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List of notations 

a - radius (m.) of a single wire of which the track conductors are 
made  

A - x-component of the vector-potential 
B - magnetic field (Tesla) 
Bo- amplitude value of the magnetic field on the surface of the track 
B,. - remanent magnetic field of the permanent magnets 
d - distance between the tower and upper side of the Halbach array 
d,- width of a conductor (in the direction of track) 
f - filling factor of the winding (fraction of the winding occupied by 

metal) 
Fr - lifting force (Newtons) 
F,  - drag force 
h - the distance between the upper and the lower legs of the circuit 
I - current in an individual circuit (amperes) 
j - current density (amperes/m2) 
k - wave-number of the Halbach array (k=2nl A) 
K - the ratio of the lifting force to the power loss 
L - lumped self-inductance associated with every conductor (Henrys) 
L ( d ) -  dis tri bu t ed inductance 
L,,,-length of the car 

(Newtonsmatt) 

A4 - number of magnet bars per wavelength of the Halbach array 
(section IVA); mass of the car (Appendix 6) 

P - dissipated power (Watts) 
P, - perimeter of the circuit (in the vertical plane) 
R - resistance of the individual circuit of the track (ohms) 
v - speed of the car (m./sec.) 
V - electromotive force produced by the external source in the circuit 

w - the width of the Halbach array 
y~ - the distance between the track and the lower side of the Halbach 

A ,  - vertical thickness of the conductor 

(Volts) 

a r ray  

p - number of circuits per quarter-wavelength 
y - dimensionless thickness of the coil (y=A/4AC) 
6 - skin-depth 
A - spatial period of the Halbach array 
po - permeability of free space (4n x hy/meter) 
$ - magnetic flux of permanent magnets enclosed by an individual 

circuit 
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4 1 ~  - amplitude value of the same quantity 
p - resistivity of the conductor (ohm-meters) 
o - frequency of the magnetic field variations in the track frame (o 

=kv) (radianskec.) 

I) Introduction 

This report describes theoretical and experimental 
investigations of a new approach to the problem of the magnetic 
levitation of a moving object. By contrast with previously studied 
levitation approaches, the Inductrack concept represents a simpler, 
potentially less expensive, and totally "passive" means of levitating a 
high-speed train. It may also be applicable to other areas where 
simpler magnetic levitation systems are needed, for example, high- 
speed test sleds for crash-testing applications, or low-friction 
conveyor systems for industrial use. 

In present maglev train systems [l], test tracks of which have 
been built in Germany and Japan, the train cars are levitated by the 
use of electromagnets that are energized so as to produce a lifting 
force against a specially designed ferromagnetic track. In such 
situations Earnshaw's Theorem dictates that the levitated system 
(the train car) will be unstable against vertical displacements. Thus 
it is necessary to employ sophisticated sensors and control circuitry 
in order to maintain the train in a levitated state at the proper height 
above the track, independent of speed. Failure of these control 
systems could lead to serious consequences, so that high reliability is 
required. Energizing the magnets also requires an on-board source of 
power of high reliability and non-trivial power level, an additional 
complication. 

It would be highly desirable if a passive levitation system 
could be employed, one that relied only on the kinetic motion of the 
train to produce its levitating force, and one for which the 
consequences of a failure of the source of driving power leads to a 
benign failure in the levitation. While some earlier approaches to 
passive levitation [2] aimed at a similar objective, they involved 
substantial power losses to achieve levitation. These power losses 
are both on board in the train (to refrigerate superconducting 
magnets) and in the track itself (eddy current losses in sheet 
conductors). The present proposal aims at accomplishing passive 
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levitation with zero on-board power requirements and minimal track 
losses. It also aims at a system that efficiently combines both 
passive levitation and electric propulsion means in the same track 
structure. 

11) Technical Aspects 

The concept to be explored here involves the following two 
main components: 

0 One or more arrays of permanent magnets on the moving 
object, producing a spatially periodic magnetic field below 
each array. 

A "track" made up of a close-packed array of inductively 
loaded circuits embedded in the surface of the track. 

At rest ("in the station") no levitation occurs and the train car 
relies on auxiliary wheels to carry its weight. However as soon as it 
is in motion at an appreciable speed (a few kilometers per hour) the 
moving magnet array will induce currents in the conductor array and 
thereby levitate the train. Owing to the inductive loading of the 
circuits (self-inductance, plus the effect of mutual inductances) the 
phase of the induced current is shifted by ninety degrees, thus 
maximizing the lift force, while minimizing the drag force. As a 
result, in a high-speed train the drag' power can be made to be a 
small fraction of the power required to overcome aerodynamic 
friction (in an example, of order three percent of the drive power 
was all that was needed). As long as the train is in motion it will be 
levitated. Furthermore, theory shows that, for properly chosen 
shapes of the magnets and the track, the levitation mechanism is 
stable against both vertical and transverse displacements, 
independent of speed or load (up to the maximum permitted load of 
the car). If the driving power fails, the train will simply slow down, 
and come to rest on its auxiliary wheels as its speed approaches zero. 
No on-board power or levitation control circuitry is required, and the 
permanent magnet arrays should have a high degree of reliability. 

A preliminary estimate of the cost of a track based on the new 
concept indicates that it should be not more than, and possibly could 
be less than, that of the present systems. One reason for this is that, 
as noted above, i t  should be possible to incorporate the driving 
function into the same circuits that are to be employed for levitation, 
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thus eliminating the need for a separate linear induction motor in the 
track [3]. 

Fig. 1 is a schematic representation of the Inductrack concept. 
Shown in the drawing is the track, made up of a close-packed array 
of inductively loaded circuits, and the permanent-magnet arrays on a 
levitated car. 

In a theoretical analysis of the concept (discussed in a later 
section) a very simple approximate expression for the lift-to-drag 
ratio of the system was derived. From this expression it is easy to 
show that the drag force actually decreases as the speed increases, 
by contrast with aerodynamic drag or bearing-friction drag on a 
conventional train, which always increases with speed. The 
expression derived is as follows: 

Lip - = (wL/ R) 
Drag 

Here L (hy) is the inductance of an individual circuit, R (ohms) 
is the resistance of the circuit, and o is the angular frequency of the 
exciting wave. This frequency is in turn determined simply from the 
spatial wavelength of the permanent magnet array and the speed of 
the train over the track. Since o increases directly with speed, above 
a transition speed (that speed where o becomes equal numerically to 
WL) the lift-to-drag ratio increases linearly with increasing speed, 
reaching values of order 300:l at typical operating speeds (compare 
25:l for the typical airfoil of a jet airplane). It is a straightforward 
matter to adjust the L/R of the circuits so that the lift-to-drag ratio is 
very large compared to unity at all but the lowest speeds, 
corresponding to a very low power requirement per kilogram 
levitated. As a typical number, a levitating parameter of 2.0 
Newtons per Watt could be targeted. This corresponds to a levitating 
power requirement (derived solely from the motion of the car 
relative to the track) of about 250 kw for an example train car 
[4] weighing 50,000 kilograms and requiring 8.3 MW to overcome 
aerodynamic losses at operating speeds (500 kilometers per hour). 
The calculated levitating power is thus about 3 percent of the drive 
power at full speed. 
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111) Outline of Topics 

The report consists of three main sections. These cover the 
following topics: 

0 A “lumped-circuit“ theoretical treatment that defines the 
main parametric scaling laws for the concept and provides a 
practical basis for the design of such systems. 

A generalization of the ‘‘lumped-circuit“ analysis that allows 
one to take into account effects of inductive interactions of 
the circuits’ and also provides a means to evaluate the 
Inductrack concept against one that provides the maximum 
possible levitation force from the permanent-magnet array 
(i.e., by conceptually replacing the inductively loaded 
circuits in the “track” with a continuous sheet of a perfect 
conductor). 

A brief discussion of some of the practical and economic 
issues that can be expected to be encountered in the 
implementation of the Inductrack concept in full-scale 
systems. 

A discussion of some issues of a more computational nature is 
presented in Appendices 1-9. 

IV) Lumped-Circuit Analysis of the Inductrack 

Before beginning the analysis it is necessary to define the 
geometry of the system being analyzed. Fig. 2 shows schematically 
one possible form of the circuits in the track. (Other possible 
configurations will be mentioned later). As can be seen, the circuits 
resemble window frames, the lower horizontal portions of which are 
surrounded by ferromagnetic material so as to provide the necessary 
inductive loading. An appropriate ferromagnetic material would be 
ordinary transformer laminations (with an air gap to limit the flux 

Though inductive interaction occurs between many circuits, it turns 
out that its contibution to the circuit equation can be reduced just to an 
additional inductance L(d) which is additive to the self-inductance L of 
every cirquit. The superscript “d” stands for the word “distributed” 
because the term L(d) describes what can be called “distributed 
i n duc t  an c e”. 

I 
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density). By appropriately staggering the location of these 
lamination stacks the circuits could be closely packed together, as 
shown. The circuits themselves are to be made up of multi-turn 
windings of multi-strand (litzendraht) wire. The use of multi-turn 
windings forces the current density to be constant within a conductor 
bundle; the use of multi-stranded wire minimizes parasitic eddy 
currents (whose role is quantitatively assessed in Appendix 5). 

Beyond the function of providing inductive loading to the 
circuits, the lamination stacks can fulfill another function, that of 
coupling in electrical energy to the track in order to propel the car. 
By threading the lamination stacks with other windings, these stacks 
become equivalent to transformers, with the Inductrack circuits 
functioning as their secondary windings. Now, if pulses properly 
synchronized with the passage of the car are applied to the primary 
windings, a forward driving force will be exerted on the Halbach 
array magnets. Braking forces could also be provided in the same 
manner, by controlling the phase of the driving pulses. 

The second major components of the Inductrack system, shown 
schematically in Fig. 3, are spatially periodic arrays of permanent 
magnet bars located on the levitated car. We here choose an iron- 
free array, the "Halbach array" [SI, which makes optimal use of the 
permanent magnet material, maximizing the field below the array, 
while cancelling out the field above the array. As derived by 
Halbach (for application of his array 'to free-electron lasers), simple 
analytic expressions are available that accurately reproduce the 
magnetic field produced by such arrays. These expressions will be 
used in deriving the lift and drag equations. 

Many of the salient features of the concept can be obtained 
from a lumped-circuit type of analysis, one in which the individual 
circuits are considered to be decoupled electrically from their 
neighbors, so that the lift and drag forces are calculated by a simple 
superposition of the forces from each circuit. Simply stated, the main 
condition that is to be satisfied in order for such an analysis to be 
valid is that the self-inductance' of each circuit should be 
substantially larger than the mutual inductance between the circuits. 
In many cases this condition will be well satisfied. In the broader 
theoretical analysis (Section V) this approximation will not be made, 
providing a means for correcting the lumped-circuit analysis to 
include mutual inductance effects. 
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Another requirement for the simplest equations to apply is 
that the operating speed should be high compared to the transition 
speed. That is, it should be high compared to the speed where 
o=2nvlh=RIL, with v m-sec-' being the speed of the levitated object, 
and h m. being the wavelength of the periodic magnet array. 
Typically the magnitude of R/L corresponds to speeds of one or two 
kilometers per hour, Le., very much lower than the operating speed. 

An important assumption, one which we use throughout the 
report, is that the width of the conductors in the direction of motion 
(z direction), d,, is small compared to k-' = h/2n. The significance of 
this assumption will be highlighted in the appropriate parts of our 
report. 

A. Circuit Equations and the Transition Speed. 

The equivalent circuit of one circuit of the Inductrack circuit 
array is shown in Fig. 4. The circuit equation for this configuration 
takes the form: 

dI 
dt 

V = L- + RI = meo C O S ( W ~ )  

Here I is the induced current and @ o  is the peak flux enclosed by 
the circuit. (Other terms have been previously defined); V is 
proportional to the rate of change of flux through the circuit. The 
flux itself has been taken to vary as sin(ot). We consider Halbach 
arrays of sufficient length (many wavelengths) in the direction of 
motion so that one can neglect transient phenomena and limit oneself 
to the analysis of steady-state oscillations only. 

