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GAIT-BASED HUMAN RECOGNITION AT A DISTANCE:
PERFORMANCE, COVARIATE IMPACT AND SOLUTIONS

Zongyi Liu

ABSTRACT

It has been noticed for a long time that humans can identify others based on their
biological movement from a distance. However, it is only recently that computer vision
based gait biometrics has received much attention. In this dissertation, we perform a
thorough study of gait recognition from a computer vision perspective. We first present
a parameterless baseline recognition algorithm, which bases similarity on spatio-temporal
correlation that emphasizes gait dynamics as well as gait shapes. Our experiments are
performed with three popular gait databases: the USF/NIST HumanID Gait Challenge
outdoor database with 122 subjects, the UMD outdoor database with 55 subjects, and the
CMU Mobo indoor database with 25 subjects. Despite its simplicity, the baseline algorithm
shows strong recognition power. On the other hand, the outcome suggests that changes in
surface and time have strong impact on recognition with significant drop in performance.
To gain insight into the effects of image segmentation on recognition — a possible cause
for performance degradation, we propose a silhouette reconstruction method based on a
Population Hidden Markov Model (pHMM), which models gait over one cycle, coupled
with an Eigen-stance model utilizing the Principle Component Analysis (PCA) of the sil-
houette shapes. Both models are built from a set of manually created silhouettes of 71
subjects. Given a sequence of machine segmented silhouettes, each frame is matched into a
stance by pHMM using the Viterbi algorithm, and then is projected into and reconstructed

by the Eigen-stance model. We demonstrate that the system dramatically improves the

X1



silhouette quality. Nonetheless, it does little help for recognition, indicating that segmen-
tation is not the key factor of the covariate impacts. To improve performance, we look into
other aspects. Toward this end, we propose three recognition algorithms: (i) an averaged
silhouette based algorithm that deemphasizes gait dynamics, which substantially reduces
computation time but achieves similar recognition power with the baseline algorithm; (ii)
an algorithm that normalizes gait dynamics using pHMM and then uses Euclidean distance
between corresponding selected stances — this improves recognition over surface and time;
and (iii) an algorithm that also performs gait dynamics normalization using pHMM, but
instead of Euclidean distances, we consider distances in shape space based on the Linear
Discriminant Analysis (LDA) and consider measures that are invariant to morphological
deformation of silhouettes. This algorithm statistically improves the recognition over all
covariates. Compared with the best reported algorithm to date, it improves the top-rank
identification rate (gallery size: 122 subjects) for comparison across hard covariates: brief-
case, surface type and time, by 22%, 14%, and 12% respectively. In addition to better
gait algorithms, we also study multi-biometrics combination to improve outdoor biomet-
ric performance, specifically, fusing with face data. We choose outdoor face recognition,
a “known” hard problem in face biometrics, and test four combination schemes: score
sum, Bayesian rule, confidence score sum, and rank sum. We find that the recognition
power after combination is significantly stronger although individual biometrics are weak,
suggesting another effective approach to improve biometric recognition. The fundamental
contributions of this work include (i) establishing the “hard” problems for gait recognition
involving comparison across time, surface, and briefcase carrying conditions, (ii) revealing
that their impacts cannot be explained by silhouette segmentation, (iii) demonstrating that
gait shape is more important than gait dynamics in recognition, and (iv) proposing a novel

gait algorithm that outperforms other gait algorithms to date.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Gait Study History

The observation that people are able to identify a friend from a distance is a commonly
reported experience. The speculation is that it is the pattern of walking, i.e., gait, that pro-
vides the information for recognition. The major early study was done by Johansson [38],
who used point light displays to demonstrate the ability of humans to rapidly distinguish
human locomotion from other motion patterns. Cutting and Kozlowski [17] showed that
this ability also extends to recognition of friends. Since then, there has been various exper-
iments to show that humans can recognize gender [74, 4], direction of motion [38, 19, 32],
and weight-carrying conditions [73]. Perhaps the most recent evidence comes from the
experiments by Stevenage et al. [82] who show that humans can identify individuals on
the basis of their gait signature, without reliance on shape, in the presence of lighting
variations and under brief exposures. In addition, people also investigated movement per-
ception of partial body, usually the limbs. For example, Pollick et al. [68] examined visual
perception of affect from point-light displays of arm movement. Their results showed that
the first dimension of psychological space was highly correlated to the kinematics, for both
natural and scrambled arm movements, so that the perceived affect should be a formless
cue directly related to the kinematics.

Human motion recognition has also been studied by neuroscientists. Grossman et
al. [27, 21] studied the activities of different brain regions during the viewing of point-
light figures. The comparison of areas involved in coherent-motion perception and kinetic-

boundary perception indicated the existence of neural mechanisms in brain specialized



Figure 1.1. Examples of Important Gait Phases in One Cycle, (a) Right Heel Strike, (b)
Left Toe-Off, (c) Left Heel-Strike, (d) Right Toe-Off, and (e) Right Heel-Strike.

for biological motion (kinematics) analysis. Grezes et al. [28] explored the hemodynamic
responses of 10 healthy people to seven types of visual motion displays. Their results
showed that non-rigid biological motions are perceived by both the posterior portion of
superior temporal sulcus and the left intraparietal cortex.

Due to the periodic nature of human walking, a gait cycle is usually defined as the basic
unit of gait. According to Murray et al. [64], a gait cycle is the time interval starting from
the right heel striking the floor, followed by the swing of left leg advancing forward, the
the left heel striking the floor, the right leg swinging to advance forward, and ending at the
right heel striking the floor again, as illustrated in Fig. 1.1. There are 2 important phases
in a gait cycle: the left/right heel-strike (see Fig. 1.1 (a), (c) and (e)) where the two legs
are fully apart, and the left/right toe-off (see Fig. 1.1 (b) and (d)) where one leg just leaves
the ground. A gait cycle can also be partitioned into four periods: (i) right stance period
when the right foot is in contact with the floor, beginning from “right heel-strike” and
ending at “right toe-off”; (ii) left swing period when the left foot is not in contact with the
floor, beginning from “left toe-off” and ending at “left heel-strike”; (iii) left stance period
when the left foot is in contact with the floor, beginning from “left heel-strike” and ending
at “left toe-off”; and (iv) right swing period when the right foot is not in contact with the

floor, beginning from “right toe-off” and ending at “right heel-strike”. Moreover, the time



between these periods, i.e., when both feet are in contact with the floor, is called “double
limb support”.

In computer vision, much progress has been made in studying human motion since the
early days of analyzing human motion in terms of groups of rigidly moving points [22, 96].
An excellent snapshot into current work on human movement modeling is available in a
recent special issue [31]. Work in computer vision based human motion modeling can
be classified according to the model employed: articulated vs. elastic non-rigid, with and
without prior shape modeled [2]; or in terms of whether 2D or 3D models are implicitly or
explicitly employed [24]. A more recent, extensive survey [63] looks at over 130 publications
in computer vision-based human motion analysis and classifies them based on the issues
addressed: initialization (8 publications), tracking (48 publications), pose estimation (64
publications), and recognition (16 publication). The review also finds that the three most
common assumptions used effectively constrain the scene to be (i) indoors, (ii) with static
background, and (iii) with uniform background color. These assumptions makes it difficult
to judge the autonomous operation of the developed ideas in real life outdoor situations.

In the specific area of gait recognition, most works have focused on discriminating
between different human motion types, such as running, walking, jogging, or climbing
stairs [77]. It is only recently that human identification (HumanID) from gait has received
attention and become an active area of computer vision [65, 54, 81, 7, 85, 79, 30, 6, 53,
46, 15, 93, 89, 45, 84, 16, 86, 39]. Compared with traditional biometrics, such as face, iris
and fingerprint, gait has the advantages that it can be acquired from a distance, while face
or fingerprint data collection usually requires subjects be close to sensors. Of course, gait
recognition also suffers several drawbacks, for example, data are easily affected by various
sources of noise, such as shadows, moving background objects, and low image quality,
that cause problems in segmentation. In addition, gait can also be impacted by surface,

shoe-type and weight carried.
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1.2 Scientific Issues Addressed in this Work

Scientific issues considered in this dissertation, as Fig. 1.2 shows, include (i) potential
of gait biometrics, (ii) impact of silhouette quality on recognition, and (iii) investigation of
methods to improve gait recognition performance.

In Chapter 2 we begin our study by reviewing the state of art algorithms, which can be
grouped into 3 types: temporal alignment based, shape based, and static parameters based
algorithm. We introduce several large gait databases, including the USF/NIST HumanID
database with 122 subjects, UMD database with 55 subjects, CMU Mobo database with
25 subjects, and U. of Southampton (SOTON) database with about 100 subjects.

In Chapter 3 we study the impact of different covariates on recognition. We present
a parameterless baseline algorithm based on a simple spatio-temporal correlation tech-
nique. Despite its simplicity, the algorithm shows strong recognition power. However,
it also suggests that surface and time changes are the “hard” problems where significant
performance degradation are observed. This drop in recognition performance with surface
and time changes has also been reported by gait research groups for the HumanID gait
challenge dataset [16, 44, 94, 89].

To discover underlying factors that affect performance, we study the impact of silhou-
ette quality on recognition in Chapter 4. It is reasonable to speculate that since silhouette
quality varies with background and environmental changes, the drop in performance can
be attributed to silhouette quality. Instead of proposing a new segmentation algorithm,
our approach is to refine silhouettes produced by other algorithms. We build a Popula-
tion Hidden Markov Model (pHMM) to model a full gait cycle, starting from the right
leg stride and ending at the same stance in the next cycle. The pHMM is trained on
a set of manual silhouettes comprised of 71 subjects using Baum-Welch algorithm [70];
and unlike other sequence-specific HMMs, our pHMM does not perform classification, in-
stead, it matches frames of a given sequence into a set of predefined states following the
Viterbi algorithm [70], by picking up the most likely transition sequence. Then, each frame

is projected into a corresponding eigen-stance space, also built from manual silhouettes,



and reconstructed. We show that the silhouette quality after reconstruction improves, as
measured by the traditional detection rate (Pp) and false positive prediction rate (PPV).
However, the improved silhouette does not help recognition. On the contrary, the per-
formance even dropped slightly, due to the removal of error correlations for some of the
experiences that involved matching sequences taken roughly around the same time of day
and same background. So that we assert that the impact of the “hard” covariates can
not be explained by the silhouette quality. To improve the recognition, one should look at
other aspects of the problem.

In Chapter 5 we investigate methods to improve recognition performance. We propose
three algorithms. First, we propose an averaged silhouette based algorithm. Compared
with the baseline algorithm, it deemphasizes gait dynamics. It substantially reduces com-
putation time but achieves similar recognition power. Our second algorithm normalizes
gait dynamics using a Population Hidden Markov Model (pHMM), and bases similarity
measurements on Euclidean distances between gait shapes of selected stances. This al-
gorithm shows stronger recognition power for the “hard” problems involving surface and
time changes. The third algorithm also performs gait dynamics using pHMM, but differs
with respect to the similarity computation stage. Instead of shape Euclidean distances, it
uses distances in the Linear Discriminant Analysis (LDA) shape space, which suppresses
within-subject shape variations but emphasizes differences across subjects. The distance
measure is also structured to be invariant to morphological deformation so as to be robust
with respect to within-subject body width differences that might arise due to segmentation.
We show that this algorithm significantly improves the performance with variation of co-
variates, especially for surface, briefcase, and time changes. In addition to the USF/NIST
HumanID database, we also demonstrate its generalizability, without re-training, to other
databases, such as the UMD outdoor database (involving time differences) and the CMU
Mobo database (involving speed differences).

In Chapter 6 we study another approach to improve performance: multi-biometrics

combination, specifically, fusing with face data. For gait recognition, we use dynamics



normalization with Euclidean distance based similarities. For face recognition, we use the
Elastic Bunch Graph Match algorithm (EBGM) proposed by Wiskott [60]. Early studies
found this algorithm to perform better than others [66]. The experiment is designed to
evaluate the power of biometric fusion to overcome low performance on the “hard” problems
of individual biometrics, specifically, involving outdoor data, time and surface changes. We
experiment with four combination schemes: score sum, Bayesian rule, confidence score sum,
and rank sum. The results show that although the accuracy of individual classifier is low,
their combination has much stronger recognition power even with simple fusing schemes.
It also reveals that the inter-modal (face+gait) is better than intra-modal (face+face or
gait+gait), due to the low correlation between the intra-modal scores.

In summary, the specific scientific contributions of this dissertation are that

1. We establish that matching across surface type and time are “hard” problems for
gait recognition. The effect of shoe-type changes is small. Surprisingly, carrying a
briefcase does not impact recognition to as large an extent as surface. Viewpoint
variation of 30° does not impact recognition, suggesting that 2D silhouettes might

be insufficient as an input features for a wide range of viewing directions.

2. We demonstrate that silhouette quality is not the key factor affecting recognition.
Quality of silhouettes produced by standard background subtraction based algorithms

appear to be sufficient.

3. We present four new gait algorithms, including one that achieves the best recognition
performance over all recognition algorithms to date. We also illustrate that just gait

shape is sufficient for recognition — dynamics normalization helps.

4. We investigate the effects of biometrics combination, and show its power for improv-
ing performance over individual biometrics. Specifically, we show that in outdoor

conditions fusing face with gait would significantly improve performance.



CHAPTER 2

RELATED WORK

Before we begin our study, we first review the state of the art in gait recognition.
Table 2.1 summarizes the recent works in terms of the algorithmic approaches, datasets
used, and identification performance for matching across different covariates, which we will
describe in more details in the following sections.

A few words regarding biometrics nomenclature are in order before we describe recently
proposed approaches to gait recognition. The term gallery is used to refer to the set of
templates or sequences stored in the model base. Probes are the unknown templates to
be identified or verified. In an identification scenario, one is interested in finding a match
to a given probe from the whole gallery set, i.e. one-to-many match. In a verification
scenario, one is interested in deciding whether a given probe matches a hypothesized or
claimed gallery identity, i.e. one-to-one match. Performance for the identification scenario
is captured by the Cumulative Match Characteristic (CMC) [41], which plots identification
rates (Pr) within a given rank k. For the verification scenario the standard Receiver
Operator Characteristic (ROC) is used. ROC curve plots the correct detection rate against

the false alarm rate for various choices of the decision threshold.

2.1 Approaches

Gait recognition approaches, especially those that have been shown to work for more
than 20 persons, are basically of three types: (i) temporal alignment based, (ii) silhouette

shape based, and (iii) static parameter based approaches.



Table 2.1. Summary of Recent Gait Recognition Algorithms and their Performance.

Algorithm Scene Data Pr at Size
Covariates rank 1 (subjects)

Spatio-temporal corre- Outdoor Viewpoint 79% 71

lation (USF, Baseline  Outdoor Shoe 66% 71

vl) [43, 42] Outdoor Surface 29% 71

Space of Probability Outdoor Viewpoint 68% 71

Functions (USF) [91,  Outdoor Shoe 61% 71

92] Outdoor Surface 12% 71

Indoor Time(minutes) 91% 28

fsé?(ioral bzgi;;?g}; Outdoor Viewpoint 1% 71

(CAS) 93, 94] Outdoor Shoe 59% 71

’ Outdoor Surface 34% 71

(ASr(e;a',TO%a),se[);i:ﬂ Metrics Indoor Sessions 5% 114

Fourier Descriptor Indoor Sessions 85% 115

(SOTON) [83, 101] Speed 86% 116

Silhouette region mo- Indoor TemI.)oral (days) 30-60% 24

ment and HMM (MIT) Outdoor Viewpoint 88% 71

53, 52] Outdoor Shoe 5% 71

' Outdoor Surface 25% 71

Indoor Speed, viewpoint 58% 25

Indoor Time(3 months) 30% 24

Shape and kinematics Outdoor Session 55% 43

(UMD) [46, 47, 90] Outdoor Viewpoint 98% 122

Outdoor Shoe 85% 122

Outdoor Surface 36% 122

Indoor Speed, viewpoint 76% 25

Indoor Time (3 months) 45% 24

‘]cge(ijglate Sha(;iirelatigi Outdoor Sessions 85% 55

(CMU) [15, 89] Outdoor Viewpoint 87% 71

’ Outdoor Shoe 81% 71

Outdoor Surface 21% 71

Static body parame- Indoor Viewpoint > 90% 18

ters (Georgia Tech.) Indoor Sessions 73% 18

(39, 85, 86] Magnetic Speed 20-40% 15

Outdoor Viewpoint 91% 122

Motion energy and his-  Outdoor Shoe 94% 122

tory (UC Riverside) Outdoor Surface 51% 122

[29] Outdoor Briefcase 62% 122

Outdoor Time 18% 122




2.1.1 Temporal Alignment Based Approaches

The most common approach treats the sequence as a time series and involves three
components. The first component is the extraction of features such as whole silhouettes,
silhouette width vectors, silhouette boundary, silhouette moments, and so on. The second
step involves the alignment of sequences of these features, corresponding to the given two
sequences to be matched. The third aspect is the distance measure used. A simple version
of this approach, Sarkar et al. (USF/NIST) proposed the spatio-temporal correlation idea
as a baseline gait recognition algorithm v1, along with the HumanID Gait Challenge prob-
lem [43, 42]. The input feature is the whole silhouette. Given two sequences, one of them
(the probe) is first partitioned into subsequences of approximately one gait cycle length.
Each probe subsequence is temporally correlated with the other full sequence (the gallery)
and the maximum correlation is noted. The similarity between two silhouette frames is
chosen to be the Tanimoto distance, i.e. ratio of the number of pixels in the intersection of
the silhouettes to the number in their union. The median value of these maximum corre-
lations for the probe subsequences is chosen as the overall similarity value. The breaking
up of the probe into subsequences helps in overcoming silhouette segmentation errors that
may occur in bursts along a sequences due to background or illumination changes. Despite
its simplicity, the baseline algorithm achieves very competitive performance.

Robledo and Sarkar [91, 92] (USF) proposed an approach of relational distributions and
space of probability functions (SoPF). This method includes four stages: (i) segment person
from a motion sequence, using the binary silhouette representation, (ii) extract low level
features and build relational distributions — accumulated occurrences of each relationship
between paired image features, (iii) build a space of probability functions (SoPF) from the
relational distributions of a training dataset, and use PCA to reduce dimensions, and (iv)
project relational distributions of test data into SoPF, and compute similarities based on
their coordinates.

Tan et al. [93, 94] (CAS) considered the body length vector as the feature, which they

compute from the vector of distances to the silhouette boundary from the silhouette center.
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The distance vector is then normalized with respect to the magnitude and size. These one-
dimensional vectors are then represented in a smaller dimensional space using PCA. Two
sequences of body length vector are aligned by simple correlation and normalized Euclidean
distances are computed.

