
R-Locker: Thwarting Ransomware Action through a

Honeyfile-based Approach

J.A. Gómez-Hernández, L. Álvarez-González, P. Garćıa-Teodoro

Network Engineering & Security Group (https://nesg.ugr.es)
CITIC - University of Granada

Email: jagomez@ugr.es, luciaalvarez@correo.ugr.es, pgteodor@ugr.es

Abstract

Ransomware has become a pandemic nowadays. Although some proposals
exist to fight against this increasing type of extorsion, most of them are pre-
vention like and rely on the assumption that early detection is not so effective
once the victim is infected. This paper presents a novel approach intended
not just to early detect ransomware but to completly thwart its action. For
that, a set of honeyfiles are deployed around the target environment in order
to catch the ransomware. Instead of being normal archives, honeyfiles are
FIFO like, so that the ransomware is blocked once it starts reading the file.
In addition to frustrate its action, our honeyfile solution is able to automati-
cally launch countermeasures to solve the infection. Moreover, as it does not
require previous training or knowledge, the approach allows fighting against
unknown, zero-day ransomware related attacks. As a proof of concept, we
have developed the approach for Unix platforms. The tool, named R-Locker,
shows excellent performance both from the perspective of its accuracy as well
as in terms of complexity and resource consumption. In addition, it has no
special needs or privileges and does not affect the normal operation of the
overall environment.

Keywords: Ransomware, Detection, Honeyfile, System security

1. Introduction

The integrity and confidence of the Internet is increasingly compromised
by a vast of cybercriminal actions. As pointed out in [1], malware-as-a-service
(MaaS) and related variants (Hacking-as-a-Service/HaaS, Crimeware-as-a-
Service/CaaS, Fraud-as-a-service/FaaS) have gained popularity in providing

Preprint submitted to Computers & Security July 11, 2017



an attacker with access to exploits, botnets and other types of malware to
get money in an illegal and easy way. In fact, although cyberattacks can
be launched by experts, attackers with low level of expertise can acquire
their own malware by means of well-known exploit kits (EKs) like Angler,
Magnitude, Rig, and Nuclear, among others [2].

In addition to other destructive types of malware, ransomware constitutes
at present a pandemic that affects both individuals and organizations all
over the world [3]. The increase of ransomware in number of families and
variants in the last years is exponential (see Figure 1). To give some recent
figures about this problem, consider the case of WannaCry occurred last May
2017, and the more recent one (although similar) of Petya. Supported on a
vulnerability of the SMB service for Windows systems [4], the former affected
more than 200,000 machines in over 150 countries in just one day. Among
several other companies, we can mention the infection of Spain’s Telefónica,
parts of Britain’s National Health Service, FedEx, Renault and Deutsche
Bank [5].

There exist two main types of ransomware: locker and crypto. In the first
case, the access to the victim’s device is blocked by generally locking the
display or the keyboard. Instead, crypto-ransomware blocks the access to
the information on the device by ciphering the victim’s files and documents.
In both cases, an economical ransom is subsequently demanded to the victim
to restore the normal access to the kidnapped device/archives.

Locker-ransomware can be easily dismantled through various system re-
store techniques and tools. However, crypto-ransomware is much more de-
structive in general as current encryption techniques (e.g., AES and RSA)
are almost impossible to be reverted. And this despite some proposals have
been developed to overcome this situation [6, 7, 8]. From this perspective,
prevention is the first and most recommended method to fight against crypto-
ransomware at present [9]. For that, user’s training and education, use of
legitimate sofware, periodical software update, data backups, or users’ priv-
ilege management are well-known recommended best practices.

Since prevention mechanisms do not guarantee the occurence of mal-
ware activity, as in any other malware related context also detection schemes
should be deployed to protect against ransomware. With this purpose, detec-
tors of filesystem activities, API calls, registry access, C&C communications
or encryption procedures are developed by researchers. However, the actual
effectivity of such detection schemes must rely on their capability for a very
early detection. Otherwise, detection could be useless once the system is

2



Figure 1: Ransomware families and variants.

affected by the ransomware action.
We contribute here a novel integrated detection plus reaction approach

for crypto-ransomware based on the use of special honeyfiles with three main
benefits: i) the ransom operation is completely blocked when the trap file is
accessed, ii) countermeasures are automatically launched to solve the infec-
tion, and iii) the complexity and overhead involved in the solution are really
low. The approach is implemented and evaluated here for Unix platforms
through a tool named R-Locker, it standing for (in what tries to be in some
sense a word game about ransomware and its effect) ransomware locking.