The steady-state solution of Eq.(l) is: 

[sin(ut) + --cos(ot) 
WL " I  $0 I ( t )  = - 

L I + ( R / w L ) ~  

As can be seen, in the limit o>>R/L the phase is shifted 90" with 
respect to the voltage so that the current is in phase with the flux 
(that phase which will be seen to correspond to the maximum lifting 
force). In this limit the expression for the current takes the simple 
form: 

$0 I ( t )  = -sin(ot) 
L (3) 
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Since we are to calculate the force on a magnet array with a 
wavelength, 3L m., in the z direction, moving at velocity v m. sec-', we 
will replace ( a t )  by (kz) in equation (3) in calculating the forces, 
where k = 2 n k  

Equation (2) can also be seen to provide a rationale for defining 
the "transition speed" as that speed where a = 2nv /A = R/L. 

The coordinate frame that we are going to use throughout this 
report is shown in Fig. 2: its origin is situated on the upper surface of 
the track, with axis z pointing in the direction of the car motion along 
the track, axis y pointing towards the magnet array and axis x 
pointing across the track. The distance between the track and the 
lower surface of Halbach array will be denoted by yl. 

To calculate the lift and drag forces we will require expressions 
for the longitudinal (z) and vertical (y) components of the magnetic 
field from a Halbach array. To a close approximation these are given 
by: 

B~ = B, sin(kz) exp[-k(yl - y)]  (4) 

where Bo is the peak strength of the magnetic field at the, surface of 
the Halbach array (Le., at y=yl). The value of Boin terms of the 
remanent field, Br, of the permanent magnet material, and the 
thickness (in the y direction), d m., of the magnet bars is given by 
the expression [5]: 

sin@/ M) 
n l M  

B, = BJI-  e x p ( - ~ ) ]  

Here M is the number of magnet bars per wavelength (4 in the 
Figure). Some details related to this expression for M=4 are discussed 
in Appendix 1. 

In the case where M = 4 and d = 3L/4 (square magnet bars, as 
shown in the figure), the value of Bo is equal to 0-713Br- For typical 
NdFeB (Neodymium-Iron-Boron) commercial-grade magnets the 
value of Br is about 1.25 Tesla, so that Bo = 0.9 T. Recently NdFeB 
magnet material with Br values of 1.41 T has become available. If 
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combined with larger M values (more magnet bars per wavelength) 
and/or thicker magnet sections, Bo values in excess of 1.0 Tesla 
become feasible. 

As an index of the levitating power of such fields, a field of 1.0 
Tesla in interaction with a conducting surface is capable of levitating 
about 40,000 kilograms per square meter. An evaluation of the 
actual levitating forces for the Inductrack system will be derived in 
what is to follow. The force limit ultimately arises from the 
constraints imposed by the Maxwell stress tensor of the field. 
However, it can already be deduced from the estimate given above 
that modern permanent magnet material can create fields capable of 
levitating masses that are one to two orders of magnitude larger than 
the mass of the magnets themselves, auguring well for the economic 
potential of the Inductrack concept. 

An expression for the induced flux, $, can be obtained by 
integration of equation (4) for B, over y between the upper and 
lower legs of the circuit. Thus the integral is to be taken between 
y=O, the location of the upper leg of the circuit (relative to the lower 
surface of the Halbach array) and y=-h, where h m. is the distance 
between the upper and lower legs of the circuit: 

$ = -exp(-ky,)sin(kz)[l- W B ,  exp(-kh)] 
k (7) 

In this analysis the circuit is considered to be of negligible thickness 
in y and z. Later, we will introduce corrections that would allow us to 
take into account the finite thickness of the track winding. 

As for the latter approximation (d,<<k“), this is just the 
approximation mentioned in the last paragraph before Sec.IVA. It 
may be called “a quasi-continuous approximation” and is quite 
significant: Within this approximation, the z-t dependence of the 
currents in the track follows a simple harmonic law, Acos(kz- 
at)+Bsin(kz-at). In the reference frame of a magnet, where (kz-at) is 
constant, the track currents do not vary with time and, therefore, 
there are no hysteresis or other losses in the magnets. A coarser 
segmentation would have two undesirable consequences: first, i t  
would reduce the amplitude of magnetic flux variations through each 
circuit; second, it would cause the appearance of time-varying 
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magnetic fields in the car frame and, thereby, introduce a new 
channel for losses (induced eddy currents). 

Typically, the distance between the upper and the lower legs of 
the circuit, h, is greater than the wavelength, making the exponential 
term in square brackets of equation (7) very small. Indeed, even for 
h=h this term is equal to 1/500. In what follows, we will therefore 
always neglect the terms involving exp(-kh). 

Inserting equation (7) into equation (3) for the current (and 
negiecting the just-mentioned exponentially small terms) one finds 
for the current in the x direction, I,(z) , the expression: 

exp(-&)[sin(kz) + -cos(kz) , amp/circuit (8) OL “ 1  ilB,w 1 
~ Z L  I + ( R I O L ) ~  Ix(z) = - 

Here w m. is the width of the magnet bars in the x direction, i.e. 
transverse to the direction of motion along the track, thus parallel to 
the direction of the induced current in the track. 

This current then interacts with the magnetic field to produce 
the levitating force (i.e., the force in the vertical (y) direction), and 
the drag force (Le., the force in the horizontal (z) direction): 

q, = IxBzw, F, = IxB,w N/circuit. (9) 

Averaging 
average force to 

this expression over the wavelength one finds the 
be given by: 

The fact that the winding has a finite thickness (Ac) in the y-direction 
means, for a uniform distribution of the current in the winding, that 
the “center of gravity” of this current is situated at a distance A c / 2  
from the surface of the winding. Thus, in order to obtain a more 
accurate expression for the forces, one should replace yl in equations 
(10) and (11) by yl+(Ac/2). A more detailed analysis (which we will 
not present here) shows that the accuracy of these expressions is 



better than 10% if A, is not too large, Le., if AC<1/(2k). These more 
accurate expressions for the forces then read: 

(q.) = - Biw2 1 exp(-Zky, - kAJ N/circuit (10’) 
2kL l+(R/@L)’  

exp(-Zky, - kAJ Nlcircuit Biw2 (RIwL) 

In what follows, we will present all results pertinent to multiturn 
windings in a form analogous to equations (10) and ( l l ) ,  Le., in the 
approximation of the zero-thickness winding. The transition to the 
more accurate expressions can be made in the final results for the 
forces simply by the substitution that leads from equations (10) and 
(11) to (lo’) and (ll’), that is, yl+ yl+(Ac/2). 

The Lift/Drag ratio can be obtained immediately from 
equations (10) and (11): 

Lift (5) OL 2 m L  -=-=-=-- 
Drag ( F , )  R A R 

As noted before, the Lift/Drag ratio increases monotonically 
with velocity. 

At this point it is useful to calculate the levitating efficiency, 
Le., Newtons of levitating force per Watt of power dissipated in the 
track. This parameter is useful in evaluating proposed designs and is 
directly related to the Lift/Drag ratio. The average power, <P>, 
dissipated per circuit is given by the product v<FZ>. Therefore, from 
equation 12), 

. NewtonsNatt (F,) 27G L - = -- 
(p> A R 

Comparing equation (13) for the power efficiency and equation 
(10) for the lifting force, we see that for any given circuit resistance, 
R, we can obtain any desired degree of efficiency by increasing the 
loading inductance, L, but necessarily at the expense of the reducing 
the lifting force per circuit. 
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The favorable effect of inductive loading on the efficiency 
comes about for two reasons: First, it shifts the phase of the current 
by go", corresponding to the optimum phase for producing lift by 
interaction with the z component of the magnetic field. Second, since 
the circuit power losses vary as the square of the current, while the 
lifting force only varies linearly with current, inductive loading 
(reduces the current) operates to increase the efficiency over what 
can be obtained for unloaded circuits, or, in the continuum limit, over 
that associated with eddy current losses in a sheet of conducting 
material. The gains that can be obtained practically will therefore be 
determined by a compromise between power efficiency (increases 
with inductive loading) and the lifting force per circuit (decreases 
with inductive loading). 

Returning to equation (10) for the lifting force exerted by a 
single circuit, we must now consider the collective levitation force 
exerted by a close-packed array of circuits. We will assume, as noted 
earlier, that each circuit has a width in the z-direction of d, m, that is, 
that there are (l/dc) circuits per meter. Thus total levitation force 
per meter will be given by summing the contribution from each 
circuit. It follows that the total levitating force exerted underneath a 
Halbach array that is one wavelength in length will be given by the 
expression: 

exp(-2kyl) Newtons/wavelength . (14) ilB,2W' 1 q F , )  = - 
2kL l+(RIoL)' 

Since the area of the Halbach array per wavelength in the z-direction 
is wh m2, we find for the levitating force per unit area of the Halbach 
array the value: 

exp(-2ky,) Newtons /m2 =(4 - B,2w 1 --- 
A 2kL l+(R/oL)' 

For the special case M = 4 (four magnet bars per wavelength), 
inserting the definition of Bo (equation (6)), we find the result in 
terms of the remanent field, B, : 



We consider now the quantitative constraints on the resistance, 
needed to evaluate real systems. In the embodiment of the circuits 
here being considered, the conductor array resembles rectangular 
window frames. We will take the length of the upper and lower legs 
of these rectangles to be equal to w m., Le., the same as the 
transverse length of the magnets. Since w >> h can be assumed in 
most cases, we will take the length of the vertical legs of the circuit, 
h, to be equal to w/2. Thus the perimeter of the circuit, P,, is taken 
to be 3w m: 

P,=3w 

We further assume that the circuits form a close-packed array, made 
up of multiple turns of multi-stranded wire forming a bundle of 
rectangular cross-section. The width in the z direction, d, m., of each 
bundle should be small compared to the wavelength, so that flux 
cancellation does not occur. Also, the depth of the bundle, A, m, (in 
the y direction) must be small compared to the wavelength. Owing 
to the exponentially rapid fall-off of the magnetic field in this 
direction deeply located conductors would be ineffective in 
producing lift. 

Considering the factors mentioned above we will take the 
circuit coils to be made of conductors the packing fraction of which is 
f (fractional area of conducting material). Typical values of f might 
be 0.8 to 0.9. We will also assume that there are p circuits per 
quarter-wavelength, Le., their width in z, d,, is h/4P m. Similarly, we 
will take the thickness of the circuit bundle in the y direction, A,, to 
be equal to h/4y m. That is, the bundle has a thickness in y which is a 
fraction 1/4y of a wavelength. Given these parametric variations we 
may now define the single-turn-equivalent resistance of each circuit 
as being given by: 

, ohms, Length 16P,pj?y - 48wppy - - - 
f 1 2  

R = p  
Area f12 

where p ohm-m. is the resistivity of the conductor (1.7 x lo-* ohm-m. 
for copper, for example). 

To continue the process of developing equations useful in 
arriving at practical designs, we will take as a design parameter the 
ratio of lifting force to power loss, as defined in equation (13). That 
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is, we define a parameter, K Newtons/Watt, through 
given in equation (13): 

Note that as defined the K factor is closely 
previously defined transition speed, that is, the speed 

the relationship 

related to the 
where oL /Rr  

1.0. From this definition we see therefore that transition occurs when 
the condition Kv 2 1.0 is satisfied, where v is in meters per second. 
K=2.0 therefore corresponds to a transition speed of 0.5 meters per 
second or 1.8 km/h (a slow walk!). 

Using K as a design parameter allows us to eliminate the 
inductance from the equations for the lifting force. That is: 

Inserting also now equation (17) for the resistance into 
equations (16) and (18), we are led to a design equation for the 
lifting force per square meter in terms of these parameters: 

-- =(4 - B,2fil 1 exp(-2ky, - kAc),  Newtons/m2 (20) 
A 24Kpy 1 + (Kv)-* 

As will later be derived, the parameter K has a lower bound, 
set by the effect of mutual inductance between the windings. Thus 
the levitating force per unit area predicted by equation (20) has an 
upper bound. This bound in effect arises from the aforementioned 
constraint imposed by the magnitude of the Maxwell stress tensor 
associated with the magnetic field produced by the Halbach array. 
However, none of the Inductrack examples given herein will 
approach this upper bound. 