The UMD group’s approach uses the silhouette width vector as the feature [46, 47]. The
width vector is defined to be the vector of silhouette widths at each row. The silhouettes are
height normalized to arrive at vector of fixed lengths. They have exhaustively experimented
with various modification of this basic idea as a feature. Sequence alignment is achieved
based on person specific Hidden Markov models. In this approach, the gait of each person
is represented as sequence of state transitions. The states correspond to the different gait
stances and the observation model for each state is represented as distances from the average
stance shape for that person. The HMM is built is using the Baum-Welch algorithm and
recognition is performed by matching any given sequence to the HMMs using the Viterbi
algorithm. The identity of the HMM that results in the maximum probability match
is selected. In a more recent version of this basic approach [90], they use better shape
representation, with much improved performance. First, they extract pre-shape vector
by subtracting the centroid and normalizing for scale. Then, correlation with these shape
vectors is performed using dynamic time-warping in shape space, or using HMM with shape
cues based on Procrustes distance.

We also use HMMs in our work. However, there are a number of essential differences.
First, we do not have person specific HMMs; we use a population HMM model, which
can be looked upon as a generic walking gait model. Second, the HMM is not used for
recognition; it is used just to stance align the frames of two sequences. Third, temporal
dynamics play no role in the similarity computation.

Lee and Grimson [53] opt for more high level features. They partitioned a silhouette into
7 elongated regions, corresponding to the different body parts. Each region is represented
using four features: centroid coordinate pair, aspect ratio, and orientation. Gait similarity

is computed from either the average of the features in all the frames of a sequence, or the
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magnitudes and phases of each region feature related to the dominant walking frequency.
In a more recent work [52], they have experimented with HMM based alignment of two
sequences, with improved results.

Lee and Elgammal [50] first interpolate gait cycles into N equally spaced time instances.
To reduce the gait dimension, they use nonlinear dimensionality reduction frameworks, such
as locally linear embedding and isometric feature mapping. Then, they learn a symmetric
bilinear model from the synthesized gait frames. A support vector machine (SVM) is used

for final classification.

2.1.2 Shape Based Approaches

This class of approaches emphasizes the silhouette shape similarity and disregards tem-
poral information. One direction involves the transformation of the silhouette sequence
into a single image representation. The simplest such transformation is the averaged sil-
houette, computed by simply summing the silhouettes over one gait cycle [58]. Similarity is
based on just the Euclidean distance between the average silhouettes from two silhouette
sequences. The performance is as good as the baseline algorithm, discussed earlier. A
sophisticated version of this idea, with enhanced performance, was also proposed by Huan
and Bhanu [29]. Instead of just over one gait cycle, they sum all the silhouettes in the
sequence, followed by a reduced dimensional representation built using the PCA or Linear
Discriminant Analysis (LDA). The training process is enhanced by synthesizing training
data based on expected errors of the silhouettes. Similarity is computed in this linear
subspace.

Nixon et al. (SOTON) have performed various analysis on indoor gait data. One of
their approaches is based on body shape area [23]. It first masks selected body parts
in a sequence of silhouettes, then measures area as a time varying signal. The dynamic
temporal signal is used as a signature for automatic gait recognition. They tested the
approach on an indoor gait database consisting of 114 subjects filmed under laboratory

condition and achieved 75% recognition rate. They also proposed a Fourier descriptor
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based algorithm [83, 101]. It models subject’s boundary and spatio-temporal deformations
with Fourier descriptors. They found that Fourier descriptors obtained from individuals
appear to be unique and can be used for recognition. And they showed that over 85% of
people are correctly identified in an indoor dataset of around 115 people.

Another way of using shape information preserves individual silhouettes but disre-
gards the sequence ordering, and treats the sequences as just a collection of silhouette
shapes [15, 89] (CMU). The silhouettes are first vertically normalized and horizontally cen-
tered, based on the first and second order moments. Then, silhouettes with similar shapes
are clustered using the spectral partitioning framework, based on graph weights built out
of the correlation of high variance areas in the shape, representing parts such as arms
and legs. The power of this representation partly derives from the ability to identify and
disregard low-quality silhouettes in a sequence; bad silhouettes form a separate cluster. A
probe is identified by comparing the collection of its silhouette shapes to the gallery shape
clusters.

Our best gait algorithm (dynamics normalization + LDA + morphological deformation)
also falls in this category of gait algorithms that emphasize the silhouette shape over
dynamics. However, unlike the approaches that arrive at one representations averaged
over all the stances, we use stance specific representations. Like the CMU approach we do
ignore the dynamics between the stances, but unlike the CMU approach, we do exploit the

temporal ordering of the individual gait stances.

2.1.3 Static Parameters

The third class of approaches opts for parameters that can be used to characterize gait
dynamics, such as stride length, cadence, and stride speed [39]. Sometimes static body
parameters such as the ratio of sizes of various body parts are considered in conjunction
with these parameters [39, 85, 86]. However, these approaches have not reported high per-

formances on common databases, partly due to their need for 3D calibration information.

13



2.2 Gait Database Overview

Gait databases consist of a set of video sequences that require larger storage capacity
than biometrics such as face database and fingerprint database. So usually the number of
subjects in a gait database is relatively few. Currently there are around 10 gait databases
with size varying from 6 subjects to 122 subjects. And in this section we describe the large

databases that are available.

2.2.1 USF/NIST HumanID Gait Challenge Database

The USF/NIST HumanID Gait Challenge Database is currently the largest gait database
consisting of 122 subjects and spanning up to 32 different conditions. These conditions are
the result of all combinations of five covariates with two values each. It has been used by
a number of research groups and has become a standard database for performance mea-
surement. It is also the database used most in the dissertation. So here we describe it in

detail.

2.2.1.1 Dataset

The gait video data was collected at the University of South Florida on May 20-21
and November 15-16, 2001. Participation in the collection process was voluntary. The
collection process started with subjects being asked to read, understand, and sign an
Institutional Review Board (IRB) approved consent form. The collection protocol had
each subject walk multiple times counterclockwise around each of two similar sized and
shaped elliptical courses. The basic setup is illustrated in Fig. 2.1. The elliptical courses
were approximately 15 meters on the major axis and 5 meters on the minor axis. Both
courses were outdoors. One course was laid out on a flat concrete walking surface. The
other was laid out on a typical grass lawn surface. Each course was viewed by two cameras,
whose lines of sight were not parallel, but verged at approximately 30°, so that the whole
ellipse was just visible from each of the two cameras. When a person walked along the

rear portion of the ellipse, their view was approximately fronto-parallel. Fig. 2.2 shows one
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Figure 2.1. Camera Setup for the USF HumanID Data Acquisition.

sample frame from each of the four cameras on the two surfaces. The orange traffic cones
marked the major axes of the ellipses. Although data from one full elliptical circuit for
each condition is available, the challenge experiments are presented on the data from the
rear portion of the ellipse.

Subjects were asked to bring a second pair of shoes, so that they could walk the two
ellipses a second time in a different pair of shoes. A little over half of the subjects walked in
two different shoe types. In addition, subjects were also asked to walk the ellipses carrying
a briefcase of known weight (approximately 6 kilograms). Most subjects walked both
carrying and not carrying the briefcase. In this dissertation we denote the values of each of
the covariates by the following: 1) surface type by G for grass and C for concrete; 2) camera
by R for right and L for left; 3) shoe type by A or B; 4) NB for not carrying a briefcase

and BF for carrying a briefcase; and 5) the acquisition time, May and November, simply
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Figure 2.2. Frames from (a) the Left Camera for Concrete Surface, (b) the Right Camera
for Concrete Surface, (c¢) the Left Camera for Grass Surface, (d) the Right Camera for
Grass Surface.

by M and N. There are 33 subjects who were common between the May and November
collections, so for them we also have data that exercise the time covariate. Table 2.2 shows
the number of sequences for subjects that participated in the data collection for different

covariate combinations.

2.2.1.2 Evaluation scheme

There are twelve challenge experiments defined for this dataset. The twelve experiments
are designed to investigate the effect of five factors: View, Shoe, Surface, Carry, Time,
on performance. The five factors are studied both individually and in combinations. The
results of the baseline algorithm, described later, for the twelve experiments provide an

ordering on the difficulty of the experiments.

16



Table 2.2. Number of Sequences for Each Combination of Possible Surface (G or C), Shoe
(A or B), Camera View (L or R), Carry Condition (BF, NB) for People Who Participated
in the Data Collection. The Last Row Lists Numbers of People Who were in Both Data
Collections for Two Cases.

Surface  Carry Shoe Camera Time

MorN N

NB A (L, R) 121 33
NB B (L, R) 60
Concrete  BF A (L, R) 121
BF B (L, R) 60

NB A (L, R) 122 33
NB B (L, R) 54
Grass BF A (L, R) 120
BF B (L, R) 60

We structured the challenge tasks in terms of gallery and probe sets, patterned on
the FERET evaluations [41]. In biometrics nomenclature, the gallery is the set of people
known to an algorithm or system, and probes are signatures given to an algorithm to be
recognized. In this paper, signatures are video sequences of gait.

To allow for a comparison among a set of experiments and limit the total number
of experiments, we fixed one gallery as the control. Then we created twelve probe sets to
examine the effects of different covariates on performance. The gallery consists of sequences
with the following covariates: Grass, Shoe Type A, Right Camera, No Briefcase, and
collected in May along with those from the new subjects from November. This set was
selected as the gallery because it was one of the largest for a given set of covariates. The
structure of the twelve probe sets is listed in Table 2.3. The last two experiments study the
impact of time. The time covariate implicitly includes a change of shoes and clothes because
we did not require subjects to wear the same clothes or shoes in both data collections. We
do have record of the shoe types that were used, but since subjects did not necessarily wear
the same shoe six months later, the shoes did not match across time for all the subjects;
for a subject, a “Shoe A” label in the May data does not necessarily refer to the same

shoe as the “Shoe A” label in the November data. That is why in Table 2.3, we use A/B
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Table 2.3. The Probe Set for Each of Challenge Experiments. The Gallery for All of the
Experiments is (G, A, R, NB, M Or N) and Consists of 122 Individuals. Key experiments
with only one covariate are in italics.

Exp. Probe Number Difference
(Surface, Shoe, Camera, Carry, Time) of
(C/G, A/B, L/R, NB/BF, time) Subjects
A (G, A, L, NB, M or N) 122 View
B (G, B, R, NB, M or N) 54 Shoe
C (G, B, L, NB, M or N) 54 Shoe, View
D (C, A, R, NB, M or N) 121 Surface
E (C, B, R, NB, M or N) 60 Surface, Shoe
F (C, A, L, NB, M or N) 121 Surface, View
G (C, B, L, NB, M or N) 60 Surface, Shoe, View
H (G, A, R, BF, M or N) 120 Briefcase
1 (G, B, R, BF, M or N) 60 Shoe, Briefcase
J (G, A, L, BF, M or N) 120 View, Briefcase
K (G, A/B, R, NB, N) 33 Time (Shoe, Clothing)
L (C, A/B, R, NB, N) 33 Surf., Time (Shoe, Clothing)

for shoe type in experiments K and L. However, the shoe labels within the May data and
within the November data are consistent.

This database and the corresponding experiments are also known as the gait challenge
problem [75]. Due to its large number of subjects, it is most often used for benchmarking

algorithms in this dissertation.

2.3 UMD Database

There are two UMD gait datasets: dataset-1 consists of walking sequences of 25 sub-
jects, and Dataset-2 contains walking sequences of 55 subjects walking along a T-shape
pathway. In this paper, we use the larger one: dataset-2, taken outdoor by two surveillance
cameras (Philips G3 EnviroDome camera system) at a height of 4.57 meters. Fig. 2.3 shows
one sample frame. Each video sequence has approximately 10 gait cycles, viewed frontly
and sideways. The database is diverse in terms of gender, age, and ethnicity. Moreover, like

the gait challenge database, data collected on different days differ with respect to clothing
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Figure 2.3. Sample of UMD Gait Database in which Subjects Walked Along a T-Shape
Pathway in Outdoor, where the Side-View Portion for is Used for Recognition.

as well. There are two significant differences in imaging protocol with the gait challenge
dataset: (i) the camera sample rate of the UMD data is 20 frames per second (f/s) but
that of the gait challenge data is 30 f/s, and (ii) the camera was setup at 4.57 meters from
the ground for the UMD data but it was 1.65 meters high for the gait challenge data.
The UMD dataset-2 offers us an opportunity to test gait recognition with short term
(days) time differences for 55 subjects. Specifically, we use the UMD specifications of
experiment 1 for dataset-2, which compares sequences taken on different days. For a more
detailed description of the dataset and the experiment specification, please refer to the

website http://degas.umiacs.umd.edu/Hid/data.html.

2.4 CMU Mobo Database

Unlike the HumanID database and UMD database, the CMU Mobo database is indoor
data, which makes the recognition task relatively easier. It has also been used by several
reported algorithms. Here we briefly describe it.

The CMU Mobo dataset [25] consists of sequences from 25 subjects walking on a tread-
mill, positioned in the middle of a room. Fig. 2.4 shows some sample frames. Each subject

is recorded performing four different types of walking: Slow walk (2.06 miles/hr), fast walk
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Figure 2.4. Samples of CMU Gait Database Walking on a Treadmill in the Middle of a
Room under the Condition of (a) Slow Walk, (b) Fast Walk, and (c) Slow Walk Holding a
Ball.

(2.82 miles/hr), slow walk holding a ball, and walk on an inclined plane. Each sequence is
11 seconds long, recorded at 30 frames per second. Six cameras were set up to take images
from side view, diagonal view, frontal view, and back view, as Fig. 2.5 shows.

There are four studies defined for this database [26]:
1. How well does the gait recognition algorithm perform within each gait?
2. How well does the gait recognition algorithm perform within each view?

3. How well does the gait recognition algorithm generalize across different types of gaits

for the same view?

4. How well does the gait recognition algorithm generalize across different types of gaits

using two views?

For each study several experiments are specified. Table 2.4 lists the probe and gallery

specifications for each experiment, which is named with the study number as the prefix.
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Figure 2.5. Camera Setup for the CMU Mobo Data Acquisition.

(a)

Figure 2.6. Samples of U. of Southampton Gait Database with Large Population (100) (a)
Normal Track, (b) Normal Treadmill, and (¢) Normal Outdoor.
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Table 2.4. The Probe Set and Gallery Set for Each Experiment Defined for CMU Mobo
Database with 25 Subjects. The Experiments are Named With Study Number as Prefix.

Exp. Difference Probe Walk Gallery Walk Probe Gallery
Condition Condition View View

1.1 Session! Slow Slow Side Side
1.2 Session! Fast Fast Side Side
1.3 Session! Ball Ball Side Side
2.1 Session! Slow Slow Side Side
2.2 Session' Slow Slow Angle Angle
2.3 Session! Slow Slow Frontal Frontal
3.1 Gait Slow Fast Side Side
3.2 Gait Slow Fast Angle Angle
3.3 Gait Slow Fast Frontal Frontal
3.4 Gait Slow Ball Side Side
3.5 Gait Slow Ball Angle Angle
3.6 Gait Slow Ball Frontal Frontal
4.1  Gait+View Slow Fast Side+frontal Side+frontal
4.2  Gait+View Slow Ball Side+frontal Side+frontal
4.3  Gait+View Slow Fast Side+frontal Angle
4.4  Gait+View Slow Ball Side+frontal Angle

[1] The gallery and probe are different frames in a same sequence.

2.5 University of Southampton (SOTON) Database

The Southampton database consists of two major segments: a large population and
a small population database. Here we only briefly introduce the first one. For detailed
description, please refer to http://www.gait.ecs.soton.ac.uk/database/.

The large database consists of around 100 subjects. It was collected over successive
days in the summer of 2001. As Fig. 2.6 shows, subjects were collected under 3 scenarios:
normal outdoor, indoor track and indoor treadmill. Two cameras were set up for each
scenario with different views: fronto-parallel and oblique, so that there are totally 6 views
for each subject.

The large database is intended to address two questions: (i) whether gait can be used
as a biometrics with a significant number of people in normal conditions, and (ii) how
much research effort needs to be directed towards biometric algorithms or towards subject

segmentation algorithms in computer vision field.
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CHAPTER 3

STUDY OF GAIT RECOGNITION FEASIBILITY: PARAMETERLESS
BASELINE ALGORITHM (VERSION 2)

The feasibility of recognition using gait biometrics is the fundamental problem for our
study. Can people be recognized by a computer from the way they are walking? And to
what extent does gait offer potential as an identifying biometric? To answer these questions,
we need to perform gait recognition over different condition variations, and identify the
“difficulty” of each. Toward this end, in this chapter we first propose a parameterless
baseline algorithm (v2). It uses a simple technique of background subtraction to segment a
person from the image, and temporal-spatio correlation between two sequences to compute
similarities. So it emphasizes gait dynamics as well as gait shapes. Using this baseline
algorithm, we run the USF/NIST HumanID gait challenge experiments that include 5
covariates: viewpoint, shoe, surface, briefcase and time, and the CMU Mobo experiment
that tests the effect of walking speed. To reduce the impact of the gallery, we evaluate the
experiments under gallery variation. We also measure the effect of covariates by performing
a statistical test on similarity score variations across condition changes. Our study also

includes failure pattern in subjects.

3.1 Parameterless Baseline Algorithm (v2)

The baseline algorithm v2 [75] is an improvement over the first release, v1 [43, 42]. The
first release requires three parameters: foreground/background threshold, frame number
in one gait cycle and minimum size of foreground components. The new version presented
in this dissertation does not need the specification of any parameter — it is parameter free.

Fig. 3.1 demonstrates the flowchart showing the old and new version of the algorithm.
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Silhouette Computation:

/Silhoueﬂe Estimation: \

1. Compute the Mahanalobis distance of each pixel within the bounding from the
mean background image.

Smooth the distance image by two-pass 3x3 average filter.

Threshold the smoothed distances based on an user specified D,

Use Expectation Maximization (EM) to estimate the silhouette from the distances.
Filter out small regions (< Ng,¢)

Keep just the largest connected region

Center the silhouette in the horizontal direction by considering the upper half of
the silhouette.

Size-normalize so that the silhouette occupies the whole length of the image and
save it as 128 by 88 sized PBM images.

\ /
il

Gait Period Detection:

1.Consider the number of silhouette pixels mostly from the legs (bottom
half of the silhouettes) vs. time.

| Probe | | Gallery | 2.Detect the local minima in the above plot
3.Compute the median of the distances between minima, skipping every
other minimum -- two possible medians, depending on whether we
skipped the first one or not.
4.Take the average of the medians as the gait period (Ny,).

Similarity Computation;
1. Break up probe sequence into K subsequences of N, or N,,;; contiguous frames each.
2. For each probe subsequence, estimate the maximum correlation with the gallery
sequence.
1). Shift probe sequence with respect to gallery sequence
2). Compute distance between frame pairs
#pixels in AND-ed silhouettes / #pixels in the OR-ed silhouette
3). Add the distances
3. Pick the median of the maximum correlations of the probe subsequences as the
similarity measure.