The rest of the paper is organized as follows. Section 2 presents main
efforts in the field of fighting against crypto-ransomware. In this context, we
introduce in Section 3 a novel methodology based on the use of special hon-
eyfiles to thwart the ciphering action of a ransomware sample. The specific
implementation for Linux platforms, R-Locker, is described in this section
too. The general performance of the tool, both in terms of accuracy and effi-
ciency, is evaluated and discussed in Section 4. Finally, Section 5 summarizes
the contributions of the paper and outlines some further work.

2. Related work

Assuming that we are affected by ransomware, should we to pay or not?
The recommended answer to this question is clear [10, 11]: Paying the ransom

3



does not solve the problem because there is not warranty neither to recover the
data nor to suffer again the extorsion to continue paying! This way, instead
of paying the ransom it is recommended to clean/replace the machine/s and
restore the data affected by ransomware from data backups. As an exam-
ple of this consider the case of MedStar, a non-profit group that manages a
number of hospitals in the Baltimore and Washington area. A Samsam ran-
somware attack in March 2016 requested MedStar 45 Bitcoins for restoring
the encrypted files. Fortunately, MedStar did not pay the ransom since it
had a backup of the encrypted information [12]. Beyond recovering the data,
it is also recommended to notify the authorities about the incident [9].

From the above, and as it has been mentioned in the previous section,
the adoption of prevention schemes is highly encouraged to solve ransomware
infections. However, they do not completely prevent the appearance of ran-
somware. As a consequence, a number of proposals are also available to
detect this malicious behavior. The most common detection methodology is
signature-based, so that an alarm is triggered if a certain well-known ‘pattern’
is observed. As an example, McAfee affirms to make use of more than 8 mil-
lion ransomware signatures in its solutions [13]. A complementary detection
methodology to signature-based is that of anomaly detection. In this case,
the activity of the target environment is monitored in search of non-expected
suspicious events [14].

According to the usual operation carried out by ransomware, common
specific events refer to filesystem activity1 [15, 16, 17]:

• Increasing number of files with well-known extensions like, let’s say,
.locky.

• Modificacion of specific files like PIPE\lsarpc, \Device\Ip or system.pif,
among others.

• Execution of special commands like vssadmin, used to clean all volume
shadow copies thus making restore of the system impossible.

• Suspicious access to MFT (Master File Table), mainly aimed at mod-
ifying and/or deleting the original files under attack in a very short
period of time.

1System activity can be monitored with tools like SSDT (System Device Descriptor
Table) and IRP (I/O Request Packets).

4



• Modification of the MBR (Master Boot Record), to prevent the sys-
tem from loading the valid boot code by replacing it with the ransom
message to be displayed.

A real tool developed to detect crypto-ransomware based on filesystem
activity is UNVEIL [18]. Firstly, it randomly generates a realistic user envi-
ronment by generating a set of documents and adding them to the sandbox
filesystem. Then, during execution UNVEIL extracts features from I/O re-
quests such as the type of request (e.g., open, read, write) and the entropy
of the data buffer if present. These events are then matched against a set
of I/O access pattern signatures as an evidence that the sample is in fact
ransomware.

Other ransomware-specific events are related to API calls. For example,
a significant number of locker-ransomware samples use functions like Cre-
ateDesktop to lock the victims desktop by creating a new one and making
it persistent. Moreover, disabling some keyboard shortcuts (e.g., Windows
key+Tab) will prevent the victim bypassing blocking. In the case of crypto-
ransomware (e.g., CryptoWall), the use of standard system functions like
CryptEncrypt is common to encrypt files. Regretfully, this can be easily
bypassed by attackers through the development of their own cryptosystems.

It is also usual that ransomware samples modify system registry values to
specify some valuable configuration for the attacker’s purposes. Among oth-
ers [16], this is the case of HKEY LOCAL MACHINE\Software\Microsoft\
Windows\CurrentVersion\Run for the automatic execution of programs at
the session start.