B. An Example of an Inductrack System 

An example, using parameters that might be appropriate for a 
levitated train car, will now be given to illustrate the potentialities of 
the Inductrack concept. We choose h = 0.5 m., w = 1.0 m., Bo=0.9 
Tesla (equation 6, with B,=1.25 Tesla), and magnet thickness, d=h/4), 
K = 2.0 NNatt ,  f = 0.8, y = 4 (1/16 of a wavelength circuit thickness 
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in the y direction), and p = 1.7 x lo-* ohm-m. (copper). At v 
exceeding a few meters per second, we find from equation (20) a 
levitating force per square meter having the value: 

= 6.8 - lo4 exp(-2ky,) 
A 

The maximum force, occurring at yl=O, corresponds to the 
levitation of about 7000 kilograms per square meter of magnet 
array, Le., about 15 percent of the maximum limiting value (derived 
in Section V - equation 29). For the magnet array with its depth of 
h/4=0.125 meters, the mass per square meter is about 900 
kilograms, so that the maximum lifting force in this example 
corresponds to about 8 times the mass of the magnet array. At a K 
factor of 2.0 N/Watt, the power required to levitate 10,000 kilograms 
would be about 50 kW. To levitate a railroad car, such as the one 
considered in the study by Grumman [6], weighing 50,000 kilograms, 
would then require of order 7.0 square meters of magnet array 
(about 6 percent of the area of the undercarriage of the car), and 
would imply a drag load of about 250 kW, or about 3 percent of the 
8.3 MW required to overcome aerodynamic drag at 500 km/h. 

As previously mentioned, the approximate transition speed for 
a K value of 2.0 is about 1.8 kmk, a very low value compared to the 
operating speed. Also, at 500 km/h the LiftDrag ratio, as calculated 
from equations (12) and (19), with K=2.0 and h=0.5 m., is about 280. 

Also, calculating backwards from the definition of K (equation 
18) and the value of R for this example (calculated from equation 
17), we find for the single-turn value of R the value 65 micro-ohms, 
and for L the single-turn value of 10.4 micro-henrys. Note that it 
does not matter electrically whether the circuit consists of a single 
turn occupying the entire cross-section, or of many turns having the 
same total cross-section: The L/R value for both cases will be the 
same. As a practical matter, for reasons cited earlier it will be 
preferable to use a circuit having many turns of multi-stranded wire, 
but the design calculations can be made as though the circuit is a 
single turn of wire of the given cross-section. 

Now we evaluate the weight of copper per 1 m of the track. 
The thickness Ac of the winding is h/16=3.125.10-2 m, its perimeter 
P, in the xy-plane is 3 m, the filling factor f is 0.8, Le., the volume of 
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copper per one meter is f(h/16)Pc=7 .5-1 0-2 m3/m. Accordingly, the 
mass of copper is 0.67 t/m. 

Knowing the mass of copper per unit length allows one to 
evaluate the temperature rise after a passage of a car through a 
certain point. The energy dissipated per unit length of a track is just 
<P>/v, where v is car velocity. In the aforementioned example, with 
<P>=250 kW and v=140 m/s, this energy is 1.8 kJ/m. As the thermal 
capacity of copper at room temperature is 0.385 kJ/kg°K, the 
temperature rise is less than 10-2K and therefore can be ignored. 

As mentioned previously, there are obvious trade-offs that can 
be made in the design. For example, the adoption of a K parameter 
value of 1.0 (where this is allowed as a result of the choice of other 
parameters) would halve the magnet weight required at the expense 
of doubling the power required to levitate the car. 

As will be discussed in a later section, the "window-frame" 
configuration of the Inductrack circuits here discussed is not 
necessarily the most efficient design or the one of least cost. The 
example given here should therefore only be considered as 
illustrative of the numbers involved. Note also that if in the example 
we had posited the use of the latest NdFeB magnet material, with a 
remanent field of 1.41 Tesla instead of the 1.25 Tesla value we 
assumed, and if we had taken M = 8 (number of magnet bars per 
wavelength), we would have obtained '(using equation 6) a value of 
B 0 equal to 1.1 Tesla, corresponding to an increase of (1.1/0.9)2= 1.5 
in the levitating power for the same magnet weight. This gain might 
be more than sufficient to compensate for the use of a (likely) more 
expensive magnet material, and a somewhat more complex magnet 
array. 

In the loss calculations given up to this point the losses in the 
laminated iron inductive loading elements in the track have not been 
included. The reason for this omission is based on the fact that a 
preliminary estimate shows that when properly designed (using air 
gaps in the lamination stacks) the losses from these elements will be 
at most a few percent of the conductor losses. There will, however, 
again be an opportunity for optimization. That is, one might adopt 
designs with somewhat higher core losses in exchange for lower 
initial capital cost. 



To summarize up to this point, using lumped-circui t 
approximations with some simplifying assumptions, equations have 
been derived that may be used for the design of one form of an 
Inductrack system. This system employs Halbach arrays interacting 
with a “track” consisting of a close-packed array of inductively 
loaded circuits the conductor bundles of which resemble window 
frames. That is, they are rectangular in shape and lie in vertical 
planes. The equations derived have been used to calculate the 
properties of an example system, one that would levitate a 50,000 kg 
car with the expenditure of 250 kW of drag power (3 percent of the 
aerodynamic drag at 500 km/h), employing magnet arrays that 
would comprise about 10 percent of the total weight of the car. 

In the next section an analysis not involving the simplifying 
assumptions used in the lumped-circuit analysis will be outlined. In 
the proper limits this broader-based analysis corroborates the 
lumped-circuit results. Furthermore, it provides a means for 
correcting those results so as to include the effects of mutual 
inductance in the design equations in a simple way. 

V) Effects of Distributed Inductance 

Details of the corresponding analysis are presented in 
Appendices A1 through A4. Here we summarize main results and 
compare them with results of the previous section. In addition, we 
consider a modified version of the track design, in which the currents 
flowing on the upper surface of the track close, not through the lower 
leg of the circuit, but rather through highly conductive side walls. 

A. Distributed Inductance in the Window-Frame Scheme 

The current induced in any particular track conductor produces 
magnetic flux which couples with a number of neighboring 
conductors, occupying a length (in the z-direction) of order of I / k .  
The fact that the interaction occurs not just between two or three 
windings but rather between groups of them makes the analysis of 
the effect of mutual inductances somewhat complicated. However, as 
we show in the aforementioned appendices, the final result is 
remarkably simple: what should be changed in the basic equations 
(lo), (11) of the previous section is simply to replace the self- 
inductance L of a winding by a sum L+L‘d’, with L‘d’ being a term. 
responsible for the inductive interaction between the circuits (the 
superscript “d” stands for the word “distributed”: we prefer to use 
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this term and not the 
reflects the essence of 
of inductance, Hy), has 

term “mutual” because the former more fully 
the effect). This contribution (of the dimension 
the form: 

where P ,  is the perimiter of a single track coil. Instead of our basic 
equation (15), we now have: 

while lift-to-drag ratio is now determined by the relationship 

Of course, in the limit L(d)<< L one just recovers the results of Sec.IV. 
Note also that to take into account the finite thickness of the track 
one should replace y~ in (22) by y1+(Ac /2 ) .  

Using the above considerations, the example given in Section 
IV may be updated. To review, the parameters were: h=0.5 m., Bo = 
0.9 Tesla (equation 6, with B,=1.25 Tesla, and d=h/4), K=2.0 N/Watt, 
f=O.8, y=4 (1/16 of a wavelength circuit thickness in the y direction), 
and p=1.7 x lo-* ohm-m. (copper). 

We first establish whether the assumed value of K exceeds its 
lower bound which is obviously set by the distributed inductance 
term equation (21). Here all parameters are known except Pc, which 
we have earlier taken to be equal to 3.0 w m. If we now take w = 
1.0 m. for our example, then we find =4.8-1 O-‘ Hy. We 
previously found for R the value 65.10-6 ohms. These numbers 
result in a K value of 0.92, approximately factor of 2 below our 
assumed value of 2.0. 

An alternative means for the calculation of the minimum value 
of the design constant K is given in Appendix 9, equation (A9.5). It is 
there shown that this constant can be defined in terms of only three 
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parameters: the depth of the track conductors, A c ,  the packing 
fraction of the windings, f, and the resistivity of the conductor 
material, p .  In terms of these parameters we then have the result: 

Inserting the numbers for the above example, with Ac = W4y = 
0.03125 m., we again find Kmin = 0.92. 

Returning to the question of the added inductance, it follows 
from equation (19) that at a K value of 2.0, with the given resistance 
the total inductance should be equal to 10.3-10-' Hy. Thus the added 
single-turn inductive loading should be (10.3-4.8) = 5.5- lo-' Hy. 

The Lift/Drag ratio is unchanged from the value of 280 
previously calculated, except that we now recognize the important 
role of mutual inductance in determining the effective inductance of 
the circuits. 

All other numbers remain unchanged from those given 
previously. 

It is convenient to present the lift-to-drag ratio in the form: 

If the dimensionless geometrical factors (f; y) and the ratio L/Lfd' are 
kept constant from one design to another, then the lift-to-drag ratio 
scales as a product of the wavelength (A) and car velocity (v). 
Therefore, for a small and slow system, one may have to introduce 
considerable lumped self-inductances, L> > L f d ) ,  in order to reach a 
high enough value of lift/drag. For large, fast systems the required 
self-inductances become comparable with or even smaller than L(d). 
Thus we conclude that relative role of lumped inductances increases 
with the transition to smaller and slower systems. 



B. A "Flat" Track Design 

The continuum approach can be used to analyze another 
configuration of the Inductrack, one possibly possessing economic 
and other advantages over the "window frame" configuration that 
has been analyzed in the preceding sections. 

The geometry of the alternate configuration is shown 
schematically in  Fig. 5. As can be seen, this configuration is made up 
of a close-packed array of conductors lying transversely in the 
surface of the track. However, instead of continuing the circuit below 
the surface of the track, as in  the window-frame design, all 
conductors are terminated at each end by a low-resistance bus bar 
through which all return currents flow; To provide inductive loading, 
rings of ferromagnetic material are placed around the conductors 
near their ends (i.e., before the conductors connect with the bus bar). 

To minimize the ohmic losses, every conductor should be made 
by a litz wire technique, with every particular current lead crossing 
the thickness of the track up and down several times (Fig. 6). Th i s  
configuration will make the current distribution uniform over the 
thickness of the conductor. (If one makes conductor of a solid 
uniformly conducting rod, the current would be concentrated only 
within a skin-depth of the surface, thus increasing resistive losses). 
Each current lead, traversing between the upper and the lower 
surfaces, could be, again, composed of litz wire, thereby 'minimizing 
eddy current losses. 

The potential gains that can be provided by this design, are 
four-fold: first, we reduce the ohmic losses compared to the 
window-frame design, simply because the length of a conductor 
becomes half as long as in this former design; second, because the 
mutual inductance term also decreases proportionally to the 
conductor length, one could increase the maximum lift force, as 
shown by equation (22); third, we reduce the weight of conductor, 
thereby reducing the cost of the track; fourth, the amount of 
ferromagnetic material used in the inductive loads can also be 
reduced. (To maintain the same L/R ratio, it should be reduced, 
roughly speaking, proportionally to the conductor length). 

A disadvantage of this scheme is that one might have to use 
more expensive custom-made litz conductors, instead of using 
multiturn windings as in previous designs. 
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Engineering design equations for the “flat” design remain 
basically the same as for the “window-frame” design, with an 
obvious identification of the perimeter of the conductor P ,  with the 
width of the conductor between bus-bars. As an illustration of 
possible parameters of this scheme, we repeat calculations of the 
Section IVB for the “flat” design, assuming that the width of the track 
between the bus-bars is 

P,=1.2 w (25) 

Accordingly, instead of equation (17), we have 

As we show in Appendix 4, to take into account Ohmic losses in the 
bus bars, one should increase R by some “added resistivity” 

with 6 being a skin-depth in the bus bar material, 

Other design parameters will be kept the same as before, i.e., w=l.O 
m, h= OSm, d= h/4, K = 2.0 N/Watt, f= 0.8, y= 4 (Le., Ac= d/4 = h/16), 
p=4 (Le., dc=  d/4 = M 6 ) .  Then, according to equation (26), the 
resistance of a single conductor is reduced by a factor of 2.5 (to 26 
micro-ohms). The added resistance at the speed of 500 km/h is 12 
micro-ohms. Therefore, the total resistance is 38 micro-ohms, 
approximately 1.7 times less than in a window-frame design. To 
keep the parameter K constant, one should reduce the total 
inductance by the same factor. Therefore, instead of a total 
inductance L+L‘d’ of 10.4 microhenrys, we should have a total 
inductance of 6.1 microhenrys. Of this total, according to equations 
(21) and (25), 1.92 microhenry would come from the effect of 
distributed inductances. Thus, the lumped self-inductance of each 
conductor should be 4.3 microhenrys. 