N VR W

I

Figure 3.1. The Flowchart of the Baseline Algorithm of Both Versions (vl and v2). The
Parts Unique to the Parameterized Baseline Algorithm (v1) are Underlined, Parts Unique
to the Parameter-free Baseline Algorithm (v2) are in italic, and the Remaining are Parts
Common to Both.
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Figure 3.2. Sample Bounding Boxed Image Data as Viewed from (a) Left Camera on
Concrete, (b) Right Camera on Concrete, (c) Left Camera on Grass, and (d) Right Camera
on Grass.

Baseline v2 is a four-part algorithm that relies on silhouette template matching. The first
part semi-automatically defines bounding boxes around the moving person in each frame
of a sequence. The second part extracts silhouettes from the bounding boxes. The third
part computes the gait period from the silhouettes. The gait period is used to partition
the sequences for spatial-temporal correlation. The fourth part performs spatial-temporal
correlation to compute the similarity between two gait sequences.

Locating the bounding boxes in each frame is a semi-automatic procedure. In the
manual step, the bounding box is outlined in the starting, middle, and ending frames of a
sequence. The bounding boxes for the intermediate frames are linearly interpolated from
these manual ones, using the upper-left and the bottom-right corners of the boxes. This
approximation strategy works well for cases where there is nearly fronto-parallel, constant
velocity motion, which is true for the experiments reported here. Fig. 3.2 shows some
examples of the image data inside the bounding box. The bounding boxes are conservatively
specified, and results in background pixels around the person in each box. These bounding

boxes are part of the information distributed with the dataset.
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3.1.1 Silhouette Extraction

The second step in the baseline algorithm is to extract the silhouette in the bound-
ing boxes. Following common practice in gait recognition work, we define the silhouette
to be the region of pixels from a person. Prior to extracting the silhouette, a back-
ground model of the scene is built. In the first pass through a sequence, we compute
the background statistics of the RGB values at each image location, (z,y), using pixel
values outside the manually defined bounding boxes in each frame. We compute the mean
pp(x,y) and the covariances Xp(x,y) of the RGB values at each pixel location. For
pixels within the bounding box of each frame, we compute the Mahalanobis distance in
RGB-space for the pixel value from the estimated mean background value. Based on the
Mahalanobis distance, pixels are classified into foreground or background. In our earlier
version of the baseline algorithm [43], this decision used a fixed, user defined threshold.
The present version adaptively decides on the foreground and background labels for each
frame by estimating the foreground and background likelihood distributions using the it-
erative expectation maximization (EM) procedure. At each pixel, indexed by k, we have
a two-class problem based on a scalar observation — the Mahalanobis distance, D,. We
model the observations as a two-class, {Foreground = wj, Background = w,}, Gaussian

Mixture Model (GMM), P(Dy) = Y2, P(w;)p(Dg|wi, pi, 0;), where the class likelihood

7(Dk—ﬂi)2
p(Dy|ws, piy 03) = \/%g_e 22} . TFor each pixel, we would like to estimate the pos-

terior P(w;|Dyg). We iteratively estimate this using the standard EM update equations

reproduced below [20]. The estimates from different iterations are distinguished using the

superscript.
PO (w) = & il P™(wil Dy)
p = (z;fﬂ P (witiDk) / (S8 PO @i D) 6.1
ot = ( ™) (wi| Di) (D, — i) ) / (Efcvzl P(n)(wimk))
P(n+1)(wi|Dk) = (p(Dglwi, pi, 0i) P(wi)) / (Z%:lp(DHwiuuiuUi)P(wi))
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The EM process is initialized by choosing class posterior labels based on the observed
distance; the larger the Mahalanobis distance of a pixel, the greater is the initial posterior

probability of being from the foreground.
PO (w|Dy) = min(1.0,D;,/255) and PO (wy|Dy) = 1 — PO (w,|Dy) (3.2)

We found that with this initialization strategy the process stabilizes fairly quickly within
15 or so iterations.

It is worth mentioning a few words about pre- and post-processing steps that impact
overall performance. We have found that if we smooth the computed Mahalanobis distance
array (image) using a 9 by 9 pyramidal-shaped averaging filter, or equivalently, two passes of
a 3 by 3 averaging filter, the quality of the silhouette and recognition performance improves.
This smoothing compensates for DV compression artifacts. The convergence of the EM
process is faster with these smoothed distances than without, possibly due to reduction in
the noise of the computed Mahalanobis distances. There are two post-processing steps on
the silhouette image computed by EM. First, we eliminate isolated, small, noisy regions by
keeping only the foreground region with the largest area. Second, we scale this foreground
region so that its height is 128 pixels and occupies the whole height of the 128 by 88 pixels
sized output silhouette frame. The scaling of the silhouette offers some amount of scale
invariance and facilitates the fast computation of a similarity measure. We also center the
silhouette along the horizontal direction to compensate for errors in the placement of the
bounding boxes. The silhouette is shifted in the horizontal direction so that the center
column of the top portion of the silhouette is at column 44.

In most cases, the above strategy results in good quality silhouettes, but there are cases
when it has problems. Fig. 3.3 shows some of these cases. Segmentation errors occur due
to: (i) shadows, especially in the concrete sequences, (ii) inability to segment parts because
they fall just below the threshold and are classified as background, (iii) moving objects in

the background, such as the fluttering tape in the concrete sequences or moving leaves in
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Figure 3.3. The Bottom Row shows Sample Silhouette Frames with a Variety of Segmen-
tation Errors. The Raw Image Corresponding to each Silhouette is Shown on the Top
Row.

the grass sequences, or other moving persons in the background, and (iv) lingering DV
compression artifacts near the boundaries of the person.

There are many other possible scaling and centering options that might reduce the
problems that we see in the current silhouettes. One option could be to take into account
the entire sequence to decide upon the scaling parameters. However, such strategies would
be dependent on the actual path taken by the subject. For instance, in our dataset, as the
person moves along the elliptical path, the distance of the person from the camera changes,
which changes the projected image size. The strategy we use does not use, assume, or
estimate the shape of the path taken by the subject. Of course, the chosen frame by frame
method might and does result in erroneous scaling when some part, such as the head, is
not detected, but the employed matching strategy, which we shall see later, is resistant to

some extent to such errors.
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3.1.2 Gait Period Detection

The next step in the baseline algorithm is gait period detection. Gait periodicity,
Nyait, is estimated by a simple strategy. We count the number of foreground pixels in the
silhouette in each frame over time, N (¢). This number will reach a maximum when the
two legs are farthest apart (full stride stance) and drop to a minimum when the legs overlap
(heels together stance). To increase the sensitivity, we consider the number of foreground
pixels mostly from the legs, which are selected simply by considering only the bottom
half of the silhouette. Fig. 3.4 shows an instance of the variation of N(¢). Notice that
two consecutive strides constitute a gait cycle. We compute the median of the distances
between minima, skipping every other minimum. Using this strategy, we get two estimates
of the gait cycle, depending on whether we skipped the first minimum or not. We estimate
the gait period by the average of these two medians. Note that this strategy works for
near fronto-parallel views, which is the view of choice for gait recognition, and would not
work for frontal views. However, the failure with respect to viewpoint variation is not
drastic. The views in the present dataset, on which we show the results, are not strictly

fronto-parallel; it includes up to 30 degrees variation.

3.1.3 Similarity Computation

The output from the gait recognition algorithm is a complete set of similarity scores
between all gallery and probe gait sequences. Similarity scores are computed by spatial-
temporal correlation. Let a probe sequence of M frames be denoted by Ip = {Ip(1),---,
Ip(M)} and a gallery sequence of N frames be denoted by Ig = {Ig(1), ---,Ig(N)}. The
final similarity score is constructed out of matches of disjoint portions of the probe with the
gallery sequence. Specifically, we partition the probe sequence into disjoint subsequences
of Nyqit contiguous frames, where Nyq;¢ is the estimated period of the probe sequence
from the previous step. Note, we do not constrain the starting frame of each partition
to be from a particular stance. Let the k-th probe subsequence be denoted by Ipyx =

{Ip(ENgait), -+, Ip((k + 1)Nggit)}. The gallery gait sequence Ig = {Ig(1), ---,Ig(N)}
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Figure 3.4. Cue for Gait Period — the Number of Foreground Pixels from the Bottom Half
of the Silhouettes.

consists of all silhouettes extracted in the gallery sequence from the back portion of the
elliptical path. Note, this gallery sequence is not partitioned. We then correlate each of
the subsequences Ipyi with the entire gallery sequence Ig.

There are three ingredients to the correlation computations: frame correlation, correla-
tion between Ipy and Ig, and similarity between a probe sequence and a gallery sequence,
comparing Ip and Ig.

At the core of the above computation is, of course, the need to compute the similarity
between two silhouette frames, FrameSim (Ip(i),Ig (7)), which we simply compute to be
the ratio of the number of pixels in their intersection to their union. This measure is also
called the Tanimoto similarity measure, defined between two binary feature vectors [20].
Thus, if we denote the number of foreground pixels in silhouette I by Num(I) then we
have,

Num(Ip (i) NIa(j))

FrameSim(Ip (i), Ig(j)) = Num(Ip (i) UIg(j)) .
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Note that since the silhouettes have been pre-scaled and centered, we do not have to
consider all possible translations and scales when computing the frame to frame similarity.
The next step is to use frame similarities to compute the correlation between Ipy and Ig:

Ngait—1
Corr(Ipk,Ig)(1) = > FrameSim (Ip(k + j),Ic(l + j)) (3.4)
§=0
For robustness, the similarity measure is chosen to be the median value of the maximum
correlation of the gallery sequence with each of these probe subsequences. Other choices
such as the average, minimum, or maximum did not result in better performance. The
strategy for breaking up the probe sequence into subsequences allows us to address the
case when we have segmentation errors in some contiguous sets of frames due to some

background subtraction artifact or due to localized motion in the background.
S(Ip,Ig) = Mediany <mlax Corr(Ipy, I(;)(l)> (3.5)

3.2 Performance of Parameterless Baseline Algorithm (v2)

The performance of the baseline algorithm on the challenge experiments establishes a
“minimum” performance expected from any vision based gait recognition algorithm. We
show that our baseline algorithmn is a reasonable choice by reporting its performance on
the CMU Mobo dataset described in Section 2.4. The heart of this section is the baseline
performance on all twelve experiments of USF HumanID database, which is comprised
of most subjects and condition variations, thus giving a better understanding toward the
effectiveness of gait recognition. From the results on the twelve experiments, we are able
to rank the difficulty of the experiments. We identify the error modes of the baseline
algorithm so that better algorithms can be designed by concentrating on these subjects

and investigating the causes of failure.
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3.2.1 Base Results

The performance results for the twelve challenge experiments are reported as follows.
We match each probe sequence to the gallery sequences, thus obtaining a similarity matrix
with size that is the number of probe sequences by the gallery size. Following the pattern
of the FERET evaluations [41], we measure performance for both identification and ver-
ification scenarios using cumulative match characteristics (CMCs) and receiver operating
characteristics (ROCs), respectively. In the identification scenario, the task is to identify
a given probe to be one of the given gallery images. To quantify performance, we sort the
gallery images based on computed similarities with the given probe. In terms of the simi-
larity matrix, this corresponds to sorting the rows of the similarity matrix. If the correct
gallery image corresponding to the given probe occurs within rank %k in this sorted set,
then we have a successful identification at rank k. A cumulative match characteristic plots
these identification rates (P;) against the rank k.

In the verification scenario, a system either rejects or accepts if a person is who they
claim to be. Operationally, a person presents a new signature, the probe, and an identity
claim. The system then compares the probe with the stored gallery sequence that corre-
sponds to the claimed identity. The claim is accepted if the match between the probe and
gallery is above an operating threshold, otherwise it is rejected. This decision made solely
on the similarity between a probe signature and the gallery signature that corresponds to
the claimed identity, which is the usual practice, is optimal only if the underlying distribu-
tions are not dependent on the probe. However, recent experiments with face recognition
methods (FRVT 2002 [40]), showed similarity score normalization can dramatically in-
crease performance, possibly because it removes the dependencies of the non-match scores
on the probe. This issue, however, needs a deeper theoretical look in future. Following
FRVT 2002, instead of the raw similarity scores, we also report verification performance
on gallery normalized similarity scores.

In normalization a similarity score, S(Ip,, I, Gj) between probe, Ip,, and gallery signature,

Ig;, is adjusted by the statistics of the similarity scores between a probe and the full
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gallery set, {Ig,, -, g, }. We present results for two normalization functions. The first

is z-norm [40], which is

S(Ipi, IG’j) - Meaan(Ipi, IG’j)
S.d.jS(Ipi, IG]-)

Sz(Ip,, Ig,) = : (3.6)

where s.d. is standard deviation. For each probe, the normalized scores, most of which
are non-match scores except for the one correct match one, will have zero mean and unit
standard deviations. The second is MAD-norm, which is

S (I I ) . S(Ipi,IGj) - Mediaan(Ipi,IGj)
MADRP 2650 ™ Median;[S(Ip,, Ie,) — Median;S(Ip,, Ig, )|’

(3.7)

where the denominator is the median of the absolute deviations (MAD) around the median
values. The MAD-norm is a robust version of z-norm. For each probe, the MAD normalized
scores, will have zero first order and unit second order robust statistics. Given these
normalized similarity scores, for a given operating threshold, there is a verification rate (or
detection rate) and a false accept rate. Changing the operating threshold can change the
verification and false accept rates. The complete set of verification and false accept rates
is plotted on a receiver operating characteristic (ROC).

Table 3.1 summarizes the key performance indicators: the identification rate (P;) at
ranks 1 and 5, and the verification rate (Py) for a false alarm rate of 1% and 10%. Verifi-
cation rates are reported for un-normalized, z-normed, and MAD-normed similarity scores.
Identification ranges from 3% to 78% at rank 1, and improves to a range from 12% to 93%
at rank 5. The most striking feature of the verification results is the significant impact
that normalization has on performance. At a false accept rate of 1%, the z-norm is su-
perior to the MAD-norm, and at a false accept rate of 10%, both types of normalization
are roughly equivalent. Because of the superiority of the z-norm at a false accept rate of
1%, all remaining verification results use the z-normalization procedure. With the z-norm,
verification rates at a false accept rate of 1% range from 6% to 82%; at a false accept rate of

10%, verification rate ranges from 24% to 94%. These are very encouraging performances
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Table 3.1. Baseline Performances for the Experiments of USF HumanID Database: the
Identification Rate P; at Ranks 1 and 5, and the Verification Rate Py at a False Alarm
Rate of 1% and 10% of Unnormalized (UN), Z-Norm (ZN), and MAD-Norm (MAD). All

Performance Scores are in Percent.

Exp. Difference P; (%) at Py (%) at Py (%)

rank PF:1% PF:10%
1 5 UN MAD ZN | UN MAD ZN
A View 73 88 52 80 82 | 81 94 94
B Shoe 78 93 48 80 87 | 82 94 94
C Shoe, View 48 T8 32 57 65 | 69 89 94
D Surface 32 66 24 36 44 | 61 80 80
E Surface, Shoe 22 55 16 33 35 | 52 76 76
F Surface, View 17 42 10 22 20 | 45 59 60
G Surface, Shoe, View 17 38 12 24 28 | 40 o7 95
H Briefcase 61 85 46 68 72 | 80 90 91
1 Briefcase, Shoe o7 T8 48 60 67 | 76 85 85
J Briefcase, View 36 62 22 45 48 | 64 75 76
K Time, Shoe, Clothes 3 12 0 3 6 15 27 24
L Surface, Time, Shoe, Clothes | 3 15 0 3 6 18 27 24

given the straightforward nature of the baseline algorithm. The range of results for the
twelve experiments allows for improvement by new algorithms. Fig. 3.5 and 3.6 plot the
CMCs and ROCs of the twelve challenge experiments.

Table 3.2 lists the identification rates that have been reported by other algorithms on
an earlier, smaller, release of the USF HumanlD dataset. For comparison, we also list the
reported performance of the baseline algorithm on the reduced dataset. We see that (i)
the ranked order of performance on the different experiments follows that for the baseline
algorithm, and (ii) the performance of the baseline algorithm is very competitive with
respect to the other algorithms, especially on the hard problems.

We can rank the difficulty of the twelve experiments by their identification and verifi-
cation rates, as reported by the baseline algorithm and corroborated by other algorithms.
For instance, Experiment A, where the difference between probe and gallery is just the
viewpoint change, is easier than Experiment G, where the difference between the gallery

and probe is three covariates. The rank of experiments allows for a ranking of the difficulty
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Table 3.2. Reported Top Rank Recognition for Earlier, Smaller, Release of the Gait Chal-
lenge Dataset. The Numbers for the First Two Columns are as Read from Graphs in the
Cited Papers.

\‘/}Z(lz?gils DTw HMM ég}?ai); HMM Body Baseline

Exp. (UMD) (UMD) (UMD) (CMU) (MIT) (CAS) (75]
ue  [34] 52 [94
[16] [89]
A 52% 8% 99% 87% 88% 70% 87%
B 40% 65% 89% 81% 75% 59% 80%
C 20% 28% 8% 66% 70% 51% 53%
D 18% 10% 36% 21% 25% 34% 39%
E 20% 10% 29% 19% 15% 21% 33%
F 15% 10% 24% 27% 20% 27% 28%
G 15% 10% 18% 23% 10% 14% 26%
# subjects 71 71 71 71 71 71 71
in gallery

of the five covariates. From early reported results, this ranking also appears to be some-
what independent of the choice of the gait recognition algorithm, as we see in Table 3.2.
The baseline algorithm based rankings suggest that shoe type has the least impact, next
is about 30° viewpoint change, the third is briefcase, then surface type, and time has the
most impact, based on the drop in the identification rate due to each of these covariates.

We quantify these effects next.

3.2.2 Impact of Variation in Gallery

The results presented so far are for one gallery set choice. It is well known that changing
the gallery and corresponding probe set changes the recognition rate [41, 40]. In this section
we examine the effect of changing the gallery and corresponding probe set and examine if
the order of experiments, based on the baseline recognition rates, change.

The base challenge experiments presented so far use the set (G,A,R,NB,M or N) as
the gallery. To examine the effect of gallery variation, we reran the twelve challenge
experiments with different galleries and appropriately modified probe sets. In the challenge

experiments, Experiment A examined the effect of change in view. To maintain consistency,
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the corresponding probe set A for each gallery is a change in view. For example, if the
gallery is (C,A,L,NB,M or N), then the probe set for experiment A should be (C,A,R,NB,M
or N), and so on. We vary the gallery to be one of the following 8 cases: (G,A,R), (G,A L),
(G,B,R), (G,B,L), (C,A,R), (C,B,R), (C,A,L), and (C,B,L), with all the remaining two
conditions, i.e., Carry and Time, fixed at NB, M or N. Table 3.3 summarizes the verification
rates at a false alarm of 1% for the challenge experiments. The first column lists one
the eight galleries, and remaining columns report recognition rates for changing different
covariates. For example, the column labeled Surface + Shoe reports experimental results
when the gallery and probe set have difference surface and shoe types. The remaining
covariates are the same between the gallery and probe set. The performance scores establish
bounds on the verification rates for each experiment. The mean and the median score for
each experiment provide a proxy for the difficulty level for each experiment. The standard
deviation (s.d.) provides a measure of the stability of a covariate. The camera angle or
view covariate has the greatest variability in terms of performance.

