: Harnessing the TIS-API for Research
While the new Tesserae website demonstrates the advantages of the TIS-API for members of the Tesserae Project, it is
also important to establish the advantages conferred to researchers not directly affiliated with the project. This section
describes one such researcher’s experience with the TIS-API.

For writing his 2017 article Measuring and Mapping Intergeneric Allusion using Tesserae for a special issue of the
Journal of Data Mining and Digital Humanities on Computer-Aided Processing of Intertextuality in Ancient Languages
[Burns 2017], one of the co-authors of this article found himself in the position of downloading the results of multiple
Tesserae web searches in order to analyze not just an intertextual comparison of two authors, but rather an intertextual
comparison of one author (the Latin epic poet Lucan) against several authors representative of a specific genre (the
Latin love elegists Propertius, Tibullus, and Ovid). The searches had to be conducted individually and care needed to be
taken to ensure that each search used the same parameters, including stopword lists and cutoff scores, among other
settings. Moreover, the author needed to be sure that this consistency in parameter selection could be maintained
between sessions, with sometimes weeks or even months passing between searches. At the time, these factors were

http://www.digitalhumanities.org/dhq/vol/16/1/000602/resources/images/figure13.png

53

54

55

56

57

58

documented by the author in research notes, but from testing the TIS-API, it is clear how this process could have been
improved had the new set-up been available: a similar paper written now could document the exact TIS-API calls for all
of the author-to-author comparisons in a script with parameters specified upfront as constants.

This enhancement to the research process made possible through the TIS-API could be seen as a variation on software
development’s DRY — don’t repeat yourself — principle [Hunt 2000]. In programming, DRY argues for a reduction of
duplicate code to increase writing efficiency, reduce opportunities for errors to be introduced, and decrease
maintenance costs. The TIS-API allows for analogous benefits in a research context: searches can be formalized and
then run and rerun without duplicative effort. To paraphrase Andy Hunt and Dave Thomas’s oft-cited definition of the
DRY principle, the TIS-API makes it possible for every Tesserae search to “have a single, unambiguous, authoritative
representation” [Hunt 2000, 27] within a study.

Accordingly, code-based calls to the TIS-API should be considered now a best practice for researchers needing to
aggregate the results of multiple Tesserae searches, as for example papers such as [Bernstein 2015]. That said, even
with respect to research making use of even a single Tesserae search, the ability to document the request in the form of
an API request is valuable. This is because, no matter the number of searches, being able to document explicitly
decisions made and actions taken in the course of gathering data plays an important role in making that research
reproducible. In other words, code-based calls to the TIS-API improve researchers’ experience by making decisions
explicitly documented at the time of data-gathering, rather than as an afterthought. It has been argued that researchers
should aim for well-documented and reproducible workflows as part of a critical digital humanities [Dobson 2019]. It can
also be argued that academic developers can support researchers in reaching this goal by making it easier to
incorporate their software tools into research workflows. The TIS-API is a move in this direction.

One final point about using Tesserae searches in research workflows: at present, running, say, dozens or hundreds of
Tesserae searches using the web form could be seen as a labor-intensive proposition, enough so as to be a
disincentive to exploring research questions demanding this volume of web-form entry. Accessing the TIS-API through a
script, on the other hand, greatly improves the researcher’s experience by reducing the labor of specifying Tesserae
searches, which in turn reduces the risk of inconsistent querying and related errors that add more labor in data checking
and correction or even having to rerun completed but unusable searches. With this in mind, one can imagine that
availability of the TIS-API, by reducing the difficulty of collecting and collating multiple searches, will encourage more
large-scale Tesserae-based studies.

Future Work
For all of the benefits made possible through the TIS-API, we recognize that the API could be improved. One
improvement in particular we are considering is a way to document which version of the software produced a given set
of results. This will be important as software development continues on Tesserae’s core functionality. While such
development aims to improve Tesserae results, those improvements would come at the cost of reproducibility. It is
possible that the development improvement would cause results obtained through one set of parameters on a given
date to be different from the results obtained through the same set of parameters on a different date. By explicitly
documenting which version of the Tesserae code produces a given set of results, reproducibility of results could be
guaranteed while also permitting incremental improvements to Tesserae’s core software.

It will also be interesting to see how the TIS-API serves the growing movement within digital classics to provide better
interoperability between collections and tools emerging from different projects within the field [Burns 2019]. Such cross-
project collaborations within digital classics hold much promise for enabling new modes of inquiry across well-known
editions and newly digitized works.

Beyond digital classics, we hope the TIS-API will serve as a helpful point of comparison for other digital humanities
projects. A future in digital humanities where larger questions can be answered through the aggregation of data from
multiple sources will be more easily realized when individual projects provide an API to make their data more machine-
accessible. The considerations made in the design and implementation of the TIS-API, including the adoption of REST
principles and the analysis of Tesserae’s intertext discovery process, can serve as inspiration for other projects as they

59

60

61

make decisions on how to design and implement their own APIs.

Conclusion
The TIS-API enables machine-accessibility of Tesserae intertext discovery capabilities. Machine-accessibility is
achieved by following the software industry standards known as the REST principles, which encouraged thinking about
Tesserae’s capabilities as resources and considering how to act upon those resources. In particular, the REST
principles are evident in how Tesserae’s texts are made available, how stopwords are computed from Tesserae’s text
collection, and how Tesserae search is implemented without saving application state either in the client or the server.