As the total inductance is reduced by a factor of 1.7 compared 
to the example considered in Sec. IVB, the lift force increases by a 
factor of 1.7 (to approximately 11 t/m2). The weight of conductor 
and ferritic material in the track is reduced by factors 2.5 and 1.3, 
respectively. As we kept parameter K constant, the lift-to-drag ratio 
remains unchanged (280 at the speed 500 km/h). 

If one wants to push the lift force to its maximum possible 
level achievable with the “flat”, track design, one has to reduce the 
length of the conductors to the minimum value Pc=w and completely 
eliminate ferritic inductive elements (make L=O). Then, equation (22) 
in the limit of high speed (wL‘d’/R>>l) yields: 

Here we have explicitly taken into account the correction caused by 
the finite thickness of the conductor. For the Halbach array 
considered in Sec.VI (M=4, d=h/4, B,=1.25 Tesla), and y1=0 and 
kA,=n/8 (y=4) this force is equal to 44 Ton/m2 (!). Of course, one 
should remember that, by making L=O, one somewhat decreases the 
lift-to-drag ratio. Still, this example shows that the absolute value of 
the lift force will hardly be a serious limiting factor in the inductrack 
design. 

We may compare the maximum force (29) and the levitating 
force (22), at speeds where the resistive term in the denominator of 
(22) is small (Le., the speed is large compared to the transition 
speed). In this limit we have: 

We 
lift 

see that increasing the lumped self-inductances, L,  decreases the 
force while, at the same time, it increases the lift-to-drag ratio. 

This is in a full agreement with conclusions drawn in Sec.IV. 

C. A Track in the Form of a Conducting Slab 

I To compare the Inductrack with earlier proposals, one can 
consider a track made just of a slab of a conducting material, Le., one 
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without any windings at all (Fig. 7). This design is indeed very simple 
but now the currents flow only in a relatively thin skin-layer (not 
being forced to occupy the whole thickness of the slab by Litz 
winding or multiturn winding techniques of the previous sections), 
and one can expect increased Joule losses and reduced lift-to-drag 
ratio. 

As is shown in the Appendix 3, in the case under consideration 
the expressions for the lift force and for the lift-to-drag ratio read: 

(4.) = (F,”) 

where Fymax is determined by equation (29) and 6 is a skin-depth 
within the conductor, given by equation (28). 

The dependences given in equations (31) and (32) are 
illustrated in Figs. 8a and 8b for the case of a copper conductor 
(p=0.017 micro-Ohms m) and a wav.elength of the Halbach array 
h=0.5 m. 

In the limit k6<<1 (skin depth small compared to the 
wavelength, as can expected to be the case in practical situations) the 
expression (32) reduces to: 

-_-- (”)- -2.425,h for copper (e) k6 
(33) 

In this case, by contrast with the Inductrack scaling, above a critical 
speed (determined by the actual thickness of the sheet conductor as 
compared to the skin depth), although the Lift/Drag ratio also 
increases with the velocity, it varies only as the square root, rather 
than linearly. Furthermore, its numerical value at 500 km/h and at 
a wavelength of 0.5 m. has only risen to 20, more than an order of 
magnitude smaller than the L/D ratio in the example given in Section 
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IV. Although the magnetic field configuration of the Inductrack is not 
the same as used in  earlier concepts, this example illustrates the 
substantial improvement in efficiency that is possible with the 
Inductrack concept, as compared to previous eddy-current-based 
systems. 

VI) Brief Discussion of Some Practical Issues 

Of course, evaluation of the Inductrack concept, as well as of 
any other new transportation concept, should be based not only on 
the “bare bones” design of the type presented in our report, but also 
on detailed discussion of a host of practical problems, ranging from 
resilience of the transportation system to possible attempts of 
vandalization, through possible effects of seasonal and diurnal 
temperature variations, of snow- and rain-falls, to limitations on the 
noises produced by the trains. For high-speed trains serious 
constraints can be imposed by the topography of the land. Many of 
the “practicalyy issues are more or less common for all high-speed 
systems, others are more specific. Here we will discuss only a few 
such issues which have direct relevance to the electrodynamical part 
of the concept as described in the present report. 

The first issue is that of the gap between the track and the 
lower surface of magnet array. According to our master equation 
(22) this gap ( y l )  strongly affects the lifting force. Theoretically, the 
gap can be made very small but in ’practical situations there exist 
important limitations on its minimum value. Indeed, if the car is a 
passenger car, then one must make provisions for its safe operation 
even if all passengers have moved to the front seats (or to the left 
seats) leaving the rest of the car empty. Let us, for instance, consider 
a scenario when all the passengers have moved to the front rows. 
This will cause a forward tilt of the car which will produce a 
restoring torque. Assuming that magnet arrays occupy only short 
sections of the car near the front and rear ends, one can easily find 
that the front end of the car will lower by the distance 

where rn and A4 are the masses of passengers and of the car, 
respectively (see first few paragraphs of Appendix 6 for relevant 
details). Clearly, the gap can not be made smaller than this distance. 
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Taking a factor 2 as the safety margin, we obtain the following 
limitation on the minimum possible gap width: 

m 
’’ ’ k(m+M)  (35) 

According to (22), for the mass of passengers equalling 20% of the 
mass of the car, this constraint means a 40% loss of the lifting force 
compared to its theoretical maximum (at yI=O). 

For the mass of passengers being 0.2 of the mass of the car, and 
for the wavelength h=0.5 my y 1  should exceed 1.33 cm; for the 
wavelength h=l m, y1 should exceed 2.66 cm. 

The other limitation of the gap is related to possible 
imperfections of the surface of the track, in particular, imperfections 
with a scale-length L i m p  in the z-direction of order of the car length 
LCar. The average gap should exceed with some margin the height of 
these non-uniformities. 

Non-uniformities with long wave-length in z-direction (hi m p  

much greater than Lcar) can be of some concern if they would cause 
perturbations resonating with vertical oscillations of the car. The 
frequency i2 of the latter (see Appendix 6) is equal to (2kg)”2, i.e., for 
Halbach array with the wavelength of . O S  m this frequency is equal 
to 16 s-’. At the car speed of 140 m / s ,  these oscillations will resonate 
with the wavelength l i m p  = 60 m. 

At very high car speeds the car will possibly experience an 
action of pulsating forces arising from the vortex air flow around the 
car. The distance between the car bottom and the track should be 
sufficient to accomodate the time-dependent tilts arising from these 
forces. Quantitative limitations .will become clear after a preliminary 
aerodynamical design of the car has been made. 

Added to the thickness of the gap should be also the thickness 
of a protection layer which should be placed on the upper surface of 
the track windings (between the windings themselves and the 
bottom of the car) and which should protect the windings from 
mechanical damage. This layer should be insulating (or have a low 
conductivity) to avoid eddy current losses in it. Its thickness should 
probably be about 0.5 cm. Taking into account all these 
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considerations, we assume that the gap y1 can be made equal to 
3.125 cm. Of course, there is a considerable degree of arbitrariness in 
this choice. One reason for choosing this particular number is that it 
corresponds to 1/16 of the wavelength h=0.5 m and thereby 
considerably simplifies numerical estimates. This gap will also allow 
for a thin metallic sheath over the surface of the magnet array, to 
protect it from damage. 

The electromotive force, V, induced by the periodically varying 
magnetic field in each conductor is equal to d@/dt. Its amplitude, 
according to equation (7) (with exp(-kh) neglected), is 

V=WVBO exp(-kyl) 

Taking w=l m, v=140 m/s and Boexp(-kyl)=0.7 T, we find that the 
electromotive force is approximately 100 V. Most of this voltage 
drop occurs over the lumped inductances. However, the value of 100 
V is easily manageable and should not cause concern. 

The forces acting on conductors will have not only a vertical 
component acting downward but also a horizontal component of 
comparable amplitude and with a sign alternating at the wave 
period. According to our estimates of the lift force (see Sec.IVB) this 
horizontal component is of order of 10 t/m2. The mechanical 
structure of the track should be made strong enough to. withstand 
these tangential stresses. 

VII) Summarizing Examples and Equations 

In this section we present in  a compact form self-consistent 
sets of parameters for several track and magnet designs (TABLES 1 
and 2). In these designs we assume that the number of magnets per 
wavelength of the Halbach array is M=4, the remanent magnetic field 
is B,=1.25 T, the width of the array is w=l my the thickness of the 
magnets is d=0.125 m, magnet material has a density of 7.2 t/m3 
(accordingly, the weight of the magnets is 0.9 t/m2), the thickness of 
the conductor in the track is A,=0.03125 my the width of the 
conductor in z-direction is d,=0.03125 my the filling factor is f=0.8, 
the gap between the lower surface of the magnets and the surface of 
the conductors is yl=0.03125 m, the NewtonNatt parameter is K=l 
s/m for TABLE 1 and K= 2 s/m for TABLE 2. To find the power lost in 
the track (in MW), one should multiply the weight of the car in 
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tonnes by the factor 0.0098/K. For reference purpose, we note that, 
for the Grumman design of the magnetically levitating car weighing 
50 tonnes, aerodynamic losses were calculated to be 8.3 MW. The 
calculated power required for levitation in this example is about 500 
kW, or 6 percent of the propulsion power at 500 km/s. 

The parametric variations of various quantities of interest, such 
as the Lift-to-Drag ratio and the levitation force vs speed, the 
variation of levitating force with levitation height, the power 
required for levitation, and the maximum levitated mass, are 
illustrated graphically in Figs. 9, 10, 11, 12, 13, and 14. Figs. 13 and 
14 are comparisons, in block graph form, of the levitation power and 
the maximum levitated mass for three different cases: (1)  a 
conducting surface (copper), (2) a flat track with no extra inductive 
loading, and, (3) All 
three cases are for a Halbach array wavelength of 1.0 m. The trade- 
offs between drag power and levitating force can be seen from these 
plots. Also obvious from the plots is the marked increase in 
efficiency associated with the Inductrack system, as compared to 
conventional eddy current-based systems. 

an inductively loaded flat track with K = 3.0. 

Finally, we summarize the equations needed to calculate the 
above quantities in terms of the basic design parameters Bo, h, p, y, f, 
and K, the separation and winding thickness parameters, y1 and Ac, 
respectively, and the velocity, v. The. dimensionless parameter y, is 
equal to the ratio of a quarter-wavelength to the winding thickness, 
A=, ( Le., y = 4 corresponds to the case Ac = 1/4(h/4) = h/16), so that 
either one may be calculated in terms of the other one. 

We have for the levitating force of the window-frame 
Inductrack , in Newtons/m2 (Equation 20): 

-- =(F,) - B,2fl 1 exp(-Zky, - kAc) , Newtons/m2 
A 24Kpy 1+ ( K v ) - ~  

For the minimum value of the parameter K (no added 
inductive loading) we have (equation A 9 5  of Appendix 9): 

New tonsNatt 
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For the Lift-to-Drag‘Ratio we then have, for the window-frame 
Induc track: 

Lift h E d ’  Pof 
Drag R 

The first part of this equation is general, and can be used to 
calculate the Lift-to-Drag ratio for the flat-track, inserting the value 
of R and the distributed inductance, L(d), appropriate to that 
geometry. 

For the flat-track design with a circuit perimeter equal to 1.2w, 
the value of R (w is the width of the track facing the Halbach array), 

is given by the expression (equation 26): 

For the distributed inductance, L(d), we have (equation 21): 

where P, is the perimeter of either the window-frame coil or 
the flat-track coil. 