It is interesting to note that the ordering of the experiments in terms of their difficulty
level, as measured by the verification rates, is somewhat invariant to the choice of the
gallery set. To quantify the statistical correlation among the ranking of the experiments
for the different gallery variations, we use the Friedman test, which is a two-way analysis of
performance scores of the n gallery variations for the k experiments. The null hypothesis
is that the ratings for the gallery variations are not related. For the data in Table 3.3,
the computed underlying test parameter, which is the Kendall’s coefficient of concordance,
is found to be 0.96; the maximum correlation being one. The P-value is found to be
< 0.0001, which implies that the null hypothesis can be easily rejected. Rejection of the
null hypothesis implies that the verification rates for the experiment are different and the
rates for the different gallery variations are strongly correlated.

The Friedman test does not provide us with a statistical ranking between the experi-
ments, it just tell us if there is one. To rank the experiments, particularly the ones where

only one covariate is varied, we use a pairwise Wilcoxon signed rank test [97]. It com-
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Table 3.3. Verification Performance Variation at Pr = 1% of Baseline Algorithm due to
Variations in Gallery Type over 8 Possible Combinations; the Fixed Condition over the
Being No-briefcase and the Non-repeat, i.e. NB, M or N.

Gallery Experiments
+ +
+ + + o o o
SO - - N V-
g N PN N NN PN >n M MM > H Ho;m
A B C D E F G H I J K L
(G, AR) 82 87 65 44 35 20 28 72 67 48 6 6
(GGAL) 76 8 59 44 35 25 10 ™ 62 40 3 6
(CLAR) 54 8 44 32 16 20 14 57 24 6 3
(C,LALL) 63 88 49 37 28 17 20 72 59 29 3 6
(GB,R) 91 82 61 34 24 18 12 69 56 48
(GBL) 8 87 54 34 31 20 20 69 60 46
(CCBBR) 68 92 41 28 28 26 22 78 67 29
(CBL) 73 8 53 34 35 16 17 67 56 35
Mean 7 8 53 36 29 20 18 7 61 37 5 5
Median 75 87 54 34 30 20 19 72 60 38 5 6

s.d. 128 34 83 56 6.6 3.6 5.9

w
N
.*';
(S5

95 16 14

putes the statistical significance of the null hypothesis that medians of two distributions
are equal. Based on this test, along with modified Bonferroni corrections [35] to account
for multiple comparisons, for an overall & = 0.05 (95% significance), we arrive at the fol-
lowing difficulty ranking: (ExpB-Shoe, ExpA-View) > (ExpA-View, ExpH-Briefcase) >

ExpD—Surface > ExpK-Time.

3.2.3 Performance of the Baseline Algorithm on Mobo Dataset

So far, we have analyzed gait recognition based on the performance of the baseline
algorithm. The simplicity of this algorithm might raise skepticism about its performance,
hence call into question the conclusions based those performance numbers. Earlier, we
had shown by listing the reported performance of other algorithms on an earlier, smaller,
release of the gait challenge dataset that the performance of the baseline algorithm is at

par with more sophisticated methods. Here we benchmark the performance of the baseline
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Table 3.4. Top Rank Identification Rates for CMU Mobo Dataset Reported by Different
Algorithms.

Gallery Slow Walk Fast Walk Ball Carry Slow Walk

Probe Slow Walk Fast Walk Ball Carry Fast Walk
CMU(Body Shape) [15] 100%* 100%* 100%* 76%
UMD(HMM) [45, 46] 2% 1% 96% 31%
Georgia Tech.(Body Parameters) 50%>
MIT(Moment Based Features)[53] 100% 96% 96% 54%3
Baseline(Spa.-Temp. Correlation) 92% 96% 96% 2%

[1] As reported in http://www.hid.ri.cmu.edu/HidEval/evaluation.html

[2] As reported in http://www.cc.gatech.edu/cpl/projects/hid/CMUexpt.html

[3] As reported in http://www.ai.mit.edu/people/llee/HID /cmu_data_feat_sel.htm

algorithm on a different dataset, on which performance has also been reported by different
algorithms.

The dataset chosen here is the CMU Mobo dataset, on which several papers have
published results, hence it is a good external dataset to benchmark the performance of the
baseline algorithm. As described in Section 2.4, this database consists of sequences from
about 25 subjects walking on a treadmill positioned in the middle of the room, viewed from
6 different view points. Here we use the experiments defined on the side-view. Table 3.4
lists the reported identification rates for different algorithms on some of the most commonly
reported experiments. The last row lists the performance of the baseline algorithm. We
used the silhouettes that were provided with the dataset. We see that the performance of
the baseline is not the lowest one and is near perfect for experiments comparing sequences
under the same condition. For the experiment comparing sequences with walking speeds,

the performance of the baseline algorithm is the second highest reported performance.

3.2.4 Covariate Effects

Which covariate has the most impact on recognition? From the baseline recognition
results, it appears that time has the most impact as the recognition rates for Experiments
K and L are the lowest. However, using recognition rates as indicators of covariate impact

has problems and is at best a gross measure of impact. The recognition rate is a function
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of both the match and the non-match score distributions. This rate can change due to
change in either the match scores or non-match scores, or both. This is problematic since
the non-match scores are a function of identity differences and any covariate difference
that is present between the gallery and probes. The effect of a covariate is more cleanly
captured by its impact on just the match scores.

We quantify the effect of a covariate on recognition by comparing the match scores
for two probe sets, over the same set of individuals, that differ with respect to a specific
covariate, but are similar in all other aspects. Therefore, for instance, if we want to study
the effect of viewpoint on performance, then we could consider the probes in Experiments
B and C, which differ with respect to just viewpoint. For shoe type we use the probes for
Experiments A and C; for surface we use the probes for Experiments B and E; for briefcase
we use the probes in Experiments B and I; and for time we use the probe in Experiment
A and the probe specified by (G, A/B, L, NB, N).

Let a similarity score for the i-th subject in two choices of the probe sets, Probe 1 and
Probe 2, be S;(Ip,,Ig,) and Sx(Ip;, Ig;), respectively. The change in similarity for subject

1, given by
SI(IP17 IG,) - 82 (IPi7 IG,)

A ) =
SIQ(Z) S2(IP1, IGl) 3

quantifies the effect of a covariate on subject i. The distribution of these ASi2(7) for all
the subjects that are common between the probes and the gallery would provide an idea
of the net effect of the covariate. If the distribution is centered around zero, this would
signify no impact. If the drop is large then we can infer that the distribution of the match
scores, upon changing that covariate, would overlap more with the non-match scores, with
consequent drop in recognition performance.

Fig. 3.7 shows the distribution of the score changes between probes differing with respect
to view point, shoe type, surface type, briefcase, and time. Notice how the distribution
shifts as we go from shoe type to viewpoint to briefcase to time to surface type differences.
The median percentage increase in similarity scores for shoe, viewpoint, briefcase, time,

and surface are 0.84, 1.56, 2.73, 4.25, and 6.55, respectively. The Wilcoxon signed rank
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Table 3.5. Modified Bonferroni Test for 10 Pairwise Tests of the Impact of the Covariates
to achieve an Overall Significance of 0.05.

Factor Surf. Surf. Surf. Shoe View View Shoe Brief View Surf.
Pairs Brief Shoe View Brief Time Brief Time Time Shoe Time
Wilcoxon 0 0 0 0.0038 0.0068 0.05682 0.0674 0.0674 0.0992 0.2783
P-value

Modified- 0.0055 0.0055 0.0062 0.0071 0.0083 0.0100 0.0125 0.0166 0.0250 0.0500
el

Reject Yes Yes Yes Yes Yes No No No No No
Null Hypo

test [97] can be used to compute statistical significance of the null hypothesis that the
population median of the score changes is 0. It is a nonparametric test that takes into
account the magnitude as well as the rank and is more sensitive than the Sign-Test or the
Student t-test, especially for small numbers. Using this test, we find that we can easily
reject the null hypothesis that the population median of the score changes for each covariate
is 0 (with P-values < 0.001), i.e., the score changes for all the covariates are significantly
different from zero.

We can also compute the statistical significance for the ordering of the covariate impact
ranking by performing pairwise Wilcoxon signed rank test. However, we have to be careful
to take into account the multiple comparisons; in general the individual pairwise compar-
isons must be performed at a tighter significance level than the desired overall significance
level. We use the modified Bonferroni significance level based testing of the individual
pairwise testing [35]. The individual comparisons, of which we had 10, were rank ordered
from most to least significant. So as to achieve an overall significance level of 0.05, for
the k-th rank we use a cutoff of /(10 — k 4 1). Table 3.5 lists which of the pairwise null
hypotheses we can reject. Based on the results, statistically speaking, the score changes
due to shoe, view, briefcase, and time are similar, whereas the scores changes due to time
and surface are similar. Thus, (view, shoe, briefcase, time) < (time, surface).

The pairwise statistical tests in Table 3.5 clearly suggest that the impacts due to change
in surface type and time are different from the impact of the other covariates. They seem to

impact gait at a more fundamental level than other covariates. For example, we have found

42



~
(@]

—+— Across View
60 —#— Across Shoe-type i
Across Surface

sol —e— Across Briefcase |
B —6— Across Time
2
S
=40 B
(5]
(2]
G
& 30 B
Q0
[S
)
=

20

10

-10 ’ 10
Difference in gait cycle length

Figure 3.8. Distribution of Period Differences Across Conditions.

that the surface and time covariates impact the gait period more than other covariates.
Fig. 3.8 plots the histogram of the differences in gait period for the same subject across
views, surface, shoe-type, time, and carrying conditions. If a covariate does not impact
the gait period then the histogram should be peaked around zero. However, we notice
that for surface-type and time, the histogram spreads to large values, which points to
significant differences in gait period. The histogram for the carrying condition (briefcase

and no-briefcase) has a peak to the left of that for the surface-type.

3.2.5 Study of Failures

Is there a pattern to the failure in identification? Are there subjects who are difficult to
recognize across all conditions? Is there an “easy to recognize” subset of subjects? Answers
to these question will help identify the hard sequences to work on in future. To answer such
questions, we look at the pattern of failures in identification for each subject across different
experiments. To partition the dataset into subsets of subjects who are easy, moderate, and
hard to identify, we consider the percentage of the experiments in which a subject was

correctly identified. Note, we consider percentages instead of absolute numbers since all
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Figure 3.9. Samples of Subjects: (a) and (b) are Easy to Identify, (c) and (d) have Moderate
Levels of Identification Difficulty, and (e) and (f) are Hard to Identify.

subjects did not participate in all experiments. We consider a subject easy to identify if
the subject was identified in more than 80% of the experiments that he/she participated;
in our data set there are 12 such subjects. We consider a subject hard to identify if the
subject is correctly identified in less than 40% of the experiments; there are 56 subjects
in this category. The rest of the subjects are considered moderately difficult to recognize;
there are 54 subjects in this category. Fig. 3.9 shows some samples from each class. It
is not obvious to us from visually observing the images or the associated silhouettes the
reason why some subjects are hard to recognize. There are bad quality silhouettes, e.g.
with missing head regions or missing leg regions, in all the classes of subjects. Clothing or
shadows also do not seem to play a role. However, to rule out any of these on a firm basis,

future in-depth statistical correlation studies will have to be conducted.

3.3 Summary

In this chapter we study the feasibility of gait as a biometrics. We present a parame-
terless version of baseline algorithm employing the EM classification and spatio-temporal
correlation, which is simple but shows strong recognition power. The database used here is
the USF/NIST HumanID dataset, which is the largest database consisting a large number
of subjects and spanning 32 condition changes of 5 convariates. For a better understanding

toward the gait recognition, we also test the CMU Mobo indoor database.
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3.3.1 Significant Findings

We investigated two methods for normalizing similarity scores for verification perfor-
mance. Overall we found that performing normalization significantly increases perfor-
mance, with the z-norm method being better than the MAD method. For performance
on sequences taken on different days, the unnormalized verification rate at a false accept
rate of 1% was zero, and 6% after performing z-normalization (experiments K and L). For
experiment B, the HumanID dataset, change in shoe type, performance increased from
48% for unnormalized to 87% z-normalized similarity scores.

Focused study of the impact of a covariate on match-score distribution suggests that
shoe type has the least effect on performance, but the effect is nevertheless statistically
significant. This was followed by either a change in camera view or carrying a brief case.
Carrying a brief case does not affect performance as much as one might expect (Sec-
tion 3.2.4). This effect is marginally larger than changing shoe type but is substantially
smaller than a change in surface type. In future experiments, it may be interesting to
investigate the effect of carrying a backpack rather than a briefcase, or to vary the object
that is carried.

One of the factors that has a large impact is time, resulting in low recognition rates for
changes when matching sequences across time. This dependence on time has been reported
by others too, but for indoor sequences and for less than 6 months differences. When the
difference in time between gallery (the pre-stored template) and probe (the input data) is on
the order of minutes, the identification performance ranges from 91% to 95% [93, 30, 15],
whereas the performances drop to 30% to 45% when the differences are in the order of
months and days [53, 16, 15] for similar sized datasets. Our speculation is that other
changes that naturally occur between video acquisition sessions are very important. These
include change in clothing worn by the subject, change in the outdoor lighting conditions,
and inherent variation in gait over time. For applications that would require matching

across days or months, these would most likely be the important variables. However, there
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are many applications, such as short term tracking across many surveillance cameras, for
which these long term related variations would not be important.

The other factor with large impact on gait recognition is walking surface. With the
subject walking on grass in the gallery sequence and on concrete in the probe sequence,
rank-one recognition is only 32%. Performance degradation might be even larger if we
considered other surface types, such as sand or gravel, that might reasonably be encountered
in some applications. The large effect of surface type on performance suggests that an
important future research topic might be to investigate whether the change in gait with
surface type is predictable. For example, given a description of gait from walking on
concrete, is it possible to predict the gait description that would be obtained from walking
on grass or sand? Alternatively, is there some other description of gait that is not as

sensitive to change in surface type?

3.3.2 Gait vs. Face

One of the open questions is the potential for gait to perform identification. We address
this question by comparing our gait results with face recognition. Our analysis provides a
rough guide to the current state of gait recognition. Face recognition performance has been
well characterized by a number of evaluations, the most recent being the Face Recognition
Vendor Test (FRVT) 2002 [40]. Because gallery size is different in the gait challenge
problem and FRVT 2002, comparison is made for verification performance at a false accept
rate of 1%. Unlike identification, verification performance is not a function of gallery size.
Since the gait challenge problem performs recognition from outdoor video, we need to look
at face recognition results from outdoor images. In FRVT 2002 there are two results on
outdoor facial images. In both cases, the gallery is of indoor full frontal images. In the
first result, the probe set consists of outdoor images taken on the same day as the gallery
images. Verification performance varied for different systems ranging from 54% to 5%, with
a median of 34%. From Table 3.1, gait performance varied from 87% to 20% on the ten

experiments where the gallery and probe set sequences were taken on the same day. The
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median performance score was 57%. In the second set of outdoor face recognition results,
the probe set consists of outdoor images taken on a different day than the gallery image of
a person; the median difference in time is about 5 months. Verification performance varied
from 47% to 0% for different systems, with a median of 22%. Experiments K and L in
the gait recognition problem, which have probes from 6 months later, are comparable to
this scenario. The recognition rate for both experiments is 6%. A number of caveats need
to be mentioned in this analysis. The FRVT 2002 performance numbers are from a blind
evaluation on sequestered data. This is not the case for our gait results. On the other
hand, the results in this chapter are for a baseline algorithm at the beginning of intense
research of automatic gait recognition. This compares to a decade of intensive development
in automatic face recognition. Using the respective performances only as a rough guide,
we see that video-based gait as an outdoor at-a-distance biometrics has 1) the potential to

be competitive with faces, and 2) as a biometrics to be fused with face.

3.3.3 The Greater Context

Human identification through analysis of gait information extracted from video is an
important problem for computer vision. On the practical side, there are valuable potential
applications in the area of video surveillance and security. Progress on gait recognition will
aid progress on related problems such as characterizing human activity in video. General
solutions to the gait problem will address fundamental computer vision problems that
include segmentation and handling of occlusion. The process of solving this problem will
identify which fundamental problems in computer vision and pattern recognition need
further research. In turn, this problem will provide a method for measuring progress on
the fundamental computer vision and pattern recognition problems.

The HumanlD gait challenge problem provides for a scientific basis for advancing and
understanding automatic gait recognition and processing. One aspect of this is that re-
searchers wishing to work on a new algorithm will not have to invest the substantial start-up

costs of acquiring a dataset large enough to lend credibility to their results. Advancements
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in gait can be quantified by performance on the challenge experiments. The baseline al-
gorithm makes it possible for researchers to focus on developing new techniques for one
component of the baseline algorithm. The new component can be substituted for the
baseline component and performance computed for the new component. This provides a
measure of the effectiveness of the new component to the gait algorithm. As the number of
researchers reporting performance results on the challenge problem increases, the potential
to understand what are the critical components of gait algorithms work increases. The
understanding increases because meta-analysis is possible on the different papers report-
ing challenge problem results. The more detailed the experimental results presented, the
more detailed is the possible meta-analysis, and greater is the understanding. For example,
if multiple research groups report results on different silhouettes, the greater the under-
standing of how silhouettes effect performance. It is this potential from the adoption of
this challenge problem that represents a possible revolution in computer vision research

methodology.
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CHAPTER 4

IMPACT OF SEGMENTATION ON GAIT RECOGNITION

In the previous section we analyzed gait recognition and found that time and surface
changes are the hard covariates. Questions arise on how these affect recognition. Are they
due to fundamental changes in gait under these conditions? Or are they due to vagaries
of low-level processing? Almost all of the approaches to gait recognition are based on the
silhouettes of the person, which seems to be the low-level feature representation of choice.
This is partly due to its ease of extraction by simple background subtraction; all approaches
assume static cameras. Other reasons include the robustness of the silhouettes with respect
to clothing color and texture. (It is, however, sensitive to the shape of clothing.) The
silhouette representation can also be extracted from low-resolution images of persons taken
at a distance, when edge based representation becomes flaky.