Additional relevant events from the perspective of detecting crypto-ransom-
ware operation concern network activity. For example, ransomware usually
encrypts files using an AES-256 encryption key which is encrypted using a
1024/2048-bit RSA public key. The RSA key is remotely generated on an
external C&C server once the compromised device sends a POST to the
server. This way, if the ransomware cannot connect to the C&C server, the
malicious action will not be performed. In this line, authors in [19] pro-
pose the use of dynamic blacklisting of the proxy servers to detect malicious
C&C communications in CryptoWall ransomware, a clone of CryptoLocker
(https://en.wikipedia.org/wiki/CryptoLocker).

Taking into account all of the above, works like [20] propose complex
multi-source monitoring systems aimed at detecting ransomware infection.
Such a kind of systems also exist for mobile platforms, like HelDroid [21]. In

5



this case, three types of events are analyzed:

• Dynamically allocated strings derived from the execution of the mal-
ware sample in a sandbox. This will allow to detect potential key words
like ’threat’, ’law’, ’porn’, ’ransom’, ’payment’, etc.

• Execution of flows originating from functions that access the storage
and ends into functions that write encrypted content.

• Execution paths containing certain heuristics about locking strategies.

Although some authors have developed further detection methods, like
the use of formal methods to identify malware’s code intructions in [22],
filesystem monitoring is a recurrent method to detect crypto-ransomware in-
fection. In this line, authors in [23] present ShieldFS, a system that monitors
the low-level filesystem activity to update a set of adaptive models that pro-
file the system activity over time. Whenever one or more processes violate
these models, their operations are deemed malicious and the side effects on
the filesystem are transparently rolled back. Authors in [24] propose Crypto-
Drop, an early-warning detection system based on three primary file access
indicators: file type changes, similarity measurement and Shannon entropy.

A filesystem activity-based real detection tool available either for Win-
dows and Linux is Cryptostalker (https://github.com/unixist/randumb#
cryptostalker-example), which monitors a specific folder and generates
and advertisement when more than a certain number of files into it are mod-
ified within a given time interval.

Despite the detection efficacy of the previous techniques are argued to be
adequate (take into account that no definitive solution exists for the problem
yet), further proposals advocate to get earlier detection through honeypot
like techniques [25]. A real tool in this line for Windows platforms is Anti
Ransom [26]. More recently, and as a consequence of the effect of WannaCry
and Petya on Windows systems, Microsoft has introduced a control folder ac-
cess to prevent data from ransomware and other malicious apps and threats in
Windows 10 (https://gbhackers.com/microsoft-introduced-a-control
-folder-access-to-prevent-data-from-ransomware-and-other-

malicious-apps-and-threats-in-windows-10-insider-release/).
However, the real capability of this kind of approach is very limited be-

cause the existence of witness files may be not enough to detect and stop
in time the action of the ransomware sample. In this context, we contribute

6



here a novel honeyfile-based methodology to fight against crypto-ransomware.
Particularized in the tool named R-Locker for Unix platforms, it presents
three principal benefits in preserving the data of the target system:

• The honey archive deployed is not a ‘normal’ file but FIFO like, so that
a ransomware accessing the trap file will be completely blocked.

• The honeyfile is connected to a process in such a way that, when ac-
cessed, a response procedure is automatically launched to effectively
defeat the infection.

• The complexity and cost of the solution are really low and do not
interfere with the normal operation of the environment.

In the rest of the document the proposal will be properly described and
evaluated.

3. A novel honeyfile-based approach to thwart crypto-ransomware
action

In this section, we first introduce a general functional methodology aimed
at thwarting crypto-ransomware action. It should be lightweight while accu-
rate and efficient in defeating the threat. Based on this, and as a proof of
concept, we will subsequently describe R-Locker, a specific implementation
of the proposed methodology for Linux platforms.

3.1. Honeyfile-based approach for ransomware solution

Crypto-ransomware operation relies on scanning the infected machine’s
filesytem to find files, either indiscriminately or selectively according to spe-
cific file extensions (pdf, doc, jpg, etc.), and access them to encrypt the
information. Based on this general behavior, we propose as a novel anti-
ransomware solution to create a honeyfile intended to serve as a trap for
the malware. Such a proposal will present the following main features and
benefits, F={F1, F2}:

F1. The ransomware sample will be definitively blocked when accessing the
honeyfile, so that the rest of the system will remain undamaged.