For the flat-track Inductrack we have for the maximum value 
of the levitating force (occurring when the width of the track, w, 
facing the Halbach array is equal to P,) the expression (equation 29): 

New tons/m2 

For both the window-frame and the flat-track systems we have 
for the ratio of the lifting force to its maximum possible value the 
expression (equation 30): 
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Finally, we have for the maximized ratio of the levitated weight 
to the magnet weight, the expression (equation A7.5 of Appendix 7): 

[ w",T* IbeaYg.]max(kd)- - 26.31 [ $](exp [-2k(y -A,/2)] 

VIII) Concluding Remarks 

The analyses presented in this report show that the Inductrack 
concept represents a viable approach to the passive magnetic 
levitation of moving objects. As has been described, it operates by 
exploiting the repelling force between magnets on the moving object 
interacting with currents induced in a stationary track. However, the 
Inductrack concept is to be distinguished from earlier induced- 
current passive magnetic systems by the fact that its configurations, 
involving close-packed conductor arrays and optimally efficient 
arrays of permanent magnets, lead to markedly improved 
characteristics relative to those earlier approaches. Specifically, the 
levitating forces can be made to approach the theoretical maximum 
value achievable by the levitating magnetic fields, Le., that value 
associated with movement of the magnet array over a perfectly 
conducting surface. In addition, the Lift-to-Drag ratios, increasing 
linearly with speed, can reach values *in excess of 200, one to two 
orders of magnitude higher than those typical of earlier systems. 
Correspondingly, the "transition speeds", i.e., those speeds at which 
magnetic levitation begins to become effective, are much lower than 
those for other systems, being as low as one or two kilometers per 
hour. An important additional feature is that by taking advantage of 
the special magnet array design (Halbach arrays), and of new high- 
field permanent magnet materials, it is not necessary to contemplate 
the use of electromagnets employing superconducting coils in order 
to achieve adequate levitation forces relative to the weight of the 
levitating magnets. With the Inductrack system the ratio of levitated 
weight to magnet weight can, in typical cases, be in the range of 1 O : l  
to 40:l. The higher of these values is an order of magnitude greater 
than values that have been quoted for some earlier systems. 

For the designer of magnetically levitated systems, one 
important consequence of our analyses is that the results can be 
reduced to simple yet accurate design formulae, allowing for 
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characterization and optimization prior to actual construction. To be 
discussed in another report is the analysis of the general stability of 
the system. Here again the simplicity of the Inductrack concept and 
its tractability for analysis leads to well-defined criteria for passively 
stable operation. With the Inductrack there is no requirement for 
active stabilizing control circuitry of the type required for some 
other approaches to the magnetic levitation, those that must deal 
with the intrinsic instability of magnetic levitation implied by 
Earnshaw’s theorem. 

Although this report has not dealt, other than superficially, 
with the topic of costs and economics, it seems probable that the 
basic simplicity of the Inductrack concept should translate to 
economic practicality in high-speed transit systems, particularly 
when the “fail safe” nature of the concept is taken into account. 

Work performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore National Laboratory under Contract W-7405-Eng-48. 

Appendix 1. 
Fourier Decomposition of the Magnetization Currents and of 

the Magnetic Field of a Halbach Array 

We consider a Halbach array of the form shown in Fig.3, Le., 
with four magnet bars per wavelength. It is assumed that this 
system is continued periodically in both. directions of axis z. Direction 
of magnetization of each particular bar is shown by arrows. The 
absolute value of remanent magnetic field is identical for all the 
rods and is equal to B,. The linear density of the magnetization 
current that flows on the boundaries between the bars is: 

I=BJb (A1 . l )  

where po is permeability of free-space (4n- 1 0-7 H-m-’). Directions 
of the magnetization currents are shown by dots (to the observer) 
and crosses (from the observer). The current density corresponding 
to this current pattern can be written on the interval Oczch/2 as 
follows : 

j,(y,z)=I{ [C(y-yl-d)-C(y-y1)]-[ 6(z-h/8)+ 6(~-3h/8)1+ 
P(z-3 h/S)-C(z-h/S)] - [ 6(y-y 1)- 6 ( y - y 1 -d)] (A1 -2) 
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where C is a Heavyside step-function (equal to 1 at positive values of 
its argument and to zero at the negative values). At -h/2<z<0 the 
current density can be found from the condition jx(y,-z)=-jx(y,z). 
Outside the interval -h/2<z<h/2 the current density can be found by 
periodic continuation. 

As j,(x,z) is an odd function of z, its Fourier decomposition in z 
will contain only sines (no cosines): 

where 

-cos(nn/4)+( l/kn)-[6(y-yl)- 6(y-yl-d)]sin(nn/4)}, 

with 

k=2 .nlh 

(A1.3) 

(A 1.4) 

(Al.5) 

being a wave-number of Halbach array. Obviously, the Fourier 
coefficients are non-zero only for odd n’s (n=1, 3, etc). 

It is instructive to find the magnetic field produced by separate 
Fourier-harmonics of the current. We present expressions for 
magnetic field below (ycy1) and above (y>y1 +d) the magnet array: 

nn nn 
m 2 4 4 

Bur =-- 2’~r sin !E - (cos- + sin -1 - eh(7-h) - (I - e - a )  - sin k n ~  pelow) 

(A 1.6) 

(1 - e-&) - sin knz (above) 2pJ . nn nn . nn h(p-y,-d) Bur = --sin- (cos- - sin-) - e m 2 4 4 

Note that only Fourier harmonics with n=l, 5, 9, etc contribute to the 
magnetic field below the array and, only harmonics with n=3, 7, 11, 
etc contribute to the magnetic field above the array. As amplitudes 
of the harmonics are inversely proportional to n, this means that 
magnetic field is much stronger on the lower side of the magnet than 
it is on the upper side. This circumastance is one of attractive 
features of the Halbach array: The magnetic field is concentrated just 
on that side of the array where it (the magnetic field) interacts with 
the track and provides lifting force. 
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For n=1, the magnetic field determined from (A1.6) coincides 
with the expression (4) of the main text. 

On the lower side of the array, the first harmonic of the 
magnetic field is strongly dominant: the next non-vanishing 
harmonic is n=5. The amplitude of this harmonic is 5 times less than 
of the main one. Magnetic forces are proportional to the square of 
the magnetic field. If we average them over the wavelength 1, the 
interference between different harmonics disappears because of 
their orthogonality. Therefore, the 5th harmonic gives only, roughly 
speaking, a 4% contribution to the forces. This allows us to neglect 
effects of all the harmonics but the first one in evaluating the forces 
acting on the Halbach array from the side of the track. 

Appendix 2 
Evaluation of Distributed Inductance 

In this Appendix we consider a Halbach array moving parallel 
to the track surface in the direction z. For the system whose length 
in x direction is large compared to h,  the magnetic field can be 
uniquely described by the x-component of the vector-potential 
Ax =A(Y,z): 

The vector-potential satisfies Poisson equation: 

(A2.2) 

where jx  comprises both magnetization current and the conductivity 
current in the slab. As has already been mentioned, it is accurate 
enough to retain only the first Fourier harmonic n=l  of the 
magnetization current (Al.3), Le., to represent a magnetization 
current density in the form: 

JX 

1 .(m) - 4m a { [C(Y - Yl - 4 - E(Y - n)] + ,["(Y - K) + "(Y - Y1- d)])sin[k(z - vt>I= 

(A2.3) 
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where the subscript "m" designates magnetization current, and 

2JFI 4)- z ( y - y , ) ] + - 1 [ 6 ( ~ - Y 1 ) + ~ ( Y - Y 1  -SI} (A2.4) k 
?("')(,?) = -{[qy - y, la 

o=kv (A2.5) 
The solution of equation (A2.2) for A should have the same 

form as equation (A2.3), Le., A should be represented as: 

The equation for A reads: 

We first consider the solution of equation (A2.7) in the upper 
half-plane (y>O). The solution can be represented as a sum of two 
terms: the vector potential Ai(m) produced by the magnetization 
current, and the vector potential A(')produced by the conductivity 
current in the track. The former can be easily found from equations 
(A2.1) and (A1.6). We will need an expression for A('") only below the 
Halbach array. In this domain 

-. (A2.8) 

To find A('), we must first to know the current in the track. But the 
functional dependence of A(c) on y is clear (as A(c) satisfies equation 
(A2.7) with r.h.s. equal to zero - no conductivity currents above the 
track) : 

A(') = Cexp[-k(y - y,)] (A2.9) 

where C is some constant (which, indeed, is determined by the 
current in the track). 

The force acting on the Halbach array is determined by the 
interaction of the magnetization current and that part of the 
magnetic field which is produced by the currents in the track. In 
other words, the lifting force Fy (per unit area) is equal to: 

q, = I (jl""BF))dx (A2.10) 



The angular brackets denote averaging over the wavelength. 
the presentation in equation (Al.3) for jp), one obtains: 

Using 

In the same fashion, one obtains the drag force Fz: 

(A2.11) 

(A2.12) 

The parameter I in these equations is defined according to equation 
(A1.1). 

Neglecting the thickness of the track compared to the other 
dimensions of the problem, we can approximate the current 
distribution in the track by a surface current, with a linear (per unit 
length in z) current density 

(A2.13) 

From the condition that the jump of the tangential (z) component of 
magnetic field should be equal to ,u01(~) ,  while the normal (y) 
component of the magnetic field should be continuous, we easily find 

Now we can find the magnetic 
flux that induces the loop voltage 
current). Its temporal and spatial 
equation (A2.13): 

(A2.14) 

flux under the track (it is this 
that drives the conductivity 

dependence is the same as 

(A2.15) 

The contribution to this flux comes from the magnet array and the 
currents in the track: 

(A2.16) 
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The current per conductor is equal to I(')dc, and the contribution to 
the loop voltage from the lumped inductance is -Ldc(dI(')/dt) . The 
total loop voltage Vioop has a form identical to equations (A2.13) or 
(A2.14), with 

q"(lp = iw(4 + up) (A2.17) 

The loop voltage drives a current against the resistance of the 
conductor: 

q,l,,p = Rj(')dC (A2.18) 

Equations (A2.16)-(A2.18) allow one to find FS) and, via relationships 
(A2.14) and (A2.11), the lift and drag forces. The results have been 
presented in the main body of our report (equations.(22) and (23)). 

Our discussion pertained so far to the "flaty7 track design. It 
turns out that our main results remain valid also in the window- 
frame design, as long as the vertical dimension, h, of the frame 
remains large compared to l/k. The cross-section should not even be 
necessarily rectangular, simply all the dimensions should be greater 
than l/k. Indeed, in this case one can (conceptually) split the whole 
conductor into a number of (almost) straight segments of the length 
Al>>l/k; the contribution to Eq.(A2.16) from each segment will be 
(p07(')/2k)A1, so that the contribution of the whole conductor will be 
just as given by Eq.(A2.16), with PC having the meaning of a total 
perimeter of the conductor. 

The other comment that should be made here is that we have 
neglected the presence of the high-permeability rings encircling 
every conductor. The corresponding corrections contain a small 
parameter equal to the ratio of the characteristic dimension of the 
ring and the perimeter PC of the conductor. 

Appendix 3 
Magnetic Levitation Over a Conducting Slab 

In this Appendix, we consider the electrodynamics of a Halbach 
array moving over the slab of a conducting material. We will assume 
that the slab thickness ( A , )  considerably exceeds the skin-depth, so 
that one could replace the slab by a conducting half-space. 



The contribution of the conductivity currents to the vector 
potential above the track is still determined by equation (A2.9). 
Therefore, the problem of finding lift and drag forces is again 
reduced to finding of the complex constant C. To do that, we first note 
that the vector potential inside the slab satisfies the usual skin- 
effect equation [7] 

ipow - (k2 +-)A = 0 d2A -- 
dY2 P 

The solution of this equation, one which exponentially decreases at 
negative y is: 

A = Dexp(qy) 

with 

(A3.2) 

(A3.3) 

and 6 being a standard skin-depth as defined by equation (28). 

Above the conducting surface (but below the Halbach array) 
the vector potential is a linear superposition of equations (A2.8) and 
w . 9  1 7  

From the condition that both and dii/dv should be continuous on 
the y=O surface, one finds that 

(A3.5) 

Using equations (A2.11) and (A2.12) and separating the real and 
imaginary parts of C7 one obtains after some algebra expressions (31) 
and (32) of the main text of the report. 

Appendix 4 
Resistive Losses in the Bus Bars 

Consider magnetic fields and currents in the vicinity of the 
terminating bus bar, Fig.15. On this figure we do not depict lumped 
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inductances and do not show small up and down displacements of 
the neighboring conductors required to accomodate these inductive 
elements. Under conditions of practical interest, the skin-depth, 6, in 
the bus bar is smaller than l/k, so that the current in the bus bar, in 
terms of its influence on the magnetic field outside the conductor, 
can be considered as a surface current. Qualitatively, the pattern of 
this surface current is shown by arrows on Fig.16. 