It is reasonable to speculate that the quality of the low-level representation is probably
at fault. The quality of the silhouettes is dependent on the discriminability between the
background and foreground (subject). When comparing sequences taken months apart,
differences in clothing and even background would lead to different silhouette qualities.
This drop in quality of extracted silhouettes can also be offered as an explanation for the
drop in gait-recognition when comparing templates across surfaces because the sequences on
grass and concrete also differ with respect to the background. Segmentation of silhouettes
in outdoor sequences is hard primarily because of existence of shadow artifacts, changing
illumination due to shifting cloud cover, and inevitable movements in the background.

Thus, the hard problems in gait recognition have to do with walking surface invariant
gait recognition, being able to overcome gait variation of a person over time, and maybe

silhouette quality. One might, however, speculate that if only we had a better background
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subtraction algorithm to generate the high quality silhouettes, we would be able to get better
gait recognition performance on the hard problems. Is the speculation true or not? Toward
understanding this, in this chapter we consider the performance with “better” segmented
silhouettes, specifically, (i) manually specified silhouettes for a subset of the Gait Challenge
dataset and (ii) with silhouettes that have been “cleaned” using a population HMM Eigen-

Stance model, for the complete dataset.

4.1 Manual Silhouettes

Manual silhouettes were created for a subset of Gait Challenge dataset. More details
about the process and quality checks can be found in [61, 55]. Here we highlight some
salient aspects. About 71 subjects from one of the two collection periods (May collection)
were chosen for manual silhouette specification. The sequences corresponding to these 71
subjects in the (i) gallery set (sequences taken on grass, with shoe type A, right camera
view), (ii) probe B (on grass, with shoe type B, right camera view), (iii) probe D (on
concrete, with shoe type A, right camera view), (iv) probe H (on grass, with shoe A, right
camera view, carrying briefcase), and probe K (on grass, time). We manually specified the
silhouette in each frame over one walking cycle, of approximately 30 to 40 image frames.
This cycle was chosen to begin at the right heel strike phase of the walking cycle through to
the next right heel strike. We attempted to pick this gait cycle from the same 3D location
in each sequence, whenever possible. In addition, we tried to exclude the portion that
included the black and white calibration box with high contrast, which frequently leads to
high background subtraction errors.

We did not just mark a pixel as being from the background or subject, but provided
more detailed specifications in terms of body parts too. We explicitly labeled the head,
torso, left arm, right arm, left upper leg, left lower leg, right upper leg, and right lower leg
using different colors. Fig. 4.1 shows some examples of part-level ground truth silhouettes
corresponding to the images in the top row. Quality control checks looked for miscolored

parts and backgrounds, randomly colored isolated pixels, errors on the boundary of the

50



e “"i-

hf# ~
Bl
L.

b—b
e e
=~ i

"

b g
g T

e gl

e =yl

T
o B B B B
I P TR
i MEcC B B B
f M-‘-‘
Tl A A
/-H

- TEE
hamiy =¥

b =
h—»

)|
I

o

/--

Figure 4.1. Part Level Manual Silhouettes over One Gait Cycle along with the Correspond-
ing Color Images, Cropped Around the Person.

body, and missed body parts. Some of the difficulties encountered during the creating
process include low-image quality due to varying overall intensity, occlusion of feet in
the grass sequences, similarity of dark skin tones of some subjects with the background,
frequent occlusion of the right arm, and the presence of dark or baggy clothing, which
made it hard to delineate various body parts. However, despite these difficulties we were
able to create pretty consistent quality silhouettes, as judged visually by another subject,

across the subjects.

ol



Fig. 4.2 shows the silhouettes of a subject in image frames taken from four different
cameras at different distances and surfaces. To remove possible bias in recognition due the
use of silhouette height, we normalize the height of the silhouettes to occupy 128 pixels.
The bottom row of Fig. 4.2 shows the height scaled and centered silhouettes of the kind used
by gait recognition algorithms. To facilitate the fast computation of similarity measure,
following the baseline algorithm [42], we also align the silhouettes in each frame along the
horizontal direction so that the centerline of the torso is at the middle of the frame. This
centerline is estimated as follows. First, we compute the number of connected foreground
pixels in each row in the upper half of the silhouette. If there are more than one section
of connected foreground pixels in a row, e.g., when person’s arm move out of torso, we
consider the largest one, which is most likely to be the torso portion. For each row we
consider the starting column of connected component s; (front of the torso at each row) and
the half of the size of the connected component, I; (half the width of the torso at a row).
The center line is estimated to be at the average of the median of these two distributions.
Alternative strategies such choosing the median of the average of the start and end index
of the foreground in each row did not result in good centering of the silhouettes, as judged

visually.

4.2 Model Based Silhouette Reconstruction

Silhouettes, detected by some form of background segmentation, typically involve errors
due to: (i) shadows, (ii) inability to segment parts because they fall just below the thresh-
old and are classified as background, (iii) moving objects in the background, such as the
fluttering tape in the concrete sequences or moving leaves in the grass sequences, or other
moving persons in the background, and (iv) compression artifacts near the boundaries of
the person, which are present in medium cost, consumer grade cameras. Fig. 3.3 shows
examples of these kinds of errors. The silhouettes were extracted by the baseline algorithm
described in Section 3.1.1: we compute the background statistics of the RGB values at

each image location, (z,y), in terms of the mean pg(z,y) and the covariances Xg(z,y) of
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Figure 4.2. Top Row shows the Color Images, Cropped around the Person for Four Different
Camera Views. The Middle Row shows the Corresponding Part-Level, Manually Specified
Silhouettes. And the Bottom Row shows the Scaled Silhouettes of the Kind Used by Gait
Recognition Algorithms.

the RGB values at each pixel location. Using the Mahalanobis distance of a pixel value
as the observation, pixels are classified into foreground or background using Expectation
Maximization (EM) with a Gaussian mixture model.

In the past, various strategies, mostly based on pixel-based processing of photometric
attributes, have been proposed to reduce shadow artifacts. However, these approaches
have problems in the presence of strong shadows and, of course, these strategies cannot
handle missing body parts or extraneous background moving objects merged with the
foreground. We handle these kinds of segmentation problems using prior body shape
models, as captured by a population based Hidden Markov Model (pHMM) coupled with
an Eigen-Stance gait shape model.

The states of the HMM represent a gait stance and the transition probabilities capture
the motion dynamics between the states for the subject population. This HMM is learnt

based on the manually specified silhouettes for 71 subjects. For each gait stance, we also
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construct, using the manually specified silhouettes, statistical shape models in terms of the
mean silhouette shape and variances of that stance shape. This statistical model, which
we call the Figen-Stance Gait Model is accomplished by performing principal component
analysis (PCA) for each stance.

Each frame in any given sequence is matched onto these stance subspaces using the
population based Hidden Markov Models (pHMM), statistically describing the gait motion
over a subject population. Each silhouette is then reconstructed using the coordinates of

the silhouette, found by projecting onto the matched Eigen-Stance model.

4.2.1 Forming Stance Exemplars

The observation model for each HMM state is the most critical aspect of the specifica-
tion, so we describe it some detail. The observation variables are the distances of a given
observed silhouette from an exemplar set, which we compute by clustering the frames of
each given sequence. The particular clustering method employed is constrained K-means
clustering. Of course, any clustering method relies on a distance measure, which we define
as follows. Let f; and fj be two vertically scaled and horizontally aligned (see Fig. 4.2), sil-
houette frames, reformatted into row-scanned column vectors. Then the similarity between

them is
£t

S(i. j) =
(¢,7) fini +f:ijj _ finj

(4.1)

Note that for binary silhouettes, with pixels values being just 0 or 1, this similarity is the
ratio of the pixels in the intersection of the two overlapped silhouettes to the number of
pixels in their union and is also commonly known as the Tanimoto similarity measure. One
minus this similarity is the Tanimoto distance metric for binary silhouettes; D(f,f;) =
1 — S(4,7). For non-binary silhouettes too, we refer to the above distance (similarity)
measure as the Tanimoto distance (similarity).

To create the exemplars, we first partition the frames in one gait cycle into Ng equal
segments. We use one full cycle (two strides) so as to retain the asymmetry in gait, i.e. to

differentiate stances with left foot forward from those with right foot forward. We group
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Figure 4.3. Average Stances in Population Exemplars for 7 Sample States over a Gait
Cycle.

the frames within the 5% partition of all people into an exemplar set for the j-th gait
stance, F;. Since the gait cycles of the manual silhouettes are aligned, this strategy of
corresponding the exemplars from different subjects works.

Exemplars for each stance form a set. The initial exemplar sets, EJ[-O}

, are further
refined by reassigning the frames, based on the distance, D(f;,f;) = 1 — S(7,7), by K-
means clustering with some constraints. Let {£}[j = 1,---, N} represent the set of state

exemplars. Then,

— 1
Ej[k}zﬁ 3§ (4.2)
£, e pF]
1 J
MY — 5106, ) < (D6, B ™), D@, By )} (4.3)

Note that constraint that frames can only be re-assigned to only to neighboring exem-
plar sets; thus a frame in E; can be reassigned to exemplars F;_; or Ej;1. We also insist
that every exemplar should contain at least one frame from each sequence. We stop when
no more reassignments can be done; about 10 iterations were enough for our experiments.

Fig 4.3 shows the mean silhouettes, E,-, of exemplar sets for 7 example stances.

4.2.2 Population Hidden Markov Model (pHMM)

We will use an HMM to align any given sequence to generic stance sequences for stance-
dependent silhouette reconstruction. A Hidden Markov Model (HMM) is specified by
the possible states, ¢, € {1,---, Ns} and the triple A\ = (A, B, ), representing the state
transition matrix, observation model, and priors, respectively. The state transition matrix

A with entries a(%,j) = P(qi+1 = j|gt = 1) is constrained to represent a cyclical version of
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the left to right Bakis state transition model over N, states, allowing only for jumps to the
next state. The observation model is comprised of the observation models for each state,
B = {bj(ft)|7 = 1,---, Ny}, where bj(f;) = P(ft|¢; = j), i.e. the conditional probability
of the observed silhouette, f, at time ¢ given that the state at time ¢ is j. We choose the
observation model to be exponential in terms of the Tanimoto distance, D, between any

given silhouette, f;, to the mean of the state exemplars, Fj.

1 _ D (fg ’Ei)

bj(fe) = —e (4.4)

Kj
The observation model is thus parameterized by the mean p;. The HMM structure is
somewhat similar to that used in [84] for recognition, but in our case it is designed to
model gait dynamics over a population. Differences also exist in the observation model

and the state definitions; our model takes into account the gait asymmetry between the

two strides over a cycle.

4.2.2.1 Model Parameter Estimation

We pick equal state priors, i.e. m; = N%v since, in practice, any given sequence can begin
from any state. However, both the transition matrix and the observation model parameters
need to be estimated. Since the exemplar sets have been computed from the given training

sequences, we just estimate the observation model parameters for each stance, directly

from the corresponding exemplars.

 Dfgen D(f;, £)
o 5]

(4.5)

The initial estimate of the transitions matrix is also formed from the exemplars and then
refined using Levinson’s method for training with multiple observation sequences based on

iterative Baum-Welch algorithm.

a3, j) = S # of £, 1r|1EEr given f¥ in F; (4.6)
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We refer the reader to standard texts such as [71] for details regarding the Levinson’s
method. Here we present just the key equations. Let there be K observation sequences,
{I',-.- I"}. However, since for each training sequence we have only one gait cycle, to
retain the cyclical property, we extend each sequence by appending its first frame to the
tail: I¢ = {f&,--- ,f]ivl, ft}. The length of the extended I* is denoted by Tj. The iterative

re-estimate of the population transition probabilities, A1) is given by

_ Sit g Nk ef (0)al 0, )b (6 1) B )

Tp—1 . -
Yhe ka 1 o (B

al" (i, 7) (4.7)

where P, = P(I¥|)\), the likelihood of k-th observation, and the forward and backward

probabilities o and B¥, are arrived at by induction as follows.

= b;(£F)/N, fort=1and1<j <N, (4.8)

= YN ok (i)al" (i, §)b;(EF) for2<t<Tp—1and1<j <N

Ns
Py = P(I*)) = Y ar, (j) (4.9)
j=1

f(z) P(ff+17"'7f%k|qt:i7A)
- 1 for t =T and 1 <i < N, (4.10)

= E;V:H a[n](iaj)bj(ffﬂ)ﬁfﬂ(j) fort=Tp—1,---,1and 1 <7 < Ng

The above equations (Eqs. 4.7-4.10) represent the generalization of the Baum-Welch equa-
tions for multiple observations and need to be iterated over until the likelihood of the given
observations are maximized. The learnt transition matrix emphasizes the transitions to
forward states, manifesting as high values along the first upper diagonal. We also found

high values at the anti-diagonal corner, which is because we adopt a cyclical Bakis model.
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4.2.2.2 Model Size Determination

We determine the number of states, Ny, based on the Akaike Information Criterion (AIC) [3],

which takes both the goodness of fit and generalizability into account:

K
AIC = =2 3" 1ogy P(T*[A) + 2Ny (4.11)
k=1

where ()) is the estimated population HMM model, K is the number of training sequences,
and Npqrq is the number of estimated parameters of the model. The estimated parameters
include the N2 transition probabilities and the Ny parameters in the observation model.
Fig. 4.4 plots the variation of AIC with the number of states for two different training sets
of 71 subjects, one over grass walking surface and the other over concrete walking surface.
Based on this plot we choose the round figure of 20 states as being fairly optimal for both
the sets of sequences. It is better to err towards the larger number of states so as to retain

the shape variations among different individuals.

4.2.3 Eigen-Stance Gait Model

The goal of the Eigen-Stance gait model is to capture the shape variations in the silhou-
ettes for each stance across persons. We model this variation as a multivariate Gaussian
distribution, which is estimated from the clustered set of exemplar silhouettes associated
with each HMM stance. We use principal component analysis (PCA) to arrive at a compact
representation of this distribution. For each stance, k, we have reduced dimensional (with
N, dimensions) shape space, ®(k), characterized by the mean, px and the eigenvectors
{ex,1, " ,ex N, }. Given that the final context is identification, we want this shape space
to capture variation across persons. However, we have to be careful to ensure that an
equal number of training samples is used for each person so as not to bias the model to any
particular subgroup of persons. For instance, persons with slow gait would tend to have
more samples in each state exemplar. So, for each stance, we used one sample silhouette

per person in the training set. We choose the one closest to the mean of the corresponding
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Figure 4.4. Variation of AIC with Number of States, for Models Constructed Using T'wo
Different Training Sets of 71 Subjects; One for Grass Walking Surface(in Green) and the
Other for Concrete Walking Surface (in Red).

exemplars, as measured by the Tanimoto distance measure. Notice that this also ensures
that the spaces of all ®(k)’s are constructed with an equal number of training samples.
Considering the strong impact of walking surface type on gait recognition, we built
different Eigen-Stance gait models, coupled with their own HMMs, for grass and concrete
surfaces using manual silhouettes associated with the Gallery set and Probe D set, respec-
tively, from the USF HumanlD database. Fig. 4.5 shows some sample Eigen-Stances of
both spaces. The number of eigenvectors, Ny, is chosen so that at least 80% of the variation

is modeled.

4.2.4 Stance Matching using HMM

In order to project and reconstruct silhouette frames in any given sequence, {f,- -, fr},
they have to be matched to one of the N, stances in the population HMM. The dynamic

programming based Viterbi algorithm is used for this purpose [70]. It returns the most
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Figure 4.5. Samples of the First Eigen-Stances over one Gait Cycle, Representing the most
Discriminating Directions among Persons. The Top Row was Built Using Silhouettes from
the Grass Walking Sequences, And the Bottom Row is for the Concrete Walking Surface
Sequences.

likely state assignment to the input frames. To reduce the combinatorics of this assignment
process, we partition the input sequence into subsequences of roughly one gait cycle length,
which is estimated from the periodic variation in the number of foreground pixels in the
bottom half of the silhouettes. Note that the starting state of these subsequences need not

match the starting HMM state; the cyclical nature of the HMM model can handle this.

4.2.5 Reconstruction

After each input frame fj is estimated to be at phase j by the HMM, it is projected
into the corresponding eigen-space, ®(j) = {xj,€j5,1, -, €jN. }, and then reconstructed as
fr.

1

£ = p5 + 2hs (e.i,kT(fi - Mj)) €jk (4.12)

The reconstructed silhouette, ff, has continuous values between 0 and 1 that we thresh-
old to arrive at binary silhouettes. Instead of simple thresholding, we employ a two-level
thresholding scheme to minimize the side effect of reconstruction process, which can make
silhouettes more similar to each other. We have empirically verified that a single thresh-

olding scheme produces silhouettes that are more similar to the mean silhouettes than the

60



(VSRS
1A11

Figure 4.6. The Top Row show some Instances of Poor Quality Silhouettes and the Bottom
Row Shows the Reconstructed Silhouettes.

double thresholding scheme given below.

Foreground  if ff (k) > Thgn or pj(k) =1
Fi(k) = { Background if ff(k) < Tiow (4.13)

f; (k) otherwise.

For the experiments in this dissertation, 7}, = 0.2 and Tj;gn = 0.8.

4.3 Quality of Reconstructed Silhouettes

What is the quality of the reconstructed silhouettes? Are the pixels that are removed
mostly “noise” pixels? Are any true foreground pixels removed? These questions we
address in this section.

The raw silhouettes are those produced by the baseline algorithm with some modifica-
tions. Steps of the baseline silhouette detection algorithm are (i) compute the statistics
of the individual background pixels in terms of mean and covariance of RGB values, (ii)
compute the Mahalanobis distance of a pixel from this background pixel value distribu-
tion, (iii) smooth the Mahalanobis distance using a 9 by 9 triangular window to fill in holes
and to join several small pieces, (iv) decide on an optimal threshold to segregate the two

classes using expectation maximization (EM) with the distance values as the observations,
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Figure 4.8. Histogram of the Ratio of (a) Correctly Added Foreground Pixels to the Total
Number of Added Foreground Pixels and (b) Correctly Removed Noise Pixels to the Total
Number of Removed Pixels.

and (v) pick the largest connected component. The smoothing in step iii above results in
thicker silhouettes with high false positive predictive values and have been found to result
in poor gait recognition performance for some recognition strategies [52]. So, we eliminate
that smoothing step. However, this causes the problem of losing body portions because we
only pick the largest component in step v. So, we replace step v with a custom proximity
based grouping process that assembles disconnected components: first, we morphologically
close the silhouette twice in the vertical direction using a 3 x 1 element so as to reconnect
body parts; most disconnections happen in the vertical direction, e.g., trunk between leg.
Then for each connected component C'P; in a frame, we compute two values Para;(1)
and Para;(2) in terms of the largest component C P, Para;(1l) = A%%Zm and
Para;(2) = e %, where 6; is the vertical angle between the center point of C'Ppqy and CP;.
We decide to group components based on the product of Para;(1) and Para;(2). Finally
we do the morphological closing operation with a 3 x 3 element in order to fill the holes
inside the silhouette.