Making Tesserae machine-accessible yields two main benefits. First, it allows for parallelizing development efforts in the
Tesserae software, as evidenced by the simultaneous development of both the TIS-API implementation and the new
Tesserae website. The second benefit is in the promising possibilities for those not affiliated with the Tesserae project.
Specifically, the ability to document search procedures exactly should lead to improved scholarly practices in
computational literary criticism. We expect that other digital humanities projects can likewise reap benefits from
upgrading their software with machine-accessibility.

Acknowledgments
This work was made possible by NEH Digital Humanities Advancement Grant HAA-258767-18. PJB acknowledges the
support of the Quantitative Criticism Lab and the Institute for the Study of the Ancient World while conducting this work.

Notes
[1] Plagiarism detection has some similarities to intertext detection. Both tasks fall under the more general field of “text reuse”.

Works Cited

Allen 2011 Allen, G. Intertextuality. Routledge, London. (2011).

Bernstein 2015 Bernstein, Neil, Kyle Gervais, and Wei Lin. “Comparative rates of text reuse in classical Latin hexameter
poetry.” Digital Humanities Quarterly 9.3 (2015).

Berti 2016 Berti, Monica, et al. “Documenting Homeric Text-Reuse in the Deipnosophistae of Athenaeus of Naucratis.”
Bulletin of the Institute of Classical Studies 59.2 (2016): 121-139. https://doi.org/10.1111/j.2041-5370.2016.12042.x

Burns 2017 Burns, Patrick J. “Measuring and Mapping Intergeneric Allusion in Latin Poetry using Tesserae.” Journal of
Data Mining and Digital Humanities (2017). https://jdmdh.episciences.org/3821.

Burns 2019 Burns, Patrick J. “Building a text analysis pipeline for classical languages.” In Digital Classical Philology:
Ancient Greek and Latin in the Digital Revolution. Berlin: De Gruyter (2019). pp. 159–76.

Büchler 2013 Büchler, M. “Informationstechnische Aspekte des Historical Text Re-use (English: Computational Aspects of
Historical Text Re-use).” Ph.D. thesis, Leipzig (2013). See also http://www.etrap.eu/research/tracer/.

Chaudhuri 2015 Chaudhuri, Pramit, Joseph P. Dexter, and Jorge A. Bonilla Lopez. “Strings, Triangles, and Go-betweens:
Intertextual Approaches to Silius’ Carthaginian Debates.” Dictynna. Revue de poétique latine 12 (2015). See also
https://www.qcrit.org/filum.

Coffee 2012a Coffee, N. “Intertextuality in Latin Poetry.” Oxford Bibliographies in Classics. D. Clayman, (ed). Oxford
University Press, New York (2012).

Coffee 2012b Coffee, N., J.-P. Koenig, S. Poornima, R. Ossewarde, C. Forstall and S. Jacobson. “Intertextuality in the
Digital Age.” TAPA 142, no. 2 (2012): 381-419.

Dobson 2019 Dobson, J.E. Critical Digital Humanities: The Search for a Methodology. University of Illinois Press,
Champaign, IL (2019).

Edmunds 2001 Edmunds, L. Intertextuality and the Reading of Roman Poetry. Johns Hopkins University Press, Baltimore
(2001).

https://doi.org/10.1111/j.2041-5370.2016.12042.x
https://jdmdh.episciences.org/3821
http://www.etrap.eu/research/tracer/
https://www.qcrit.org/filum

Fielding 2000 Fielding, Roy T. “Architectural styles and the design of network-based software architectures.” Vol. 7. Ph.D.
thesis, University of California, Irvine (2000).

Fielding 2017 Fielding, Roy T., Richard N. Taylor, Justin R. Erenkrantz, Michael M. Gorlick, Jim Whitehead, Rohit Khare,
and Peyman Oreizy. “Reflections on the REST architectural style and principled design of the modern web architecture
(impact paper award).” Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM
(2017).

Forstall 2014 Forstall, Christopher, Neil Coffee, Thomas Buck, Katherine Roache, and Sarah Jacobson. Modeling the
scholars: Detecting intertextuality through enhanced word-level n-gram matching. Digital Scholarship in the Humanities
30, no. 4 (2014): 503-515. See also http://tesserae.caset.buffalo.edu/.

Hunt 2000 Hunt, A. and Thomas, D. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley, Boston
(2000).

Juvan 2008 Juvan, M. Towards a History of Intertextuality in Literary and Culture Studies. CLCweb: Comparative
Literature And Culture 10, no. 3 (2008). https://doi.org/10.7771/1481-4374.1370.

Lee 2007 Lee, John. “A computational model of text reuse in ancient literary texts.” Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics (2007).

Mastandrea 2011 Mastandrea, Paolo, Massimo Manca, L. Spinazzè, L. Tessarolo, and F. Boschetti. “Musisque Deoque:
Text Retrieval on Critical Editions.” Journal for Language Technology and Computational Linguistics 26 (2011): 129-140.
See also http://mizar.unive.it/mqdq/public/.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

http://tesserae.caset.buffalo.edu/
https://doi.org/10.7771/1481-4374.1370
http://mizar.unive.it/mqdq/public/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