The linear density of the surface current can be determined 
from conditions 

BY I ,  = -; 4 I, = -- . , dm 
. Po PO 

(A4.1) 

where B is a magnetic field on the surface of the conductor. We 
consider a situation when the gap (in x-direction) between the 
Halbach array and the bus bars is greater than l/k. Then the 
magnetic field on the bus-bar surface is entirely determined by 
expressions (A2. l), (A2.9), with only a contribution from the currents 
in the track playing a role. 

The magnetic field of the track currents exponentially decays 
in the vertical direction, as also do the surface currents. In order not 
to increase resistivity, it is desirable to have the height of the bus 
bar larger than l/k. We assume that this condition is satisfied. 

As we can neglect the contribution of the Halbach Gray to the 
magnetic field on the surface of the bus bar, the problem becomes 
symmetric with respect to the surface of the track. We will consider 
only the region above the track. At y>O, the magnetic field can be 
presented as 

B,, = By exp(-iot + ikz - ky) + C.C. 

Bz = Bz exp(-iot + ikz - ky) + C.C. 
(A4.2) 

where By, Bz, are some constants related to each other' through 
condition V - B  = 0: 

.., I 

By = iBz (A4.3) 

In case kd<<l,  current inside the skin-layer varies 
proportionally to exp(-qx), with q=(l+i)/6, and 6 being the standard 
skin-depth, equation (3 1). Using this observation and relationships 
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(A4.1)-(A4.2), 
distribution in the bus-bar: 

one can write the following expression for the current 

j y  = --Z-exp(-iot &7 + ikz - ky - qx)  + C.C. 
PO - 
B,q 

j, = --exp(-iot + ikz - ky - qx)  + C.C. 
PO 

(A4.4) 

The average power dissipated in the bus bars per unit length of the 
track (in z-direction) is: 

m m  

(A4.5) 
0 0  

where p is the resistivity of the track, and the factor "4" in front of 
the integral takes into account the presence of two bus bars and the 
symmetry of the problem with respect to the horizontal plane. 
Simple integrations taking into account relationship (A4.3) yield: 

To express these losses in terms 
conductors, we first represent the surface 
form: 

I,  = I, exp(-iot + ikz) + C.C. 

and then note that 

- 23, I, =- 
PO 

(A4.7) 

(A4.6) 

of resistive losses in the 
current in the track in the 

(A4.8) 

Resistive losses in the conductors per unit length of the track (in z- 
direction) are: 

1q 
PGnd = Rdc(12) = 2Rd$r = 8Rdc- 

Pi  
(A4.9) 

where R is a resistance of a single (multiwire) conductor. From 
comparison of equations (A4.6) and (A4.9) one sees that the effect of 
the Ohmic losses in the bus bars can be described by adding some 
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resistance to the resistance of every conductor. This “added 
resistance” is 

(A4.10) 

Appendix 5 
Eddy Current Losses in the Track 

To be specific, we consider the geometry of the flat track. We 
evaluate the dissipation associated with eddy currents which are 
present in every separate wire of the conductor. The dissipation of 
these currents becomes particulary important when the “net” current 
which flows from one end of the conductor to another, is strongly 
suppressed, for instance, by large lumped inductances at the ends. In 
agreement with reality, we assume that the wire radius a is much 
less than the skin-depth (28), so that the wire is penetrated by the 
magnetic flux. This flux induces a vortex electric field which 
generates eddy currents, Fig.17. 

We first find the eddy current dissipation in a single wire 
(many of such wires constitute the conductor) in a specific case when 
magnetic field intersecting the wire does not vary along its length. If 
the magnetic field, in fact, varies along the wire, then our results 
could be generalized by the introduction of a simple integration along 
the wire length. 

The eddy current pattern in the wire is illustrated by Fig. 17 
The direction of these currents is parallel to the wire axis 
everywhere except short ( = a) regions near the ends where these 
currents get closed across the wire. If we are not considering the 
vicinity of the ends, which gives only a small contribution to the 
dissipation (because the corresponding volume is small), then, using 
Faraday’s law, we can write the following expression for the eddy 
current: 

The power dissipated in the wire of the length w is 

P = w p j  dydz( jz), per wire 

(A5.1) 

(A5.2) 



where the integration is carried out over the wire cross-section and 
the angular bracket denotes averaging over the wave period. 
Elementary calculations yield: 

m 4 w 0 2  
4P 

P =  ((B:) +(B:)), per wire (A5.3) 

Equation (A5.3) solves the problem of eddy current losses i n  
p r i n c i p l e .  To make more concrete estimates, one has to have 
information regarding the magnetic field strength in the location of a 
particular wire. We will make these further calculations for the case 
when the lump inductances keep the total current in the conductor 
well below its maximum possible value determined by mutual 
inductances. This assumption corresponds reasonably well to the set 
of parameters for a "flat" track design considered in Sec.VB (L=4.3 
microhenrys, L ( d ) =  1.9 microhenrys). In this situation, the magnetic 
field created by the currents in the track is small compared to the 
magnetic field created by permanent magnets and all the wires are 
exposed to the same magnetic field as determined by expressions (4), 
(5). In this case Eq.(A5.3) yields: 

per wire (A5.4) 

The number of wires per conductor is, obviously, dcAcf /m2 .  
Therefore, the power dissipated per conductor is 

a2wew2 
P =  4R B,' exp(-2ky,), per conductor (A5.5) 

where R = P,/(fdcAcp) is the resistance of the conductor bundle. 

Now we will compare this result with the drag power per 
conductor. In case L>>L(d) which we are considering now, 

W 2  

2kL 
per conductor (A5.6) = ~exP(-2bI)- ,  B,' 

(See relationships 
mutual inductance 

(18), (21), (29), (30); in the latter we neglect 
term in denominator). Dividing equation (A5.5) by 
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equation (A5.6), we find a onvenient xpression for eddy current 
dissipation vs main current dissipation: 

Eddy current dissipation 
(A5.7) K2 a2m2P, - 2 e. 

Main current dissipation 2 w  2w 
- (K~)~(ka) - - -- 

For the design parameters discussed in Sec.VB (K=2 s/m, v=500 
km/h=l40 m/s, Pc/w=1.2, k=12.6 m-1) this ratio is less than 1 for 
wires whose radius is less than, roughly speaking, 0.3 millimiters. 
The number of wires per conductor in the reference design is then 
appro xi ma tel y 2,000. 

For thicker wires, eddy currents give a dominant contribution 
to dissipation. This, however, may be tolerable because the losses are 
still small: we can raise the losses in the track to, say, 30% of the 
aerodynamic losses and still remain in the domain of practical 
interest. Wires with radius of 1 millimeters (2 mm in diameter) 
would become then acceptable. Note that the power dissipation via 
eddy currents scales as v2 (see (A5.5)) and at somewhat lower 
velocities (say, 150 km/h = 43 m/s) becomes quite modest. Also, if it 
is economically practical to use strands smaller than 0.3 mm in the 
litz wire, eddy current losses can always be made negligible 
compared to the resistive losses of the main current. 

At high velocities (of order 500. W h )  the w2dependence of 
the eddy current losses argues for increasing the wavelength of the 
Halbach array up to a limit determined by other economic factors. 
When the maximum advantage of this scaling has been taken and the 
smallest possible strand diameter has been used, the Inductrack 
concept can be evaluated versus the use of a uniform conducting 
slab, where eddy current losses are confined to the surface of the 
conductor. In some special circumstances the efficiency gains from 
using the Inductrack system might not be worth the extra 
complexity. One should note, however, that the unstructured track is 

of driving the car by controlled incompatible with the concept 
currents. 

One caveat regarding the validity of equation (A5.5): When 
deriving it, we assumed that a 1 the wires experience action of the 
same magnetic field. This may become incorrect in case of small (or 
non-exis tent) lumped inductances. In such cases the magnetic field 
may vary considerably between the upper and the lower sides of the 
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conductor (normal to the track). This effect can also be taken into 
account by performing integrations over the thickness of the 
conductor. We will, however, not present here these tedious 
derivations. 

Appendix 6 
Negative Damping of the Vertical Oscillations of the Car 

In all other parts of this report we were considering steady- 
state motion of the car over the track. In this Appendix which 
somewhat deviates from the general course of this report, we 
consider damping of the vertical oscillations of the car. Much more 
detailed analyses of the car dynamics will be presented in a separate 
report [8]. However, evaluation of the damping rate is so tightly 
interwoven with the contents of the present report that we feel it 
appropriate to present this particular piece of mechanical analysis 
here. To be specific, we consider vertical oscillations of a car moving 
with a constant velocity. Somewhat surprisingly, the damping of 
vertical oscillations turns out to be negative. In other words, 
dissipative processes in the track tend to make these oscillations 
unstable. The energy that drives these oscillations comes from the 
work exerted on the car by the force that keeps it moving along the 
track with a constant speed. 

Before evaluating the damping rate, we present a remarkably 
simple expression for the eigenfrequency of the vertical oscillations. 
For this we note that the lift force depends on the gap (y,) between 
the magnets and the track in a universal way (see (22)): 

F y  = const - exp(-Zky,) (A6.1) 

where const does not depend on y ~ .  

In the equilibrium state, the lifting force is equal to the weight 
of the car, Mg, where M is the mass of the car and g is gravity 
acceleration. We denote the equilibrium value of yl by Tl and 
consider small deviation Sy with respect to it : 

Y l = T l + @  

44 

(A6.2) 



Linearizing the lifting force with respect to 6 y ,  we immediately find 
tha t  

6q. = const - exp(-2Q1) (-2k6y) = -2MgkSy. 

Inserting this perturbation into Newton equation 

M6j; = a<., 

we find the eigenfrequency a of vertical oscillations: 

(A6.3) 

(A6.4) 

(A6.5) 

Remarkably, the only design parameter that enters this equation is 
the wavelength of Halbach array. For k=12,6 m-1 (h=OSm), this 
frequency is approximately 16 s-1 (foz2.5 Hz). 

To proceed with evaluation of the damping coefficient, we 
return to equation (1) which we rewrite in the form: 

L-++RI-- dI 4 
dt dt 

(A6.6) 

According to our previous results, by L here one should understand 
the total inductance per conductor (self+mutual) and by R a total 
resistance (self+added; the latter appears only for the "flat" track 
design). The flux term entering the r.h.s. of this equation is (Cf 
equation (7)): 

4 = (B,w/k)exp(-kL, - kSy)sink(z- vt) = (Bow/k)exp(-i&)(1-k6y)sink(z- vt) 
(A6.7) 

Our further plan is as follows: We consider a harmonic 

6y = 6yo cos(Q2t) (A6.8) 
perturbation of yl, 

and find an expression for the vertical force in this case. In this 
expression, in addition to the terms varying as cos!&, we find terms 
varying as sinQt. Being phase-shifted by 90' with respect to 
displacement, these terms are obviously responsible for the 
dissipation of vertical oscillations. From their amplitude, the 
damping rate of vertical oscillations can be easily found. This 
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approach is good as long as the damping rate of the oscillations is 
small compared with their frequency (and we will make this 
assump tion). 

Magnetic flux (A6.7) for yl as in (A6.2), (A6.8) can be presented 
as: 

where  
@o = (B,w/k)exp(-@,), w = kv, w+ = o+Q, W- = w - Q  

We used here trigonometric identity 

1 
2 

cosasin p = -[sin@ +a) + sin@ - a)] 

(A6.9) 

(A6.10) 

(A6.11) 

Integrating (A6.6) with this expression for the flux, one finds: 

cos(kz-wt) - 
R sin(kz - cot) - - 

W L  1 
1 
1 

R+ sin(& - w+t) - -cos(kz - o+t) - 
o+L 

cos(kz - 0-t) } R- sin(kz - w-t) - - 
W-L 

I=--- BOW 

-- 

(A6.12) 

We add suffixes "+" and "-" to resistance R to show that, generally 
speaking, it may depends on frequency (as in the case of the flat 
track design where added resistance depends on frequency). 