Thus, using simple low-level methods, the quality of the raw baseline silhouettes is

enhanced somewhat. However, artifacts do remain. These form the input to the recon-

struction process. The Eigen-Stance based silhouette reconstruction process removes many
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of the artifacts. Fig. 4.6 shows some example of the quality of reconstruction (bottom row)
for poor quality input silhouettes (top row). Columns (a) and (b) of Fig. 4.6 show cases
where shadows were removed; column (c) shows a case where holes in the foreground were
filled in; and (d) & (e) show examples of removal of another person in the background.
Fig. 4.7 shows an example of reconstruction over one gait cycle. We see that most frames

have been improved, suggesting our model works well for different gait phases.

4.3.1 Pixel Level Quality

One manner to evaluate the Eigen-Stance model is to analyze the types of pixels that
are edited (either removed or added) during the reconstruction process. The measures of
performance could be the ratio of correctly added foreground pixels to the total number of
added foreground pixels and the ratio of correctly removed noise pixels to the total number of
removed pixels. Ideally, both these ratios should be one. We compute these two quantities
for each frame for which we have manually specified ground-truth image and average them
over a sequence. Fig. 4.8 shows the histogram of the two ratios over all the sequences for
which we have manual silhouettes. We see that the histograms are strongly biased towards
one. Thus suggesting that the editing during the reconstruction process is mostly correct.

We also evaluate the silhouette quality at pixel level using the measures of false positive
predictive value (Pppy7) and and detection rates (Pp). The false positive predictive value
is the probability that a pixel classified as foreground is actually from the background.
Note that this is different from false alarm probability, which is the fraction of the actual
background that is marked as foreground. Since the background is unbounded in an image,
computing false alarm probability is not meaningful. The false positive predictive value is
also used in epidemiology where data about the negative class is sometimes hard to get.
The detection rate is the probability that a foreground pixel is classified as foreground. For
each frame with corresponding manual silhouettes we compute the false positive predictive
values and detection rates. We then average these quantities over all the frames from one

sequence, resulting in one pair of performance numbers for each sequence.
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Fig. 4.9 shows the percentage improvement with reconstruction in terms of pixel level

detection:
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AP — 100£2 er(Befgre)e ore

and false positive prediction:

5y (After)—Ppoi-(Before)

APP‘PV = 100 S Before)

Prpvd
We separately report the results for the grass and concrete sequences since they have
different backgrounds. We also show the improvement for sequences with briefcase. Im-
provement in silhouette quality would be indicated by APpz < 0 and APp around 0,
which is observed in the plots. We see that although the detection rate of the reconstructed
silhouettes dropped a little bit by about 1%, the false positive predictive value dropped

much more dramatically by about 20% to 30%.

4.3.2 Robustness with Viewpoint Variation

Since the Eigen-Stance model is a view-based representation, it is reasonable to ask

how effective is the reconstruction process in handling silhouettes viewed from somewhat
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different viewpoints. The Gait Challenge dataset permits such study; it includes datasets
of the same gait event viewed from two different angles, with the verging angle of roughly
30°. The manual silhouettes, which were used to construct the Eigen-Stance model, only
exist for the sequences viewed from the right camera. We use the sequences viewed from
the left camera to test the robustness. However, since we do not have manual silhouettes
for these left camera sequences, we can only view the quality subjectively. We show results
on 10 such sequences in Fig. 4.10. Samples of both the original and the reconstructed
frames are shown. As we have seen before, the model is able to successfully remove most

shadows and other background noise artifacts.

4.3.3 Generalizability to Different Datasets

To evaluate the generalizability of the developed model to other databases, we test it on
the Georgia Tech outdoor dataset !. As Fig. 4.11 shows, it consists of 20 subjects walking
on outdoor concrete surface. We use the modified baseline silhouette extraction algorithm
described in Section 4.3 to produce raw silhouettes, which are then processed by the Gait
Challenge data based Eigen-Stance model. Fig. 4.12 shows the original and reconstructed
Silhouettes over one gait cycle for one subject. And Fig. 4.13 shows the original and
reconstructed sample frames from 10 different individuals. We found that the quality of
the original silhouettes that we could extract by simple background subtraction is poor due
to low contrast and strong outdoor illumination. However, they have been substantially
improved by the model, which indicates the applicability of the built Eigen-Stance model

beyond the gait challenge dataset.

4.4 Impact on Gait Recognition

We have illustrated that the Eigen-Stance model substantially improves the silhouette
qualities. But, do the improved silhouettes affect gait recognition performance? One

concern is that the model based reconstruction process might result in silhouettes that

Tt can be downloaded from http://www.cc.gatech.edu/cpl/projects/hid/
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Figure 4.11. A Sample Frame from the Georgia Tech Outdoor Gait Dataset.

are more similar to each other, bringing down recognition performance. To study this, we
consider recognition from both (a) the manually specified silhouettes over part of the data
set and (b) the reconstructed silhouettes over the whole dataset. We will quantify gait

recognition performance using the baseline algorithms described in Chapter 3.

4.4.1 Recognition from Manual Silhouettes

First, we consider recognition from manual silhouettes using the baseline algorithm.
Since the shape based gait recognition algorithm uses a population HMM trained with the
manual silhouettes, it does not make empirical sense to also compute recognition rates from
the manual silhouettes using it. So, we used just the baseline gait recognition algorithm
on the manual silhouettes. However, since manual silhouettes are specified over only one
gait cycle, we had to modify the original baseline similarity computation. There is no
need for the probe partitioning step and the correlation process. We can simply compute
the distance by establishing a mapping between the frames in the two sequences and then
summing the corresponding Tanimoto similarities between the matched frames. The fact
that all the manual silhouettes start and end in the same stance makes the frame matching

process somewhat easy. Some of the strategies include extrapolating the smaller sequence
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Figure 4.14. Recognition Performance of the Baseline Gait Recognition Algorithm in terms
of Identification Rate at Rank 1 and Verification Rate at a False Alarm Rate of 1% with
Manual Silhouettes over one Gait Cycle and with (Unreconstructed) Automated Silhouettes
over that Same Cycle. Results for four key experiments are listed: B(shoe), D(surface),
H(briefcase), and K(Time).

by repeating it, or linearly warping the frames in the smaller sequence to those in the larger
sequence, or dropping frames at the beginning or the ending of the larger sequence. Of all
the variations, we found that the linear warping strategy produced the best results.

To compare performance, we consider the key challenge experiments involving shoe,
surface, carrying, and time variation between probe and gallery in the gait challenge prob-
lem. The gallery and probe sets for the experiments are reduced to contain the sequences
for which we have manual silhouettes. Since recognition with manual silhouettes uses just
one gait cycle, we compare the performance with (unreconstructed) automated silhouettes
also over the corresponding gait cycles, using a similarity computation strategy same as
that for the manual silhouettes. In Fig. 4.14, we report the performance numbers for both
the identification and the verification scenario using the identification rate at top rank
and the verification rate for a 1% false alarm values, respectively. We see that the per-
formance with manual silhouette actually drops slightly for shoe and the surface variation
experiments, possibly due to removal of shadow correlations in these experiments. These

drops are not statistically significant according to (non-parametric) McNemar tests. This
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suggests that the low performance under the impact of surface and time variation can not
be explained by the silhouette quality.

On the other hand, significant performance drop is reported in the experiment of car-
rying briefcase (about 20% at top rank). The briefcase, which weights about 5 kgs, might
be changing gait; the high recognition with automated silhouettes might be due to error
correlations, i.e. shadow regions or clothing artifacts. To shed more light on this, we con-
sider the recognition power in (i) the difference image between the automated silhouette
and manual silhouette, and (ii) the pixels edited (either removed or added) during recon-
struction. We found that the identification rates at rank one with these error pixels were
28% and 25%, respectively, which roughly make up for the gap between the recognition

rates based on manual and automated silhouettes.

4.4.2 Recognition from Reconstructed Silhouettes

We saw that recognition from manual silhouettes over one cycle did not improve recog-
nition; in fact, the performance dropped. Does this effect also remain if we use multiple
cycles? For this, of course, we do not have manual silhouettes. However, we do have the
reconstructed silhouettes, which were shown to be of better quality than the raw silhou-
ettes.

Fig. 4.15 summarizes the baseline performances with raw and reconstructed silhouettes
for some of the key gait challenge experiments. We see a drop in performance for experi-
ments A (view), B (shoe), and H (carry). This is consistent with the results we obtained
for the manual silhouettes. The gallery and probe set sequences of a person for these three
experiments were collected with the same background and about the same time. This is
particularly true for experiment A (viewpoint) whose gallery and probe sets contain essen-
tially the same temporal event for each person, but taken from two different viewpoints.
Thus, there are correlations in the shadows of a subject between the gallery and probe
sequence, which possibly contributed a higher rate with the unreconstructed silhouettes.

To shed some light on this effect, we considered just the pixels that were edited during the
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Figure 4.15. Identification Rate (Pr) at Rank 1 and Verification Rate (Py) at 1% False
Alarm Rate(Pr) with Raw Silhouettes and After Reconstruction, and with Error Pixels
Edited (Removed Or Added) During the Reconstruction Process Using the Baseline Al-
gorithm. Results for the 5 Key Experiments are Listed: A (Viewpoint), B (Shoe), D
(Surface), H (Carry), And K (Time).

reconstruction process, i.e. either added or removed. We refer to these as the error pixels.
Recall that we have already established that the edited pixels are mostly error (either false
positive prediction or missed detection) pixels (Figs. 4.8 and 4.9). We studied the recogni-
tion power from the error pixels. As shown by gray bars in Fig. 4.15, the recognition from
these error pixels is quite high, especially when comparing sequences for a subject collected
within a short time duration of each other. For experiments that compare sequences across
6 months, the error pixels do not have significant recognition.

To have a better understanding towards the effects of reconstruction, we try another
algorithm that employs the pHMM to normalize gait dynamics and bases similarity on
the Euclidean distances between corresponding stances. This algorithm is also better than
many of the reported performances (Table 3.2), and we should describe it in detail in Sec-
tion 5.2. Fig. 4.16 shows the identification and verification performance of the stance shape
based algorithm on the 5 key experiments, with the raw and reconstructed silhouettes. We
see that (i) the overall performance of the stance shape based algorithm is much better
than the baseline algorithm. But more importantly, (ii) the performance with raw and

reconstructed silhouettes is similar. We find that after removing false recognition sources
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Figure 4.16. Identification Rate (Pr) at Rank 1 and Verification Rate (Py) at 1% False
Alarm Rate(Pr) with Raw Silhouettes and After Reconstruction using the Shaped Based
Algorithm. Results for the 5 Key Experiments are Listed: A (Viewpoint), B (Shoe), D
(Surface), H (Carry), and K (Time).

such as shadow pixels and missed detection, possibly due to interaction of clothing texture
and background pattern, gait recognition under shoe, surface and view variations did not
change, in fact they dropped a bit. The identification performance across time appears to
be marginally better with reconstructed silhouettes, but the differences are not statistically
significant given the small probe set size of 33, when compared with the probe set sizes of

the other experiments.

4.5 Summary

In this chapter, we presented and evaluated a template-model based strategy for re-
fining silhouettes in nearly fronto-parallel views. The model consists of an Eigen-Stance
model that captures the shape variation of each stance, coupled with a pHMM of the gait
dynamics. We empirically established that the quality of the reconstructed silhouettes
was better in terms of false positive predictive values and detection rates. We offer this
pHMM coupled Eigen-Stance model as a solution to the detection of silhouettes of walking
humans, viewed fronto-parallel, within about 30° view angle variation. Using the Georgia
Tech sequences, we showed the model also works for entirely different datasets than used

to construct the model.
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Recently, Lee et al. [52] also presented a method (here referred to as the MIT-Hp
method) for cleaning silhouettes that appears to be similar to that presented here. They
also use HMM based time-syncing of sequences and cleanup using template models. How-
ever, there are several key differences resulting in demonstrable performance differences.
First, our representation of the shape variation model at each HMM state using the Figen-
Stance model allows us to exploit the correlation among the silhouette pixels, whereas
MIT-Hp uses an independent Bernoulli model for the silhouette pixel values. The use of a
Bernoulli model is akin to using just the mean images of each stance in our model. Sec-
ond, our training set consists of manually specified silhouettes, which enables us to remowve
shadows. The existence of shadows in MIT-Hp silhouettes might explain the enhanced per-
formance for the experiments (A through C) on grass. Their performance for experiments
where they compared silhouettes across surfaces did not improve to a large extent. Third,
MIT-Hp used a two step process involving (i) a cleanup using a population based on mean
image constructed by summing all frames for a set of persons, and (ii) further cleanup
using a sequence specific HMM. On the other hand, we have an unified approach that uses
a population based HMM model, coupled with population based stance shape models. The
full use of population models lets us overcome many sequence specific segmentation arti-
facts such as holes due to strange background or foreground texture for a particular person.
The power of the use of population models is also evident, to a limited extent, in the work
of Lee et al.. The performance increase in gait recognition was mostly due to their use of
the aggregate population model. The addition of sequence specific HMM did not seem to
add to the recognition to a large extent. All of these key differences between the MIT-Hp
method and those presented here have impact on actual silhouette quality: MIT-Hp sil-
houettes have more false positive prediction pixel than those in this paper. Fig. 4.17 shows
the percentage improvement in pixel level detection (APp = IOO(M — 1)) and

> (MIT—Hp)

false positive prediction between the silhouettes produced here and the HMM-Hp silhou-

ettes (APppy = 100(% —1)). We separately report the results for the grass

PPV

and concrete sequences since they have different backgrounds. Improvement in silhouette
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Figure 4.17. Scatter Plot of Percentage Improvement in Pixel Level Detection (APp) and
False Predictive Values (APppy7) of the Silhouettes Produced Here and the MIT-Hp Sil-
houettes. The Green Circles Correspond to the Concrete Sequences and the Red Crosses
Correspond to the Grass Sequences.

quality would be indicated by APppy- < 0 and APp is around 0, which is observed in the
plots. The differences in false predictive values are statistically significant (P-value < 0.05,
established using paired-t tests) for both concrete and grass sequences. The detection rate,
on the other hand, are of the same quality for both the grass sequences and the concrete
sequences (P-value > 0.05).

In the context of gait recognition, we have established that the low performance under
the impact of surface and time variation can not be explained by poor silhouette quality.
We base our conclusions on two gait recognition algorithms. One exploits both shape and
dynamics, while the other exploits just shape. The drop in performance due to surface con-
dition that we observe in the gait challenge problem is not due to differences in background.
This observation is also corroborated by the performances reported in a fairly recent work
by the Lee et al. [52]. The observation has implication for future work direction in gait
recognition. Instead of searching for better methods for silhouette detection to improve
recognition, it would be more productive to study and isolate components of gait that do
not change under shoe, surface, or time. One example of this type of study is [86] in which

relationship between silhouette shape and speed was studied and then was compensated
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for by transforming the silhouettes. While it is doubtful whether speed variations can fully
explain the drop in performance due to surface or time change, systematic studies such as

this would be needed to understand the limitation of gait recognition.
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CHAPTER 5

INVESTIGATION OF GAIT ALGORITHMS TO IMPROVE
RECOGNITION PERFORMANCE

So far, we have studied gait recognition and established the hard problems. We have
also illustrated that their impacts can not be explained by the low level representation:
silhouette quality. Instead, it is the fundamental gait changes that should be looked at. In
this chapter, we investigate approaches to improve recognition performance. Toward this
end, three algorithms are proposed: (i) an averaged silhouette based algorithm that deem-
phasizes gait dynamics; (ii) an algorithm that normalizes gait dynamics by a Population
Hidden Markov Model (pHMM), and computes similarity based on Euclidean distance with
stance selection; and (iii) an algorithm that also normalizes gait dynamics using pHMM
but computes similarity in shape space based on the Linear Discriminant Analysis (LDA),
which suppresses within-subject variations affecting recognition, and morphological defor-
mations which removes the within-subject body width differences.

We show that the first algorithm dramatically reduces computation time but achieves
similar recognition power as the baseline algorithm. The second algorithm increases the
performance of surface and time changes after removing gait dynamics. For the third
algorithm, we present results on three different, publicly available, datasets. First, we
consider the gait challenge dataset, which is largest gait benchmarking dataset that is
available (122 subjects), exercising five different factors, i.e. viewpoint, shoe, surface,
carrying condition, and time. The algorithm significantly improves the performance across
the hard experiments involving surface change and briefcase carrying conditions. Second,
we also show improved performance on the UMD gait dataset that exercises time variations

for 55 subjects. Third, on the CMU Mobo dataset, we show results for matching across
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AL

Figure 5.1. Examples of the Averaged Silhouettes of One Subject; Each Averaged over a
Different Gait Cycle.

different walking speeds. It is worth noting that there was no separate training for the

UMD and CMU datasets.

5.1 Averaged Silhouette Representation Based Algorithm

Our first algorithm is based on the gray level silhouettes averaged from one gait cycle,
which is different from most other algorithms that employ traditional binary silhouettes.

There are 3 steps to produce the averaged silhouette representation. The first step
is binary silhouette extraction. We use the same technique described in Section 3.1.1
employing the Mahalanobis distance from the background pixel statistics in each frame,
and EM classification. The second step is to estimate the gait periodicity, Ngqi. As
mentioned in Section 3.1.2, we model the variation of pixel number in the lower half body
in a sequence. The third step is average silhouette computation. Given a sequence of
silhouettes, I = {I(1),---, I(M)}, we partition it into subsequences of gait period length,
denoted by Ipx = {I(k),---,I(k+Ngait)}. For each subsequence we average the silhouettes

to arrive at a set of average silhouettes, AI(i),i =1,---, Lm

(i+1)NGait_1

> Ik (5.1)

k=tNGait

1

AL() =

Fig. 5.1 shows examples of the average silhouette representation for a sequence. Note that

this representation implicitly captures the shape of the template and, to a lesser extent, the
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temporal dynamics of gait. The time spent at each stance shows up indirectly as intensity
in the average silhouette representation.

For gait recognition, we need to compute the similarity between a given probe sequence
and a stored gallery sequence. Let the average silhouettes from a probe and a gallery
be denoted by {AlIp(i)|li = 1,---,Np} and {Alg(j)|j = 1,---,Ng}, respectively. The
similarity is defined as the negative of the median of the Euclidean distance between the

averaged silhouettes from the probe and the gallery.
. . N, [Ng . :
Sim(Alp, Alg) = —Median,*, ml{1||AIp(z) — Alg(5)]| (5.2)
]:

With regard to the recognition performance, we use the HumanID database to demon-
strate the efficacy of the proposed representation. Similar to the baseline algorithm, we
list performance in terms of identification rate (CMCs) and verification rate (ROCs). And
we only report the 5 key experiments, which exhibit the impact of individual covariate.