7



Figure 2: Honeyfile’s functional methodology.

F2. In addition to locking the ransomware, the malicious event should be
properly notified and/or a countermeasure automatically deployed to
solve the threat.

The above methodology corresponds to the functional architecture shwon
in Figure 2. Such an operational procedure is conceptual and should be
independent on the specific target platform or OS considered (Windows,
Unix, iOS, ...). In addition to the previous desired anti-ransom operation,
some other demands should be satisfied in order to get a scalable, usable and,
as such, valid solution for real environments. Some principal requirements,
R={R1-R5}, in this line are as follows:

R1. Effectivity, so that the harmful action of the ransomware over the sys-
tem is null or as minimum as possible. Otherwise, the solution might
not be such.

R2. Low consumption, both from the perspective of computation, memory
usage and storage. Otherwise, it could not be scalable.

R3. Plainness, without necessarily requiring special privileges for installa-
tion and execution. Otherwise, it will not be used by end users.

8



R4. Transparency, from the perspective of the normal operation of the over-
all environment; that is, the solution should not affect the rest of ap-
plications and services. Otherwise, unexpected behaviors and malfunc-
tions can appear.

R5. Simplicity, so that no additional complex procedures are necessary.
Although not mandatory, this is an appealing additional property for
a real system.

Developing a general solution accomplishing the previous main benefits
F and requirements R is not a trivial task. However, as a proof of concept
which can be further extended to other environments, we devise in the next
subsection a specific implementation for Unix systems which accomplishes
all of them. It is supported on the usage of named pipes or FIFOs, and is as
described in the next.

3.2. R-Locker: Implementation for Unix platforms

As stated, we will discuss here the implementation of the proposed method-
ology for Unix platforms, in particular for Linux systems. For that, we first
describe the detection solution itself, and then how it should be deployed in
a target system to be properly protected.

In order to achieve the principal feature or benefit for the honeyfile solu-
tion, F1 (i.e., blocking the ransomware when accessing it), while accomplish-
ing the fixed requirements (in particular, R3 and R4 related to no special
privileges and non-interaction with the rest of the system), we though of
making use of an ‘infinite archive’ to distract the malware and thwart its
action. For instance, we can create a link to the zero device (/dev/zero),
which is an infinite source of zeros. Regretfully, although this solution may
work it is not effective for a main reason: a high disk space is needed for the
trap file. That is, requirement R2 would be thus unaccomplished.

We can also simulate an infinite file by modifying reading function re-
lated libraries. However, some problems will arise in this case: (a) we don’t
know which of these (on the other hand diverse) libraries will be used by
the ransomware, and (b) the techniques to modify the functions are usually
complex (e.g., binary instrumentation [27]). As a consequence, R4 and R5
would be unaccomplished.

A simple and elegant solution to achieve our goals, both F1 and F2, while
satisfying all the requirements R established for the solution, is to make use

9



Figure 3: R-Locker’s anatomy.

of named pipes or FIFOs. A FIFO is a pipe with a name into the filesystem,
and with two very interesting and useful properties for our purpose due to
such a dual nature [28]:

• As an entry in the filesystem, a FIFO is (in some sense) a regular file
accessible as usual by applications and services.

• As a pipe, a FIFO also implies a communication channel between two
processes, a reader and a writer. At this point, it is important to
mention that the synchronization between the reader and the writer
is automatically managed by the kernel. This way, if a process tries
to read from an empty channel or that contains less information than
the expected one, the kernel will block the reading process until the
writting one inserts more bytes into it.

From the above, our specific anti-ransomware proposal for Unix systems
consists of the development of an application, named R-Locker because of its
objective (i.e., to lock ransomware), as follows (see Figure 3):

1. It first creates a named pipe by using the function mkfifo(). Such a
file will be our central honeyfile or trap file.

2. Second, a few bytes are written on it. The bytes should be different
from EndOfFile bytes and the number of them will depend on the
specific system, although typical low values are about 3 KB.

3. Symbol [...] in Figure 3 stands for a sleeping stage. That is, since
no reading pair process is accessing the trap file at the beginning, the
abovementioned writting process is blocked by the system ... At this
point, the trap is ready and awaiting for a prey!