The magnetic field on the surface of the track, according to (4) and 
(A6.2), (A6.8) is (up to the terms linear in Sy): 

1 
2 

Bz = Boexp(-kjs,) ~in(kz-wt)--k~~[sin(kz-w+t)+sin(kz-~-t)] 

The average over the wavelength vertical force can now be 'found 
from equations (A6.12) and (A6.13). Retaining only the terms up to 
the first order in 6y, and up to the first order in R/oL, one finds: 
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B:w 
<, = -( IB,) = - e x p ( - 2 ~  ) (1 - 

2kL 
-2k6yo[(sin(kz - w+t)sin(kz - at)) + (sin(kz - w-t)sin(kz - wt))] - 

(A6.14) I -%[ :(cos(kz - w+t)sin(kz - at)) + ;(cos(kz R - o-t)sin(kz - wt)) - 
0- 

-- k6yoR[(cos(kz - wt)sin(kz - w+t)) + (cos(kz- wt)sin(kz-w-t))]} 
WL 

To take the averages, one can use relationships (A6.11) and 

1 
2 

sin as in  p = -[cos(a - p> - cos(a + p>] (A6.15) 

As a result, one obtains: 

- 
(A6.16) 

Here we used an approximation 

(A6.17) 

which implies that the oscillation frequency, Q, is much less than the 
frequency of the current in conductors, co=kv. 

Strictly speaking, our derivation pertains only to an infinitely 
One can show, however, that it remains. valid for 

We will 
long Halbach array. 
relatively short arrays comprising several full wavelengths. 
not present here these rather lengthy derivations. 

Substituting the perturbed part of the force into equation 
(A6.4), one finds an equation for small vertical oscillations, taking 
into account dissipative processes: 

(A6.18) 



Assuming that the damping rate y is small, one easily finds the 
following expression for y (we define y according to relationship 
Sy exp (- p). ) : 

(A6.19) 

For the window-frame design, in which resistance does not 
depend on frequency, one obtains: 

g 1  Y = --- 2v Kv 
(A6.20) 

where K is a parameter defined by equation (18). As has been 
already mentioned, the damping is negative, i.e., the system is 
unstable. 

The condition for applicability of our derivation requires that 
the growth-rate should be small compared to the eigenfrequency of 
the oscillations, equation (A6.5). This imposes the following 
constraint on the velocities for which equation (A6.20) is valid: 

v > (g/2K)1’2(2kg)-’’4 

For K=2s/m and k=12.28 m-’ (h=0.5 
approximately 0.35 m/s, that is, it 

(A6.21) 

m), the r.h.s. of this inequality is 
is even lower than the critical 

velocity 1/K. In such a situation, the applicability condition for our 
analysis is just 

v>l/K (A6.22) 

For high speeds the growth rate of the instability, given by 
equation (A6.20), is very small and it can be easily stabilized, for 
example, by damping elements situated in  the car. At slower speeds, 
in particular at the speeds not much greater than “critical” speed 1/K, 
without damping the growth rate would become significant. 
However at these speeds the back-up wheels will be engaged, 
damping the growth until inboard damping elements take over at 
higher speeds. Generally speaking, as the instability manifests itself 
only at low speeds, where many additional stabilization techniques 
based on the touch-down elements can be used, it should not be of 
serious concern. 



The full dynamics of the system depends on the characteristics 
of the driving force. In the example we considered, this driving force 
was such as to provide constant-v motion of the car. In other  
situations, for instance in case when the driving force is constant, 
there will occur a peculiar coupling of the translational motion a n d  
vertical oscillations. This and the other issues of the similar na ture  
will be considered in our forthcoming report [8]. 

Appendix 7. 

Optimization of the Ratio of Levitated Weight Relative to 
Magnet Weight 

In some applications of the Inductrack concept, for example in 
its use in a high-speed test track, it becomes important to maximize 
the ratio of the levitated weight to the weight of the magnets. For 
such applications the Lift/Drag ratio may be a less important 
parameter, so that maximizing the lift through elimination of extra 
inductive loading is an appropriate path. In this case the use either 
of a "flat track" design or of a conductive surface can be considered, 
as these permit maximization of the lifting force per unit area. We 
here consider the problem of maximizing the ratio of levitated 
weight relative to the weight of the magnets in the Halbach arrays 
through optimal choice of the thickness, d m., of the magnets, of the 
number of magnet segments, M, per wavelength, and of the 
wavelength, h m., of the arrays. 

For the case of an optimized "flat" track, equation (29) gives an 
expression for the force per unit area in the limit of high speed (oL/R 
>> 1): 

- - E( Fymax) 
A (A7.1) 

Here Bo is defined as before, in terms of B,, d, and M, through the 
expression: 

sin(n/M) [ n/M ] B, Bo= [l - exp(-kd)] (A7.2) 



The magnet mass per unit area is given by pd kg/m. 
we can write for the ratio of the levitated weight to the magnet 
weight the following expression: 

It follows that 

G(kd) exp(-2ky1 - M,) Wt. lev. (A7.3) 

where 

[I -exp(-x)12 
X G(x) = (A7.4) 

The function G(kd) describes the competition between the increased 
levitation that accompanies the use of thicker magnets and the 
increased mass of magnet material associated with thicker magnets. 
As shown in Fig. (18) this function varies only slowly in the vicinity 
of its maximum value (0.4073) which occurs at kd = 1.256 (i.e., at a 
magnet thickness corresponding to 0.1999 A). It remains within 10 
percent of its maximum value between kd = 0.7 and kd = 2.1, Le., a 
factor of 3 in kd values between the extremes. Values of kd near the 
lower limit imply the need for larger areas of magnets to accomplish 
the same lifting force (relative to the optimum value); 
near the upper limit imply the opposite. 

kd values 

- If we now choose M = 8 (to approach the maximally efficient 
Halbach array: 
maximum value for G(kd), and insert the other constants into 
equation A7.3, we then arrive at an expression for the maximum 
value of the ratio of levitated weight to magnet weight given by: 

M 3 0 0 ) )  insert the density, p = 7500 kg/m, adopt the 

[E.- ::g.i,,,,,,,- - 26.31 F]( exp [-2k(y -*,/2)1 (A7.5) 

vary 
This 

In any given application there remains one more parameter to 
in order to achieve the maximum possible value of this ratio. 
parameter is the wavelength of the Halbach array, which 

appeais in two places in the above equation, namely, in the 
denominator and in the exponential term, through k = 2n/h. We will 
illustrate this last optimization for the case that gives the maximum 
possible value of the parameter, Le., when the Inductrack is replaced 
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by a conducting surface, represented by setting the term Ac= 0. Here 
our equation for the maximized ratio as function of h and y, becomes 

where 

(A7.6) 

(A7.7) 

For a given value of yl, the maximum value of H(h,yl) occurs at a 
wavelength 

[hloptimum = 4ny1 m. 

The corresponding maximized value of H(h, y ,) is therefore 

(A7.8) 

(A7.9) [H(h,yl]= exp(-1)/(4ayl) = .02928/y1 

Inserting this optimized value into equation (A7.6) we therefore find 

(A7.9) 

There is now available a NdFeB magnet material for which B, = 
1.41 Tesla. If we insert this value into equation (A7.9) we find an 
expression for the best ratio of levitated weight to magnet weight 
that is presently achievable for the system we have described. 
value is 

This 

(A7.10) 

The value of y1 that can be used will depend, of course, on the 
For a high-speed test track a typical value might be -03 application. 

m. In this case we find for the optimum wavelength 
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the value [h]optimum- - 4nyl= .377 m, and for the ratio of levitated 
weight to magnet weight the value 

Thus to sustain a downward force of, say 5 metric tonnes 
(11,000 lbs) would require Halbach arrays weighing a total of 98 
kilograms. The maximum upward force that these arrays could then 
exert (for a magnet-to-track gap, yl, approaching zero) would be, 
from equation A7.6, equal to 13.6 metric tonnes (30,000 lbs.). 

For the case of a flat Inductrack where the vertical depth of the 
conductors of the track is a fixed fraction of the wavelength, Le., 
where Ac = EX, the optimum wavelength remains the same as before, 
but the expression for the ratio of the levitated weight to the magnet 
weight is multiplied by a term exp(-2n&) so that we have 

= 1.53 [exp(-2n~)/y~] (A7.11) ["* fn"a",. .]max(kd,i) 

For the case considered before, with E = 1/16, and for y1 = -03 
m., we then have 

Because of the exponential dependence of this ratio on the 
thickness of the conductor it may be advantageous in some situations 
to use a smaller value of Ac in return for a closer approach to the 
limiting value. For example, choosing E = 1/32 results in a value 

which is 91 percent of the limiting value, while still retaining a much 
higher value of L/D at high speeds than that for a conducting surface. 

_ -  



Appendix 8. 
Traction System 

We remind the reader that the lumped inductance incorporated 
into every conductor is conceived as a cylinder of a high-p material 
(made of thin laminations, to reduce eddy current losses) which 
(cylinder) surrounds a short section of a conductor (see Figs. 2, 5). 
We now assume that each cylinder is threaded with another winding 
attached to the external source of voltage which creates a periodic 
electromotive force 

E=E@in(m+q) (AS. 1) 

with the frequency coinciding with that excited in the conductor by 
the moving car. In other words, we assume that the equality o = k v  
holds. For the first rough assessment, we characterize this external 
circuit by its resistance r and do not include possible capacitive or 
(additional) inductive elements which may be present in this circuit. 
We also assume that inductive coupling between the two circuits is 
perfect. This means that, if the flux (through the laminations) linked 
with the current in the track conductor is @, then the flux through the 
external circuit is N@ where N is the number of turns of the external 
winding (Fig. 19). 

The circuit equations describing ,interaction of the two circuits 
are: 

( L + L")i + RI = -6 - N L I ~ ~  
N(NL~,  + ~ i )  + YI, = E, sin(wt + q) 

(A8.2) 

here @ is the magnetic flux induced by the Halbach array, $=$,sin(m) 
(Cf. equation (l)), while Iexl is a current in the external circuit. By L 
we mean the lumped inductance (as in equation (1)) and by Lfd' t h e  
distributed inductance, equation (21). In the case of small Ohmic 
losses (which is of maximum practical importance), resistive terms in 
these equations can be neglected in the first approximation. Then 
equations (A8.2) yield: 

(A8.3) 
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Using relationships (4), (5)  and (9) and taking the average, one finds 
for the force per conductor: 

(A8.4) 

Maximum traction force <F,> corresponds to the phase shift cp = 0 .  One 
can note in passing that in this case there is no interference between 
the lift and the traction force. 

External voltage in the neighboring external circuits (exciting 
the neighboring conductors) should have a relative phase shift equal 
to 2.n divided by the number of conductors per wavelength (16 in 
our base case discussed on p.15). This means that a multi-phase 
power supply system will be required. Use of an 8-phase power 
supply, with the voltage for two neighboring circuits having the same 
phase, is also conceivable (if a 16-phase power supply poses too 
challenging of an engineering problem). 

The maximum traction force corresponding to the phase shift 
cp = 0 ,  can be conveniently related to the lifting force: 

(A8.5) 

For the parameters of the Grumman design of the car, the ratio of the 
aerodynamic drag to the weight is approximately 0.13 (7 tonnes vs 
50 tonnes). For B o - 1  T, v-150 m/s, w=lm, the required 
electromotive force Eo which can be evaluated from equation (A8.5), 
is in the range of 50 V. 

To make the system stable with respect to possible slight 
variations of the drag force, one should operate the system at 4 
different from zero. For @=30 degrees, the reduction of the traction 
force is approximately 15% with respect to the maximum value. 

The phase velocity of the driving wave should closely concide 
with the velocity of the car - otherwise the “sliding” of the wave with 
respect to the car will occur. The upper limit of the velocity 
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mismatch can be evaluated from the condition 

Av<<(drag forcekar weight)lR(g/k)lR (AS.6) 

For drag /we igh t  =0.13 and the wavelength h=lm, one finds that the 
r.h.s. of the inequality is equal to 0.4 m/s. 

Generally speaking, the presence of the external circuit affects 
the lift and drag forces. For instance, the first of the equations (A8.4) 
shows that the lift force contains now only the distributed inductance 
L(d) and not the total inductance as was the case when there was no 
external circuit.(Cf. equation (22)). 

Now we evaluate the Ohmic losses in the system. Assuming 
that the they are small, one can find them from a simple expression: 

(AS.7) 

(per conductor). For small drag/weight ratios, one can neglect the last 
terms in the expression (A8.3) compared to the first ones, thereby 
arriving at the following expression for the losses: 

(A8.8) 

The presence of the factor 1/N2 in the ’term responsible for the Ohmic 
losses in the external circuit shows that a relatively high resistance 
of this circuit is permitted; accordingly, the use of litz wire may be 
unnecessary in the external circuit. 