In Fig. 5.2, we plot CMCs for the first 20 ranks and ROCs up to 20% false alarm
for the gait baseline algorithm, which uses spatio-temporal correlation of the silhouette,
and recognition based on the averaged silhouette representation proposed here. We see
that performance on three of the experiments, i.e. A (view), B (shoe), and H (carry),
is better with averaged silhouettes. There is some fall in performance for the other two
experiments exercising surface (D) and time (K). However, McNemar’s test shows that the
rank 1 identification rates are not statistically significant (P-value > 0.05). On the other
hand, the covariate of surface and time also exhibit strong impact on this algorithm, where
we see about 40% drops in the top rank recognition rate.

One contribution of this algorithm is its efficiency on computation time. On a 800 MHz
SunFire server it took 4.63s on average to compare two sequences by spatio-temporal corre-
lation as compared to 0.14s on average to compare similarity using the average silhouette;

a 30 times improvement in time.
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Figure 5.2. Performance on 5 Key Experiments from the USF/NIST HumanID Database in
terms of CMCs ((a) and (b)) and ROCs ((c) and (d)) with a Gallery Set of 122 Subjects. the
Left Column is the Result Of the Baseline Algorithm Using Individual Silhouette Frames,
and the Right Column is the Result of the Averaged Silhouettes.
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5.2 Dynamics Normalization with Euclidean Distance and Stance Selection

Algorithm

The second gait recognition algorithm is designed to exploit body shape matching.
The idea follows from the insights of recent gait recognition works [90, 15] that show that
silhouette shape, which includes body shape and gait stance shape, has equal, if not more,
recognition power than gait dynamics.

We present an averaged gait cycle representation [57]. Each silhouette sequence, typ-
ically consisting of multiple gait cycles, is first aligned to form one dynamics-normalized,
averaged gait cycle, over a fixed number of stances. This normalization is accomplished
by a Population Hidden Markov Model (pHMM) based on a subject population. Note
this representation averages means of frames in a same state of multiple cycles, which is
different from the one in the previous section that averages all frames in different states
within one cycle. With the stances aligned by the pHMM, temporal correlation is no longer
needed during similarity computation. Instead, the similarity can be computed by simply
comparing images in the corresponding stances, where we choose the Euclidean distance

measurement.

5.2.1 Population Hidden Markov Model (pHMM)

In Section 4.2.2 we have described the population Hidden Markov Model in detail. Here
let’s concisely review it. Like traditional HMM, the Population Hidden Markov Model
(pHMM) is specified by the possible states, ¢, € {1,---, Ns}, which represent gait stances,
and the triple parameters A = (A, B, ), represent the state transition matrix, observation
model, and priors, respectively. The model is built over one gait cycle, which is partitioned
into 20 states, based on the Akaike Information Criterion (AIC) [3]. Due to the gait nature,
we adopt the left-right cyclic Bakis model, that is, each state can either go to next state
or stay unchanged, while the last state can go back to the first state. The model is trained
on a set of manually created silhouettes for a set of subjects using Baum-Welch algorithm.

Each gait cycle is chosen to begin at the right heel strike phase of the walking cycle through
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to the next right heel strike. Fig. 4.2 shows examples of these manual silhouettes. We also
vertically normalize and horizontally align these silhouettes (see the third row of Fig. 4.2)

to reduce the effects of distances variation of subject to camera.

5.2.2 Dynamics Normalized Gait Cycle

After building the pHMM, we normalize the dynamics for any given gait sequence,
I ={f1, ---,fn}, by first estimating the stance state for each frame and then averaging
the frames mapped to each state to arrive one, dynamics-normalized, gait cycle over N,
frames, denoted by Ipn = {g1, -, 8N, }. The dynamics normalized gait cycle is computed
by averaging frames mapped to the same state. We refer to this averaged representation
for each stance, gj, as the stance-frame. The stance estimation of each frame is based
on the dynamic programming based Viterbi algorithm [71], which returns the most likely
state assignment for each frame. To reduce the combinatorics of this assignment process,
we partition an input sequence into subsequences of roughly one gait cycle length, which
we can easily estimate from the periodic variation in the number of foreground pixels in
the bottom half of the silhouettes. Note that the subsequences can start from any stance
because of the cyclical nature of the HMM model.

Fig. 5.3 shows some stance-frames for one subject under different conditions. Notice
that the stance-frames for the same stance are similar across different sequences, which

indicates that silhouette-to-stance matching is correctly estimated by the Viterbi algorithm.

5.2.3 Similarity Computation

Given two averaged gait cycles, the similarity computation process does not have to
align the cycles. The corresponding stances can be simply compared and the results
summed to arrive at an overall similarity score. However, we consider the distances only for
a subset of pre-selected stances that emphasize the differences between subjects. To select
the discriminatory stances, we consider the variation in shape for each stance as reflected in

the first and the second eigenvalues associated with the corresponding Eigen-stance model.
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Figure 5.3. Example of Dynamics-Normalized Stance-Frames from One Subject in the (a)
Gallery, and the Corresponding Stances in the Probes Corresponding to Changes in (b)
View, (c) Shoe-Type, (d) Surface, (e) Carrying Condition, and (f) Time (Six Months).
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Figure 5.4. The Variation of the Largest and Second Largest Eigenvalues Associated with
Each Stance Shape, as Computed in the Eigen-Stance Model.

These are plotted in Fig. 5.4. We see that states at the ends (states 1 to 3 and 18 to 20)
and at the middle (9 to 12) have the largest scatters, indicating that these gait stances
carry the bulk of the discriminatory power. These correspond to states near the full stride
stances. Let us denote this subset of salient discriminatory states by Sq. To arrive at one
similarity score, we compute Euclidean distances between the averaged representation for

these stances from the probe sequence Ip; and the gallery sequence I¢;.

SUp.Ie) =~ 3 (In(f) ~ 1o, (1)) (5.3)

keSq

As to recognition performance, we also test the algorithm on the 5 key experiments
of USF HumanlID database. In Fig. 5.5 we plot the corresponding CMCs and ROCs. It
indicates that (i) the shape based algorithm slightly outperforms the baseline algorithm for
some covariates, e.g., the shoe-type (experiment B), surface (experiment D), and time (ex-
periment K); (ii) more importantly, the dramatic drops on the hard problem are also

observed, which is consistent with the results of all other algorithms.

85



100r

100f
8ol 80r
Q
g £
| T 6o
5 60 <
g ] 3
£ 401 _ 1 £ A :
X7 —=—Experiment A < —=—Experiment A
- Experiment B Experiment B
20r Experiment D - 20y Experiment D
——Experiment H ——Experiment H
—— Experiment K —— Experiment K
0 L L I L L I I}
0 5 10 15 20 0 5 10 15 20
Rank False Alarm Rate

(a) (b)

Figure 5.5. Shape Based Recognition Performances for the 5 Key Experiments of
USF/NIST HumanID Database (a) CMC Curves and (b) ROCs Plotted upto a False
Alarm Rate of 20%.

5.3 Dynamics Normalization with LDA and Morphological Deformation

Fig. 5.6 shows the flowchart of the third algorithm on computing similarity of two
sequences. The different algorithmic modules are shown, along with example inputs and
intermediate representations. The inputs consist of silhouette sequences, which can be
extracted from raw sequences in a number of ways. We compute the silhouettes using
the eigenstance reconstruction model [56, 59], which linearly projects each frame into the
eigenstance space corresponding to the mapped state and then reconstructs it. This was
shown to significantly reduce the effect of shadows and other segmentation errors.

Similar to the algorithm in Section 5.2, the new algorithm first aligns each silhouette
sequence to form one dynamics-normalized, averaged gait cycle, over a fixed number of
stances by pHMM. However, in the similarity computation stage, to improve performance,
we no longer use Kuclidean distance. Instead, we employ the Fisher’s Linear Discriminant
Analysis (LDA) to suppress the variations due to external conditions, such as surface, shoe,
carrying, clothing, and time that effect recognition. To impart some amount of invariance

of the similarity value with respect to erosion or dilations of the underlying shape, we
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embed the similarity computation in a maximization loop. This helps to handle output

variances of the underlying low-level silhouette detection processes.

5.3.1 Linear Discriminant Analysis (LDA)

A dynamics normalized gait cycle consists of a fixed number of stance frames, which
simplifies the similarity computation between two given sequences. A separate alignment
process is not needed. We can simply consider the distances between the corresponding
stance-frames. Instead of simple Euclidean distances between stance-frames, we compute
distances in the Linear Discriminant Analysis (LDA) Space, designed to maximize the
differences between frames from different subjects and to minimize the distances between
frames from the same subject under different conditions. We used the PCA+LDA formu-
lation that was advocated by Belhumeur et al. [5] so as to address the singularity issues
that can arise in pure LDA. We present just the outline here.

For each of the N, stances, we construct a linear discriminant space as follows. The set
of individuals form the classes, (I, Is,---,I.). For each individual, I, the stance-frames,
gl (s is the stance index), under various different conditions form the samples for that

class. The between-class scatter matrix for the s-the stance is

Sp = ii;Ni(Mi — ) (s — )" (5.4)
the within-class scatter matrix is
Sw =3 Zv(gi — 1) (g5 — )" (5.5)
and the total scatter matrix is

Sr=> (g8 — (gl — w7’ (5.6)

=1
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where p; is the mean vector of class i, p is the mean vector of all samples, and N is the
total sample number. If Sy is non-singular, then the optimal discriminating spaceV ,,; for

classification can be simply computed as

| VISEV |
Vopt =arg m‘f}X m (57)
Specifically, Vop = {v1,V2, -+, Vvm}, the set of generalized eigenvectors of Sp and Sy,
corresponding to the m largest eigenvalues (A1, Ao, -, Ap), i.e.,
SBVi:AiSWVi, 1= 1327"'am

However, when there are more than one class in the training set, Sy is always singular
because its rank is at most N —c. One solutions is to project the within-class and between-
class scatter matrices into a lower dimension space so that the resulting Sy is non-singular.

The PCA (Principal Component Analysis) can be employed to reduce the dimension [5].

V'opt = VpcaVipa (5.8)

where
Vpca =arg max | vis,v |

| VI'VEeaSsVpcaV |
| VTVJTDCASWVPCAV |

Vipa =arg m&x

and Vpec 4 should keep no more than the largest N — ¢ principal components so that the
corresponding Sy is non-singular.

For each stance, s, in the dynamics-normalized gait representation, we create VSpcy
to model only 90% energy in corresponding total scatter matrix Sp. We have found the
number of eigenvectors thus needed is much less than N — ¢. The subsequent V®;pa
space counsist of ¢ — 1 non-zero generalized eigenvectors of within subjects and between
subjects scatter matrix for the k-th stance. Given two dynamics normalized sequences,

If and I%N, we compute the distance by first projecting each stance-frame, gf into the
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corresponding V3;p4 space. This negated sum of the Euclidean distances in these LDA

stance spaces is a similarity measure, S (I3, IRx). More specifically,

T
SIaN-TBN) = — 52 |82 Vorna — g2 ViLpal|
b

(5.9)
= - (g2 —eR) ' ViLpa(Virpa)T (g2 — gb)

5.3.2 Similarity under Silhouette Deformations

In Fig. 5.3 we noticed that the “width” of the stance-frame for the same person varies
across different conditions. For instance, there were changes associated with change in sur-
face and time. This type of variation arises because of variabilities of low-level silhouette
detection processes, induced by changes in the background statistics. These are hard to
completely eliminate. Accepting this constraint, we modify our similarity computation to
be some what robust with respect to changes in overall silhouette “widths”. The new sim-
ilarity, Sy n, is the maximum possible similarity over possible morphological deformations
of the stack-frames in one of the sequences. The morphological deformations of erosion

and dilation model the possible variations in widths. Specifically,

Swy(Fpn FBN) =
b a

Sne, arg maxpme— . (Mor(m, g2) — gR) Ve rpa(VeLpa)T (Mor(m,gg) — gR)

where

- Dilate(m,gl) if m >0
Mor(m,gg) = ] (5.11)
Erode(m,gl) if m <0

The Erode and Dilate are gray-level morphological operations, as implemented in Matlab,
employing structured object decomposition and bit packing [9].

In Fig. 5.7 shows the morphologically processed stance-frames in the gallery, corre-
sponding to the probes in Fig. 5.3, that maximized the overall similarity. We see that
eroded forms of some gallery stance-frames, e.g. in 1st and 4th columns, are more similar

to the surface-probe shown in Fig. 5.3 than the original gallery stance-frames. Another
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Figure 5.7. Examples of the Average Stances in the Gallery Set (a) Before and After

Morphological Operation for Best Shape Match to (b) Probe-View, (c) Probe-Shoe, (d)
Probe-Surface, (e) Probe-Briefcase, and (f) Probe-Time in Fig. 5.3.
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example is the stance-frames shown in the the 3rd, 6th and 7th columns for the time-probe.
This is consistent with our initial observation that the silhouettes in the surface-probe ap-
pear to be thinner than the gallery while those in time-probe appear to be thicker. The

new deformation invariant similarity measure helps us handle such cases.

5.3.3 Experiments and Analysis

We present results on three different publicly available datasets: the HumanlD gait
challenge dataset, the UMD outdoor dataset, and the CMU indoor MoBo dataset, which
are described in Section 2.2. We study the ability of the proposed algorithm to improve
performance for matching across surfaces, time, carrying condition, and walking speed
variations. We also present results for varying degrees of separation between training and
test sets demonstrating generalizability across individuals, data collection sites, and camera

configurations.

5.3.3.1 Training and Test Sets

All training was done using chosen subsets of the HumanID Gait Challenge data. The
pHMM was trained using the manual silhouettes over one gait cycle from 71 subjects in
the HumanlID gait challenge data. Specifically, we choose 71 manual silhouette sequences
corresponding to subjects walking on grass, viewed from the right camera, in the May
collection. As we will see later, the data corresponding to these manual silhouette form
the gallery of the gait experiments defined for the gait challenge dataset. None of the data
from the probes were used for training the pHMM. In terms of experimental protocols this
offers us acceptable separation of train and test conditions for the experiments on the gait
challenge dataset. In a biometrics application, the gallery set represents the watch-list and
is pre-defined; gallery is akin to the concept of a model-base in object recognition. For
experiments with the UMD and CMU datasets, since we do not re-train the pHMM, there

is complete separation of train and test.
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To create the linear discriminant stance spaces, we also need a training set, comprising
of stance-frame samples from different subjects under different conditions. For this, we
used subsets of the HumanlID gait challenge data to construct two different training data
sets to allow us to experiment with different level of differences between train and test
sets. The first training set consists of automated silhouette data from 33 subjects, with
16 sequences per subject, corresponding to the various combinations of changes in the
two-possible values for four covariate: view-point, surface-type, carry-condition, and time.
The second training set consists of automated silhouette data from 51 subjects collected in
November, with no overlap with the May subjects. For each subject, we had 8 sequences
corresponding to the various combinations of two-values of view point, surface, and carrying
conditions. We did not include shoe-variation in the training sets as its inclusion reduced
the number of common subjects for each combination of conditions. This is not of much
concern because, as reported results on the Gait Challenge problem indicate, the impact of
shoe on gait recognition is the lowest [75]. Both the training sets were further restricted to
just the front portion of the full elliptical sequence. A sample frame is shown in Fig. 2.2(c).

As we will see in the next sections, we used test sequences with varying degrees from the
training set. The first set consists of sequences from 122 subjects, including the 33 training
subjects in the first training set, but using the back elliptical portions of the trajectories.
The second test consists of sequences from the Gait Challenge dataset collected in May
and does not include any subjects from the second training set. The third and fourth test
datasets correspond to the UMD and CMU datasets, respectively. They are not only for
different subjects, but were collected at different sites, with different viewing geometry and

cameras than the training set.

5.3.3.2 Gait Challenge Problems: View, Shoe, Surface, Carry, Time

Fig. 5.8 shows the identification performance using CMCs (up to rank 5) and ROCs
(up to 5% false alarm rate) for the 12 experiments. Fig. 5.9 compares the top rank identifi-

cation performance achieved with those reported in the literature for the full gait challenge
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Figure 5.8. Performance of the Dynamics-Normalized LDA Gait Recognition Algorithm
for the Twelve Experiments in the HumanID Challenge Problem (with 122 Subjects) (a)
CMCs are Shown up to Rank 5 and (b) ROCs Plotted up to a False Alarm Rate of 5%.

problem. Specifically, we compare with the baseline algorithm that came with gait chal-
lenge problem [75], UMD’s HMM based recognition strategy [90], and UCR’s gait energy +
learning based strategy [29]. We see that the new dynamics-normalized algorithm achieves
the best performance in most experiments. It is slightly low for experiments A (view) and
C (view+shoe). Of particular interest is the dramatic improvement for experiments that
involve surface change (experiments D, E, F, G), and carrying condition change (exper-
iments H, I, J). There is also some increase in performance for the hardest experiments
involving 6-months time-difference (experiments K and L). (Note the UMD dataset-2 is
perhaps the better dataset to consider the time-covariate, consisting of data from 55 sub-
jects and time variations over a week. We report performance on this data set in a later
section.)

We also experimented with the gait challenge dataset with complete separation of train
and test sets in terms the subjects; no subject used for training were part of any probe.
We used the second train set, discussed earlier, consisting of sequences from subjects in the
November collection who were not in the May collection. The test set consisted of sequences

from 71 subjects in the May collection and sequences from the repeat subjects in November.
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Figure 5.9. Top Rank Recognition Rate Comparison between the Dynamics-Normalized
(New) Gait Recognition Algorithm with Results Reported by Other Algorithms: the Base-
line Algorithm [75], UMD’s HMM Based Algorithm [90], and UCR’s Algorithm [29], for
the Full HumanID dataset (122 Subjects).
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Figure 5.10. Summary of the Top Rank Recognition for Experiments A (Viewpoint), B
(Shoe-Type), D (Surface), H (Carry), and K (Time) For the First Release Of HumanID
Gait Challenge Dataset (71 Subjects in May Collection). The Algorithms are Based on:
Fusion of Width Vectors (UMD-1) [16], DTW (UMD) [44], Silhouette Shape Clustering
(CMU) [89], HMM (MIT) [52], Body Shape (CAS) [94], and Baseline (USF) [75, 43]. The
Performance for the New Algorithm are Using a Training Set over a Different Set of 51
Subjects from the November Collection.

Of course, the experiment specifications in Table 2.3 has to be reduced to include just the
May sequences (M) and exclude all the November sequences with N; tag. Incidently, this
corresponds to the experiments for the first release of the gait challenge problem [43], on
which more groups have reported performance than for the full dataset [75]. Fig. 5.10
shows the performances for the 5 key experiments: A-view, B-shoe, D-surface, H-carrying,
and K-time, based on the new algorithm, as well as, those reported by others. We see that
dynamics-normalization significantly improves performance, even with complete separation

of training and test sets in terms of subjects.