10



4. After that, when an external process (the supossed ransomware) ac-
cesses the honeyfile and starts reading it, the flow is automatically
unblocked and a countermeasure executed as follows:

• First, the pid/s of the application/s accessing the (honey)file is
determined through /proc/<pid>/fd or the command lsof.

• Second, the user is properly notified in order to, if so, kill the
corresponding process (<cr pid> for ransomware in Figure 3) and
even uninstall it from the system.

In summary, we can see in Figure 4 the overall operational flow of R-
Locker. After implementing it, its installation is very simple:

1. After executing the associated bin, a main screen like that shown in
Figure 5 will appear, where ‘Start service’ initiates the tool and ‘Stop
service’ finishes it.

2. In the first case, a central unique trap file is created as described above.

3. Aimed at maximizing the coverage of the solution while minimizing the
resource consumption, we deploy around the filesystem a set of logical
links pointing to the central trap file. They will act as a distributed
honeyfile solution for the whole filesystem (Figure 6(a)).

4. Instead of starting the service, through the button ‘Stop service’ both
the honeyfile and the logical links will be removed, and the process/appli-
cation stopped.

With respect to the abovementioned logical links acting as distributed
honeyfiles, it is important to remark that:

1. With early detection purposes, the links are included as the first entry
into the corresponding folder.

2. The use of ‘attractive’ names and/or extensions (e.g., personalvideo.mpg)
may be interesting to capture, if so, the attention of potential selective
ransomware.

3. The links can be distributed all around the filesystem, including kernel
related folders, or just covering the user’s filesystem (Figure 6(b)). In
the former case, special privileges will be required during installation.

Once the global methodology is described and how it is particularized for
Linux systems, we shall evaluate the approach in a real scenario in the next
section.

11



Figure 4: R-Locker’s operational flow.

Figure 5: R-Locker’s main screen.

4. Experimental evaluation

After describing the anti-ransomware solution, this section is devoted
to evaluate the performance of R-Locker in a real environment with real
samples. With this aim, an experimental scenario is first described. After
that, some experiments are carried out to obtain relevant operational figures
in terms of detection accuracy, resource consumption and overall impact on
the target system. Finally, main conclusions and some other principal issues
are discussed.

4.1. Scenario and crypto-ransomware samples

The scenario deployed to carry out our ransomware detection experiments
is a simple end machine running Ubuntu 16.04 64 bits with Internet access.

12



(a) (b)

Figure 6: Deployment of honeyfiles around the filesystem as logical links to a (central
unique) R-Locker’s trap file: conceptual links (a), and user’s filesystem /home/user in our
specifc scenario (b).

No special services are installed on it except a standard Apache HTTP server
with user’s personal information.

Regarding crypto-ransomware samples for evaluation purposes, three are
the cases here considered:

• C1: As a first approximation to the problem, we have used the Linux
GPG Suite (https://gpgtools.org/) to develop a generic ransomware
sample devised to encrypt the user’s filesystem in a systematic way.

• C2: As a proof of concept for Linux platforms, Bash-Ransomware
(https://github.com/SubtleScope/bash-ransomware) is an open ran-
somware tool. It is based on OpenSSL to encrypt files and its opera-
tion is similar to Cryptowall, a well-known and very harmful crypto-
ransomware appeared in later 2013 against Windows systems.

• C3: More specific than the previous ones, and motivated by their well-
known impact on end systems, we have also considered Linux.Encoder.1
(https://vms.drweb.com/virus/?i=7704004&lng=en) andWannaCry
(https://github.com/aguinet/wannakey) as ransomware samples for
our experimentation. Linux.Encoder.1 (also known as ELF/Filecoder.A
and Trojan.Linux.Ransom.A) was the first specific ransomware trojan
for Linux platforms and has affected thousands of users all around
the world from its apparition in later 2015. More recent and with a
higher impact, WannaCry is specifically developed against Windows
systems, so that we will execute it on our Linux machine through
WineHQ (https://www.winehq.org/) software.