In case of the “flat” track design, the current providing the 
traction force can be excited directly (not inductively) through the 
cuts in every conductor, as shown in Fig. 20. Expressions equivalent 
to equation (A8.4) in this case read: 

(AS.9) 
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In both schemes, the traction force depends on the distance 
between the car and the track. This shows that, generally speaking,in 
the stability analysis of the car motion, one should take into acount 
the coupling between vertical and horizontal oscillations. 

The scheme for a power supply to the traction circuits could be 
as follows: There could be a power line (Dc or 60 Hz) along the track; 
the feeds from it  could be branched to the sections of 2-3 car 
lengths (for a 30 m car, every 60-100 m), containing a few hundreds 
of track conductors and external circuits. Each section should be 
engaged just before the car enters it and be disengaged as soon as 
the car leaves it; every section should have a converter that would 
provide a periodic voltage of a desired frequency and amplitude 
during the passage of the car. 

One could also use an alternative system in which capacitive or 
inductive energy storages would be attached to every section of the 
track. One could then charge them slowly in advance, when the car is 
approaching, and discharge them quickly, through the LC contour 
which would allow to adjust the frequency of oscillations (tunable 
elements will be required; mechanical tuning is probably possible). 
One should remember that for the friction force of 70,000 N 
(discussed in the text), one should store approximately 70 kJ of 
energy per one meter of the track. Cost-wise, this would probably 
give an advantage to the inductive energy storages. 

Appendix 9: 
Minimum Value of the Design Parameter, "K" 

The parameter K, Newtonsmatt (or sec./m.) is an important 
quantity in the design of Inductrack systems. 
Equation (18) of the text and what follows, by the relationship 

It is defined, through 

27c [L+L(d'] 
New tonsmatt hR K =  (A9.1) 

Here, as noted before, the inductance term includes both the 
inductance added to each circuit by ferromagnetic elements, L, and 
the distributed-inductance term, L(d), arising from the 
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presence of adjacent circuits. 
(21) of the text 

The term L(d) is defined by Equation 

(A9.2) 

Here P, is the perimeter of a coil, and d, is the axial length of the 
conductor bundle of the coil. 

In the design of an Inductrack system it is important to 
determine the minimum value of the parameter K, occuring when 
there is no added inductive loading. Thus we have 

2nL(d) 
New tonsmat t - 

Kmin  - XR (A9.3) 

This quantity is also useful for determining the maximum 
lifting force obtainable from an Inductrack system, as compared to '  
the theoretical maximum (see Equation 30 of the text). 

The expression for Kmin can be simplified, and made easier to 
apply, if we insert the definitions for L(d) 
(A9.3). The resistance term, R can be defined in terms of the length 
of the circuit, P, (m.), the axial length of the circuit, d,(m.), .its depth, 
A, (m.), and the resistivity, p (ohm-m.), and the packing fraction, f, of 
its windings. We have 

and R into Equation 

(A9.4) 

Inserting these definitions into Equation A9.3 we find the 
expression: 

New tonsmatt ( A 9 3  PofAc 
2 P  

-- 
Kmin - 

Note that Gin is independent of the overall scale of the system, 
depending only on the packing fraction and depth of the windings 
and the resistivity of the material from which they are fabricated. 



As an example, consider an Inductrack system made of copper 
windings (p = 1.7 x ohm-m.) with a packing fraction f = 0.8 and 
a depth, A,, of 0.03125 m. (as in the examples summarized in Section 
VII). From Equation A9.5 we then find Qin = 0.92 NewtonsWatt. 
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TABLES 
TABLE 1 

Parameters of the Inductrack system for several design 
options for the case K=l s/m. 

I Window- 
frame, 
aluminum 

0.5 

Window- 
frame, 
aluminum 

1 .o 

Flat, 
copper 

Flat, 
aluminum 

0.5 

1.2 

0.08 1 

42 

11 

1.9 

1.5 

9.3 
(13.9) 

Window- 
frame, 
copper 

0.5 0.5 Spatial period of the HalbFch 
array, h, m 

Perimeter of 
the conductor, Pc, m 

3.0 1.2 3.0 3.0 

0.2 Weight of the 
conductor, T/m2 

0.2 0.27 

65 105 105 26 Resistance of the 
conductor, R, pOhm 

Added resistance of the bus- 
bars at the speed v=140 ds, 
R,w. POhm 

Distributed inductance, L'd' 
W Y  

0 0 0 11 

4.8 4.8 9.6 1.9 

0.4 3.6 7.2 0.2 Lumped inductance, 
L, PHY 

6.2 (9.3) 3.2 
(4.8) 

15.1 
(27.7) 

Lifting force at high speed, 
T/m2 *) 

3.8 
(5.7) 

*) Shown in brackets are the values of lifting force for a more advanced Halbach array, with M=8 and B,,=1.41 T 
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0.67 0.2 

65 105 

4.8 4.8 

5.5 11.9 

~ 

3.1 (4.7) 1.9 
(2.9) 

TABLE 2 

Parameters of the Inductrack system for several design 
options for the case K=2 s/m. 

I Flat, 
aluminum 

Flat, 
:opper 

Window- 
frame, 
aluminum 

Window- Window- 
frame, frame, 

aluminum 

0.5 0.5 Spatial period of the Halbach 
amy, A, m I 0.5 I OS 

1.0 

I 
3.0 I 3.0 3 .O 1.2 1.2 Perimeter of 

the conductor, P,, m 

0.27 0.08 1 Weight of the 
conductor, Tim2 I 0.2 

I 
105 26 42 Resistance of the 

conductor, R, pOhm 

Added resistance of the bus- 
bars at the speed v=140 d s ,  
RAdd Y POhm 

Distributed inductance, L'd' 
PHY 

O I o  0 11 11 

9.6 1.9 1.9 

I 
2.3 4.8 Lumped inductance, I LPHY 

23.9 

7.6 
(1 1.4) 

Lifting force at high speed, I urn* 
4.7 

(7.1) 
1.6 

(2.4) 

*) Shown in brackets are the values of lifting force for a more advanced Halbach array, with M=8 and B,=1.41 T 
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Figure Captions 

Fig 1 (Sec. 11, p.6) Schematic representation of the Inductrack 
concept. 

Fig.2 (Sec.IV, p.7) Schematic of the “window-frame” track design. 
The Halbach array will be situated above y=O plane and will 
move in z-direction, parallel to the track surface. Shown in 
dotted lines are inductive elements enclosing every 
conductor. To provide space for this elements, the lower 
parts of neighboring conductors are shifted in the vertical 
direction with respect to each other. 

Fig.3 (Sec.IV, p.8) Periodic array of permanent magnet bars 

Fig.4. (Sec.IVA, p.9) The equivalent circuit of one circuit of the 
Inductrack circuit 

Fig.5 (Sec.VB, p.22) Schematic of the “flat” track design. Shown are 
two of the conductors forming the track. The ends of the 
conductors are slightly bent in opposite directions to provide 
space for accomodating the rings of the laminated high-p 
material (lumped inductances). The bus bars are shown as 
flat surfaces at the left and at the right. 

Fig.6 (Sec.VB, p.22) Litz-type structure of the conductor for the 
“flat” track design. Shown are two of many hundreds or even 
thousands of insulated wires which wonder between the 
upper and the lower surface of the conductor. The scale is not 
observed: the transverse dimension of the conductor is 
exaggerated. In reality, the wires will form a considerably 
smaller angle with the horizontal direction. Two wires (thin 
solid and dashed lines on the figure), in the points of their 
apparent intersection are, in fact, slightly displaced with 
respect to each other in the direction normal to the figure. 
This type of winding forces the average current (averaged 
over many wires) to be almost uniform over the conductor. 

Fig.7 (Sec.VC, p.25) The track in the form of a conducting slab. Slab 
thickness, A=, is assumed to be greater than the skin-depth 6. 
The width of the slab is greater than the width of the 
Halbach array. 
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Figs.8a and 8b 
(Sec.VC, p.25) Velocity dependence of lift force and lift-to- 
drag ratio in the “slab” design. It is assumed that the track is 
made of copper and the wavelength of the Halbach array is 
h=0.5 m. The vertical line corresponds to the velocity v=2.2 m 
at which the skin-depth 6 becomes equal to the slab 
thickness (A, = Ail 6) 

Fig. 9 (Sec. VII, p.29) The velocity dependence of the lift-to-drag 
ratio for two Inductrack cases (K = 3.0 and K = Kmin) 
compared to that for a conducting plate. 

Fig. 10 (Sec. VII, p.29) The velocity dependence of the levitation 
force vs its limiting value (for v >> vtransition for the case K = 
%in* 

Fig. 11 (Sec. VII, p.29) The velocity dependence of the levitation 
force vs its limiting value (for v >> vtransition for the case K = 
3.0. Note the low value of the transition speed (1.2 km/hr). 

Fig. 12 (Sec. VII, p.29) Plot of the decrease of levitation force with 
height above the Inductrack, for the case h = 1.0 meter. 

Fig. 13 (Sec. VII, p.29) Block graph plot of the power required for 
levitation for three cases: (1) an Inductrack with K = 3.0, (2) 
an Inductrack with K = Qin7 and, (3) a conducting plate track. 

Fig. 14 (Sec. VII, p.29) Block graph plot of the maximum levitated 
mass in tonnes/m2 for (1)  a conducting plate, (2) an 
Inductrack with K = ICmin, and (3) and Inductrack with K = 
3.0. For comparison the calculated value of the mass/m2 of 
the Halbach array magnets (for magnets h/4 in thickness) is 
also shown. In these plots the wavelength is 1.0 meter and 
the value of Bo is 1.0 Tesla. 

Fig.15 (Appendix 4, p.38) Cross-section of M=4 Halbach array. The 
array is moving in the direction z>O. Double arrows indicate 
the directions of magnetization of every rod; encircled dots 
and crosses indicate the direction of the magnetization 
current. 



Fig.16 (Appendix 4, p.39) Schematic of the zone where the track 
surface intersects the bus-bar. Both the track thickness and 
small bends of the ends of the conductors (see Fig.5) are 
neglected on this figure. Arrows show the current pattern. 

Fig.17 (Appendix 5 ,  p.41) Towards evaluation of the eddy-current 
losses in the separate wires. Shown on the figure are strongly 
magnified meridional (above) and equatorial (below) cross- 
sections of the separate wire in the flat-track conductor. We 
neglect small wiggles of the wire in y-direction (Fig. ) and 
present a model of the wire “rectified” in the x-direction. 
Small deviations of a real wire from a straight line give rise 
to corrections of order a2<<1 where a is an angle of a 
particular stretch of the wire with respect to axis x (Fig. ). 

Fig. 18 (Appendix 7, p.50) Plot of the function G(x) encountered in 
the maximization of the levitated mass relative to the mass 
of the magnets. 

Fig. 19 (Appendix 8, p.53) Inductive excitation of the traction force. 
External electromototive force Eosin(ot+@) is applied to a 
circuit which is threaded N times through ferritic laminations 
(the latter serve also as a lumped inductance for the 
levitation current). 

Fig. 20 (Appendix 8, p.55) Direct excitation of the the traction force 
in the flat-track design. External electromotive force 
Eosin(ot+@) is applied to the cut in the conductor. The exact 
location of the cut is not important and can be chosen to 
satisfy other possible design/economics constraints. 
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Plot of Mass Ratio Function G(x) 
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DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus. product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, proctss, or service by trade name, trademark, manufac- 
turer, or otherwise does not necessarily constitute or imply its endorsement, rccom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 

--- 



m . . . , . . . . .  -. . Y -  . .  . _  
. .  . .  

. .  . .  . .  . 
. .  . .  

, . . . .  . . .  . . .  . 
. . .  . . _ .  . 

. .  .. . .. . 1 


	List of notations
	Introduction

	I I) Technical Aspects
	Outline of Topics
	Lumped-Circuit Analysis of the Inductrack
	Circuit Equations and the Transition Speed
	An Example of an Inductrack System
	Effects of Distributed Inductance

	V)
	Scheme
	A "Flat" Track Design
	A Track in the Form of a Conducting Slab

	Brief Discussion of Some Practical Issues
	Summarizing Examples and Equations
	VIII) Concluding Remarks
	Array

	Appendix 2: Evaluation of Distributed Inductance
	Magnetic Levitation over a Conducting Slab
	Resistive Losses in the Bus Bars
	Appendix 5: Eddy Current Losses in the Track
	the Car
	Relative to Magnet Weight

	Appendix 8: Traction System
	Appendix 9: Minimum Value of the Design Parameter "K1
	Tables
	References
	Figure Captions