13



4.2. Results and R-Locker performance

Under normal operation of the environment, and with R-Locker installed
and running, we executed each of the ransomware samples considered in
cases C1 to C3. In all of them, the behavior of R-Locker was as expected
regarding the desired features: the sample was inmediately blocked (F1)
and subsequently notified for its removal (F2). From the perspective of the
operational requirements R1-R5, R-Locker performed as follows:

R1. Effectivity: Mainly because of the distribution of links to the central
honeyfile around the user’s filesystem, as well as their inclusion as the
first entry in every folder, each of the ransomware samples has been
blocked and detected/notified inmediately (see Figure 7 as an example).
That is, the detection accuracy is 100% and the damage caused by the
ransomware on the system null.

R2. Low consumption: Thanks to the FIFO design, R-Locker just involves
about 2KB of disk storage for the honeyfile (the logical links do not
require physical space but only an inode entry), no more than 1.000
lines of code to implement the complete solution (just around 100 for
the basic functionality), and negligible computational cost to capture
and detect the ransomware.

R3. Plainness: R-Locker can be installed and executed without requiring
special privileges or permissions. In this respect, the only (obvious)
limitation is that just a part of the complete filesystem (that corre-
sponding to the user that installs R-Locker) is protected (see Figure
6(b)).

R4. Transparency: To check potential undesired behaviors and malfunc-
tions, we have also accessed the disposed links through legitimate pro-
grams: Adobe Acrobat for pdf extensions, Microsoft Word for doc files,
etc. They all aborted (without consequences) the reading process on
the file due to ‘format error’. In summary, R-Locker has demonstrated
to achieve the desired goal without affecting the normal operation of
the rest of the system. However, further discussion about this topic is
addressed in Section 4.3.

R5. Simplicity: R-Locker is demonstrated to be simple and autonomous, no
additional processes being necessary to complement its functionality.

14



Figure 7: Threat detection performed in R-Locker.

In comparison with some other detection tools tested in our experimenta-
tion (e.g., Cryptostalker –see Section 2–), R-Locker has shown much better
performance in several aspects. This way, although the ransom was detected
and advertised by such alternative tools, the effect suffered by the system
was more severe that that with our approach. In fact, a number of files were
encrypted before the tool even advertised the infection. In addition, a con-
tinuous (and thus consuming) monitoring process over time was necessary to
determine the occurrence of the potential crypto-ransomware attack.

4.3. Further discussion

As a consequence of the previous analysis, we must necessarily conclude
the goodness of R-Locker from a number of aspects. In addition, we must
remark that the approach just does rely on the fact that a ransomware will
access files to encrypt information, and not on more complex behaviors or
previous knowledge. This way, our solution is able to defeat zero-day ran-
somware attacks. Indeed, the detection experiments carried out above cor-
respond to zero-day/unknown attacks from the perspective of R-Locker, as
they have not been previously observed nor used to train the tool.

Despite all of the above, some additional discussion is needed for a suc-
cessful deployment of the approach in real environments.

As already mentioned, the disposal and distribution of the logical links
to the central honeyfile is primordial to protect the whole system. This way,
such a task should be carefully addressed for the specific target system in
order to maximize the chance to defeat attacks. For that, questions like
“Where should we locate the links, just into the root folder or into all in the
structure? What extensions and names to use?”, among others, should be

15



properly addressed.
Also related to the links, it is convenient to monitor them in order to

determine the potential occurrence of changes in their distribution. If so,
the situation should be corrected. As a particular case, we should take care
of the potential removal of the central trap file. In our case, we have tried
to minimize this risk by creating it as a hidden file (‘.’ prefix in Linux)
into the specific folder where the application R-Locker is installed. However,
a monitoring process to detect its potential removal is still necessary. In
particular, we have used inotify for that, which allows to monitor events in
the filesystem [28].

We are aware that our defense can be partially bypassed by accessing in
a random way the files into a given folder. In the worst case, the sample will
be blocked after encrypting all the files in the folder. To avoid this, more
honey links might be deployed per individual folder. Maybe a more critical
procedure to bypass the defense is to study the honeyfile’s metadata in order
to corroborate its correspondence with the associated extension (pdf, jpg,
...), which is not respected in our case. However, the use of logical links
offuscates the specific type of file they point to and, thus, complicates such
a verification to be performed by the ransomware, which favors our solution.

There is still an additional aspect about R-Locker that deserves a brief
discussion. In its current state, killing and/or uninstalling the suspicious mal-
ware relies on the end user, who, if so, is required to introduce the associated
detected PID and confirm the subsequent action. To improve the usability of
the proposal, the user’s intervention can be replaced or complemented by the
(semi)automatic use of pre-defined black-/white- lists of well-known harm-
ful/legitimate applications (e.g., system commands like copy or applications
used to generate data backups).

Despite all of the previous aspects are relevant for new better versions
of R-Locker, we firmly think that none of them devaluate the promising
performance achieved by the approach in its current state. In particular, if
we take into consideration that none of the current available solutions are
definitive to solve this pressing social problem.

5. Conclusions and future work

A general methodology intended to thwart harmful crypto-ransomware
action is introduced here. It is based on the deployment of a honeyfile struc-
ture to block the ransom when it accesses a trap file, thus allowing to preserve

16



the rest of the system. Moreover, while the ransom is blocked, it would be
desirable to automatically launch a countermeasure intended to eradicate
the problem from the environment. As a proof of concept, we have imple-
mented the methodology for Linux platforms by making use of named pipes
or FIFOs. The resulting tool is named R-Locker.

We have demonstrated by means of experimentation the good behavior
of our approach from a numbers of perspectives, which include detection
accuracy and operation efficiency. This way, R-Locker achieves the detection
objectives established with low resources consumption and without affecting
the normal operation of the system. We have also discussed some practical
aspects mainly related to the deployment and maintenance of the honeyfile
structure around the filesystem, in order to maximize the success of the
method in real environments.

As further work, we are working on improving our current implemen-
tation in some of the aspects mentioned in Section 4.3. In addition, the
development and evaluation of the general methodology for other platforms
is also desirable. In particular, for Windows and Android because of their
general acceptance among users and companies and their high affectation by
malware at present. Although the general honeyfile solution is applicable
to both types of platforms (i.e., FIFOs are accepted in both cases), some
specific aspects should be carefully addressed in future works. For example,
named pipes are not included into the normal filesystem space in Windows,
and the use of regular logical links is not allowed in Android.

Acknowledgement

This work has been partially supported by Spanish Government-MINECO
(Ministerio de Economı́a y Competitividad) and FEDER funds, through
project TIN2014-60346-R.

References

[1] NCCIC: ”Malware Trends. October 2016”. Home-
land Security Report, 2016. Available at https://ics-
cert.us-cert.gov/sites/default/files/documents/NCCIC ICS-
CERT AAL Malware Trends Paper S508C.pdf.

17



[2] J.C Chen, B. Li: ”Evolution of Exploit Kits. Exploring Past
Trends and Current Improvements”. Trend Micro Inc., 2015. Avail-
able at https://www.trendmicro.de/cloud-content/us/pdfs/security-
intelligence/white-papers/wp-evolution-of-exploit-kits.pdf

[3] P. Garćıa-Teodoro, M. Robles-Carrillo: ”Ransomware: Technical As-
pects and Legal Issues”. IEEE Communications Magazine, in press,
2017.

[4] Symantec: ”Ransom.Wannacry”’. Report, 2017. Available at
https://www.symantec.com/security response/writeup.jsp?docid=2017-
051310-3522-99

[5] Wikipedia: ”WannaCry Ransomware Attack”, May 2017. Available at
https://en.wikipedia.org/wiki/WannaCry ransomware attack

[6] M. Weckstén, J. Frick, A. Sjostrom, E. Jarpe: ”A Novel Method for
Recovery from Crypto Ransomware Infections”. 2nd IEEE International
Conference on Computer and Communications, pp. 1354-1358, 2016.

[7] A. Palisse, H. Bouder, J.L. Lanet, C. Guernic, A. Legacy: ”Ransomware
and the Legacy Crypto API”. International Conference on Risks and
Security of Internet and Systems (CRiSIS), pp. 11-28, 2017.

[8] E. Kolodenker, W. Koch, G. Stringhini, M. Egele: ”PayBreak : Defense
Against Cryptographic Ransomware”. ACM Asia Conference on Com-
puter and Communications Security (ASIACCS), pp. 599-611, 2017.

[9] FBI: ”Incidents of Ransomware on the Rise. Protect Your-
self and Your Organization”. Report, 2016. Available at
https://www.fbi.gov/news/stories/incidents-of-ransomware-on-the-
rise

[10] Bitdefender: ”Ransomware. A Victims Perspective. A Study
on US and European Internet Users”. Report, 2016. Avail-
able at http://www.bitdefender.com/media/materials/white-
papers/en/Bitdefender Ransomware A Victim Perspective.pdf

[11] C. Everett: ”Ransomware: To Pay or Not To Pay?”. Computer Fraud
& Security, vol. 4, pp. 8-12, 2016.

18



[12] S. Gallager: ”Maryland Hospital: Ransomware Success Wasn’t
IT Department’s Fault”. Ars Technica, 2016. Available at
https://arstechnica.com/security/2016/04/maryland-hospital-group-
denies-ignored-warnings-allowed-ransomware-attack/

[13] McAffee: ”How to Protect Against Ransomware”. Report, 2016. Avail-
able at https://www.mcafee.com/us/resources/solution-briefs/sb-how-
to-protect-against-ransomware.pdf

[14] P. Garćıa, J.E. Dı́az-Verdejo, G. Maciá, E. Vázquez: ”Anomaly-based
Network Intrusion Detection: Techniques, Systems and Challenges”.
Computers & Security, vol. 28; pp. 18-28, 2009.

[15] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, E. Kirda: ”Cutting
the Gordian Knot: A Look Under the Hood of Ransomware Attacks”.
12th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), pp. 1-20, 2015.

[16] Monika, P. Zavarsky, D. Lindskog: ”Experimental Analysis of Ran-
somware on Windows and Android Platforms: Evolution and Character-
ization”. 2nd International Workshop on Future Information Security,
Privacy & Forensics for Complex Systems, pp. 465-472, 2016.

[17] R. Brewer: ”Ransomware Attacks: Detection, Prevention and Cure”.
Network Security, pp. 5-9, 2016.

[18] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, E. Kirda: ”UNVEIL:
A Large-Scale, Automated Approach to Detecting Ransomware”. Pro-
ceedings of the USENIX Security Symposium, pp. 757-772, 2016.

[19] K. Cabaj, W. Mazurczyk: ”Using Software-Defined Networking for Ran-
somware Mitigation: The Case of CryptoWall”. IEEE Network, pp. 14-
20, 2016.

[20] J.K, Lee, S.Y. Moon, J.H. Park: ”CloudRPS: A Cloud Analysis based
Enhanced Ransomware Prevention System”. Journal of Supercomputing,
pp. 1-20, 2016.

[21] N. Andronio, S. Zanero, F. Maggi: ”HelDroid: Dissecting and Detect-
ing Mobile Ransomware”. 18th International Symposium on Research in
Attacks, Intrusions and Defenses, pp. 382-404, 2015.

19



[22] F. Mercaldo, V. Nardone, A. Santone, C.A. Visaggio: ”Ransomware
Steals Your Phone. Formal Methods Rescue It”. International Confer-
ence on Formal Techniques for Distributed Objects, Components, and
Systems (FORTE), pp. 212-221, 2016.

[23] A. Continella, A. Guagnelli, G. Zingaro, G. Pasquale, A. Barenghi,
S. Zanero, F. Maggi: ”ShieldFS: A Self-healing, Ransomware-aware
Filesystem”. 32nd Annual Conference on Computer Security Applica-
tions, pp. 336-347, 2016.

[24] N. Scaife, H. Carter, P. Traynor, K.R.B. Butler: ”CryptoLock (and Drop
It): Stopping Ransomware Attack on User Data”. 36th International
Conference on Distributed Computing Systems, pp. 303-312, 2016.

[25] C. Moore: ”Detecting Ransomware with Honeypot Techniques”. Cyber-
security and Cyberforensics Conference, pp. 77-81, 2016.

[26] J. Yago: ”Security Projects: Anti Ransom”. Available at
http://www.security-projects.com/?Anti Ransom.

[27] M.A. Laurenzano, M.M. Tikir, L. Carrington, A. Snavely: ”PEBIL:
Efficient Static Binary Instrumentation for Linux”. IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS),
pp. 175-183, 2010.

[28] M. Kerrisk, The Linux Programming Interface, No Starch Press, 2010.

20