96



85

80 -

75 A

70 A

65 -

Identificaton rate (55 subjects)

55 -

50

TimeNorm Baseline UMD MIT

Figure 5.11. The Top Rank Identification Rates on the UMD Dataset (Experiment 1, 55
Subjects): the Dynamics-Normalized Gait Recognition Algorithm, Baseline Algorithm,
UMD’s HMM Based Algorithm [47], and MIT’s Algorithm [51].

5.3.3.3 UMD Database: Time

The UMD dataset-2 offers us an opportunity to test gait recognition with short term
(days) time differences for 55 subjects. Specifically, we use the UMD specifications of
experiment 1 for dataset-2, which compares sequences taken on different days. For more
detailed description of the dataset and the experiment specification, please refer to the
website http://degas.umiacs.umd.edu/Hid/data.html.

There was no separate training of the gait recognition algorithm on this dataset. We
use the version trained on the gait challenge data. Fig. 5.11 shows the top rank identi-
fication rate for the new dynamics-normalized gait recognition algorithm at 84% is a big
improvement over the 71% rate of the baseline algorithm, 55% of UMD’s HMM based
algorithm [47], and 70% of MIT’s algorithm [51]. This improvement can be attributed to

the dynamic-normalization process that removed dynamics variabilities over time.
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Figure 5.12. The Top Rank Identification Rate on the CMU Mobo Dataset (Experiment
3.1, 25 Subjects): the Dynamics Normalized Algorithm, Baseline Algorithm, UMD Algo-
rithm [90], MIT Algorithm [44], and CMU Algorithm [15].

5.3.3.4 CMU MoBo Database: Speed

The CMU MoBo database, collected indoors on treadmill, supports the study of gait
recognition variation with respect to walking speed. Specifically, we use experiment 3.1,
defined by CMU (see Section 2.4), to test gait recognition across different speeds, viewed
fronto-parallel. This is ideal for testing our dynamics-normalization scheme and benchmark
it with respect to performances of other gait recognition approaches that do not normalize
dynamics. Like the experiments with the UMD dataset, we did not re-train the dynamics-
normalization model on this dataset. As Fig. 5.12 shows, the performance with dynamics-
normalization is high, when compared with reported performances of four other algorithms:

baseline [75, 43], UMD [90], MIT [44], and CMU [15].
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5.4 Summary and Analysis

In this chapter, we presented three gait recognition algorithms. The first one employs
the averaged silhouettes over one gait cycle representation. It significantly reduces compu-
tation time and achieve similar recognition power with the baseline algorithm. The second
normalizes gait dynamics, using a population Hidden Markov Model (pHMM), so that
a gait sequence is represented as an aligned average gait cycle, so that correlation is no
longer necessary. Instead, we only need to compute distance between each stance, where
the Euclidean distance is chosen. We demonstrated that this algorithm slightly improves
the performance on surface and time. However, no statistically significant difference is
reported. The third algorithm also normalizes gait dynamics using pHMM. However, in
the similarity computation stage, it replaces the simple Euclidean distance with a Linear
Discriminant Analysis based shape space, emphasizing differences in stance shapes between
subjects and suppressing differences for the same subject under different conditions. The
similarity computation in this space was designed to be robust with respect to “thicken-
ing” or “thinning” of silhouettes due to variations in low-level thresholds. Unlike other
HMM based gait algorithms [52, 90] that use HMMs for recognition we do not use it for
recognition, but rather for dynamics-normalization. Consequently, in contrast to other
HMM-based gait recognition algorithms that build one HMM for every gallery sequence,
we use one population HMM.

Based on extensive experimentation on multiple, publicly available databases (Hu-
manID Gait Challenge, UMD, and CMU-Mobo), we can assert that dynamics-normalization
greatly improves overall gait recognition performance, especially when comparing across
surface, carrying condition, time, and different speed. The approach is also not dependent
on the training set choice. It generalizes well not only across different subjects, but also
across different datasets with varying imaging geometries. We attribute this significant
improvement to gait dynamics-normalization. The other two components: the LDA stance
shape space and the morphological operation based distance computation also improve

performance, but the former has more impact than the latter. Fig. 5.13 shows the identifi-

99



B No LDA
90 1 O No Morph
80 - M Full Algo

Identification rate
(&)}
o

A(View) B(Shoe) D(Surf) H(Carry) K(Time)
Experiments (Gallery = 122 subjects)

Figure 5.13. The Top Rank Identification Rate on the 5 Key Gait Challenge Experiments
on the HumanID Gait Dataset of the Dynamics-Normalization Based Algorithm Based on
(a) Euclidean Distances Between Stance Frames, instead of Distances in the LDA Stance
Shape Space (No LDA), (b) without Accounting for Silhouette Deformation during Dis-
tance Computation (No Morph), and (c) with Both the Parts (Full Algo).

cation rates for the key experiments on the HumanlD gait dataset with and without these
components. We see that the LDA stance shape space has the most impact.

Efficacy of dynamics normalization suggests that body-stance shape plays a more im-
portant role than dynamics in gait recognition. This is also supported by good performance
of gait recognition algorithms of Veeraraghavan et al. [90] and Collins et al. [15], which
focus more on body shape than dynamics. To get some insight into the kinds of shape fea-
tures that seem to be important we consider the top-two most inter-subject discriminating
directions for each stance, as found by LDA of the silhouette shapes in the training set used
for gait-normalization. Fig. 5.14 shows these directions as images for some of the stances,
with brightness proportional to the absolute value of the corresponding eigenvector com-

ponents. Bright pixels are the important ones. We see that (i) upper body, (ii) knee, and
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Figure 5.14. The top Two Most Inter-Subject Discriminating Directions for Each Stance,
as Found by LDA of Silhouette Shapes from 33 Subjects for that Stance. Intra-Subject
Variations Span 16 Combinations of Variations in View, Carrying Condition, Time, and
Surface.

(iii) lower leg during gait swing phases seem to be the important features that are being
picked up. For further improvements in gait recognition it would be necessary to model
and correct for the stance-shape changes under varying conditions. An excellent start is
the work of Tanawongsuwan and Bobick [87] who studied the effect of walking speed on

silhouette shapes.
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CHAPTER 6

IMPROVING RECOGNITION BY COMBINING WITH FACE

In Chapter 5 we investigated methods to improve performance of gait algorithms. In
this chapter we study improvement in human identification by combining gait with face. It
has been demonstrated that combination or fusion of biometrics can offer a way to break
the barrier of poor individual biometric performance. Lin et al. [33] demonstrate that
multi-biometric integration does indeed result in a consistent performance improvement.
Schiele [76] empirically showed that the more biometrics we combine, the better results we
can get. One can talk about inter-modal combination [72, 95, 10, 78, 80, 49, 36, 34], e.g.
combination of face with iris, and intra-modal combination [1, 100, 60, 102, 37, 69, 62, 103],
e.g., combination of outputs of two biometrics on the same modality, or the combination of
outputs of two different sensors, such as IR and visible [14, 13] and visible and 3D [11, 12,
13], on the same modality. In Table 6.1 we summarize the work in computer-vision based

multi-modal biometric combination. Fusion can be done at the three levels [72]:

1. The feature extraction level, where data from each sensor are combined to form one

feature vector [18, 10].

2. The matching score level, where the similarity scores computed by individual clas-
sifiers are fused [72, 60, 37, 36, 1, 95, 102, 78, 80, 49]. The scores from different
biometrics are usually first transformed into the same range using linear transforma-
tion, polynomial transformation, or logarithm transformation. The normalized scores

are then combined using rules such as sum, product, maximum, and minimum.
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Table 6.1. Inter- and Intra-Modal Biometric Fusion.

Work Comb. Face Finger Hand Iris Ear Gait Speech

schemes print

MSU [72] Score Vv Vv v

MSU [60] Score vV

MSU [37] Score v

MSU [36] Score Vv Vv Vv

MSU [34] Decision  / V

MSU [69] Decision vV

U. Bern [1] Score Vv

CAS & MSU [95] Score V4 Vv

UND & USF[10] Score Vv Vv

HK Polytechnic [102]  Score Vv

MIT [78, 80] Score Vv Vv

U. of Surrey [49] Score & 4/ Vv
Decision

Rutgers [62] Score & / /
Decision

UMD [48] Score Vv Vv
Decision

UND [14, 11, 12, 13] Decision / /

3. The decision level where the each classifier makes its own classification and votes for
the final decision [69, 34, 49, 62, 14, 11, 12, 13]. The popular vote rules include rank

sum and majority vote.

In this chapter, we show that the combination of gait and face can effectively enhance
the performance of outdoor biometrics at a distance. We demonstrate this for conditions
that are known to be “hard” in face and gait recognition. Experiments also show that cross
modal combination of gait and face is superior to the fusion within modality. Gait and face
combination studies have been presented by others [80, 78, 48]. However, unlike previous
studies that used either indoor data or outdoor data taken on the same day, resulting in
high performance of the individual biometrics to begin with, our study involves outdoor

data, taken months apart. We show that we can significantly improve recognition at a
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distance in outdoor conditions and over time, both of which are hard conditions, using

biometric fusion.

6.1 Recognition Algorithms

The primary focus of this paper is to investigate the power of the face and gait biometric
fusion. So, the individual biometric algorithms we used are not necessarily the absolute
best that are currently available, but they have performances that are close to the best
available ones. They beat their corresponding established baseline algorithms by significant

amounts.

6.1.1 Face Recognition Algorithm

We use the Gabor features based Elastic Bunch Graph Matching (EBGM) [98] algo-
rithm for face recognition. It is a feature based method for face recognition that has superior
performance to other template based methods, such as PCA, LDA, or Bayesian. We used
the CSU implementation of the algorithms '. The approach first locates landmarks on a
face, related to salient points on eyes, nose, and mouth, and then employs the frequency
information of the local regions that surround the landmark locations as the landmark fea-
tures (landmark jet). We did not re-train the algorithm. Instead we used the CSU trained
version, which is based on 70 subjects. With regard to distance measurements, we choose
the phase similarity, corrected by small displacements [8]:

g asaizeos(di — (¢ + d k)

D(J;, i, d) = (6.1)
| VERah o a

where J; and J] are the landmark jets of ¢ — th landmark point for graph J and J', N;
is the number of wavelet coefficients in the jet, a and ¢ are the magnitude and phase, d
is the estimated displacement vector, and % is a vector pointing in the direction of the

wave and having the magnitude equal to frequency of the wave. Obviously, the estimation

1t is available at http://www.cs.colostate.edu/evalfacerec/
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Figure 6.1. Samples of Computed Intermediate Representations Face Biometric that are
Matched. (a)-(d) Gallery, (e)-(h) Probes.

of the displacement vector 7 is very important for Eq. 6.1. In this paper, we use the
Displacement Estimation Narrowing Local Search (DENarrowingLocalSearch), which uses
a local search method to find an optimum and empirically gives the best performance.
According to the FERET evaluations [67], the EBGM approaches provide the best
recognition performance. Fig. 6.2 summarizes the reported top rank identification per-
formance (with a gallery size of 1200) on three experiments involving matching (i) across
indoor illumination variations, (ii) across 1 year time differences, and (iii) across more
than 1 year time difference. EGBM had the top rank among five algorithms, for all the 3
experiments. It outperformed by around 20% the next best algorithm. Also, note the poor

performance on datasets that involve comparison over time.

6.1.2 Gait Recognition Algorithm

We select the averaged gait cycle based algorithm as introduced in Section 5.2. Here
let’s concisely review the procedures: in the silhouette detection stage, it uses the back-
ground subtraction technique of the baseline algorithm (Section 3.1.1); then it employs

the pHMM (Section 4.2.2) to decode a gait sequence into a set of gait states; and then it
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Figure 6.2. Top Rank Identification Performance (On a Gallery Set of 1200) of the EBGM
and Four other Face Recognition Algorithms as Reported By FERET-2000 [67]. The Ex-
periment Fc¢ Matches across Illumination Variation, the Dup. I Experiment involves Tem-
poral Difference within 1 year, and the Dup. II Experiment involves Temporal Difference
more than 1 Year.

computes the mean image of all frames estimated to be at a same state; in the similarity
computation stage, it simply computes the Fuclidean distances between the mean images of
the corresponding states; in addition, to boost up the performance, it only chooses stances
with large scatters in the eigen-spaces. Note that the algorithm only employs the shape
as recognition cue. And its performance is close to the best available ones, as Table. 6.2
indicates.

Table 6.2. The Top Rank Identification Rate for the Experiments of the USF HumanID

Database involving the “Hard” Covariates of Surface and Time. The Gallery Size is 122
Subjects.

Covariates Baseline Algol Algo2 Algo3 Algo4 A\'/eraged
gait cycle

(Exp D) Surface 32 33 45 19 23 38

(Exp K) Time 3 15 24 3 6 24
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6.2 Fusion Schemes

Before combination, scores from each classifier are transformed to a common range.
Here we choose the Gaussian model based z-normalization, which was also used in FRVT-
2002 [66]. For a given probe Ip, we compute its similarity value to each subjects in the
gallery set (Ig,,Igy, -+, IGy,). Then we compute the mean value (pi7,) and standard
deviation (o7, ) of the similarity values. The similarity value between each Ip and Ig; is

normalized as:
S(Ip,1g;) — pip

OIp

NormS(Ip,Ig;) = (6.2)

This normalization not only maps the score onto a common scale, but also removes the
dependencies of the scores on the particular probe. It is common in biometrics to observe
that the non-match similarity scores are dependent on the chosen probe. This impacts the
optimality of the single threshold decision rule chosen for verification in biometric systems.

We experimented with score level and decision level integration.

1. Score Sum combination strategy makes a decision simply based on the sum of the

similarity scores from the corresponding gait and face scores:

CombS(Ip,lg;) = NormSi(Ip,lg;) + NormSy(Ip,Ig;) (6.3)

2. The second score fusion scheme is based on the Bayesian decision rule. For a given
pair of probe and gallery subjects, the similarity values from the individual modalities
form the observation vector, v. The two classes correspond to the match (genuine,
W) and non-match (imposter, wy,) classes. The likelihoods of these two classes
are modeled as multi-dimensional Gaussian distribution, which is usually a good
choice empirically. Fig. 6.3 shows a 2D histogram representation of the gait and face

non-match (imposter) scores.

1
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Figure 6.3. The 2D Histogram of Face and Gait Non-Match Scores.
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The difference in the posterior probabilities of these two classes forms the combined

similarity score.

CombS(p, g;) = P(wm|v) — P(wnm|v) (6.6)

. The third scheme is the Confidence Weighted Score Sum as suggested by the Hu-
manlD group at University of Notre Dame. The main idea is that for a given probe
subject Ip, we weight its similarity scores in a classifier before combination. The

weight is computed from the similarity values of the first few ranks:

W.(Ip) =

(6.7)
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Figure 6.4. The Face Samples under Different Conditions. The Candidates for the Gallery
Sets are (a) Regular Expression with Mugshot Lighting, and (b) Regular Expression, Over-
head Lighting Images. The Probes are taken Outdoors with (c) Regular Expression, Far
View and (d) Regular Expression, Near View.

where S.(Ip)(k) is the k" largest similarity value of p when compared to the entire

gallery set. The score combination is then given by:

CombS(Ip, IGj) = Wl(IP)Sl(IP,IGj) + WQ(IP)SQ(IP,IGj) (6.8)

4. In addition to the score level combination schemes mentioned above, we also use a
decision level combination: Rank Sum. It takes the negated sum of ranks from the

face classifier and gait classifier as the similarity value:

CombS(p, gj) = —(Ranki(Ip, Ig;) + Ranks(Ip, Ig;)) (6.9)

A problem of this scheme is that there might be two or more gallery subjects having
a same similarity value with a probe. In this dissertation the tie is broken by the

sum of the original scores in each classifier.

6.3 Results of Combinations

We conducted a series of studies geared towards answering the following questions in

the context of outdoor biometrics:
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1. What is the performance of face+gait combination for the same-day data and months-

apart data? How does the combination of face and gait compare with single modality?
2. Which combination scheme performs the best?

3. How does the combination of face and gait compare against using multiple samples

of the same modality, i.e. face+face or gait+gait?

Answers to the above questions requires careful specification of multiple gallery and
probe sets. For faces, the main gallery set (Frp arugt;) consists of 70 faces taken in-
doors with regular expression and mugshot lighting conditions. The alternate gallery set
(FIn,00,t,) consists of the corresponding faces taken with overhead lighting. The outdoor
images form the probes. Fig. 6.4 shows examples of faces for various lighting conditions.
There are four face probe sets, with two probe sets per imaging session. For each imaging
session, the near images form one set and the far images form the other set. One pair
(Fout,near,t, s Fout, far,tl) was taken on the same day as the indoors images; there 39 such
subjects. And the other pair (Foutnear,tss Fout, faT,tz) was taken at least 3 months apart;
there are 21 such subjects.

For gait, the probes and the gallery are constructed from a subset of the USF HumanID
gait dataset. The main gallery (Grass,r,t, ) consists of sequences from 70 individuals walk-
ing on grass, outdoors, viewed from the right camera. The alternate gallery set (Ggrass,L,t,)
consists of the corresponding sequences taken from the left camera, with a verging angle
of approximately 30° to the right view. Like the face, we consider four different probes.
The left and right views of the gait on a different surface condition, i.e. concrete, taking
on the same day as the gallery, form two probes (Gconcrete,r,t1 > G Concrete,L,t1 ), r€spectively.
The sample views are listed in Fig. 2.2. Like face, we also consider the time covariate and
consider two more probe sets (GGrass,R,t2: GGrass,Lt») taken 6 months apart. The sizes of
the probe sets match that for the face to allow us to consider biometric combinations.

Based on these gallery and probe, ten experiments were designed, as shown in Table 6.3.

The first five experiments deal with same day data and the next five deal with comparing
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Table 6.3. Gallery and Probe Specifications for the Various Experiments Conducted.

Num  Exp (Gallery, #) (Probe, #) Covariate
Sp Face FronMugti» 10 Foutneart; > 39 In/Outdoor, SameDay
Sa Gait GGrass,Rt1s 10 Gconcrete,R,t,> 39  Surface, SameDay
Sry+a  Face+  Fipaugt, 10 Foutmeart,, 39 In/Outdoor, SameDay
Gait Garass,Rit1> 10 Geoncrete,R t1, 39 Surface, SameDay
Sr4+r  Facet+  Frnmugi, 710 Foutmear,t: 39 In/Outdoor, SameDay
Face Fin,004., 70 Fout,fart,> 39 In/Outdoor, SameDay
Sa+a  Gait+  GGrass,rt1s 10 Gconcrete, Ryt > 39 Surface, SameDay
Gait Garass,Lit1» 10 Geoncrete,L,t:, 39  Surface, SameDay
Dpg Face Fropmugtis 10 Foutneartss 21 In/Outdoor, > 3 Months Apart
D¢ Gait GGrass,Rt1s 10 GGrass,R,tss 21 6 Months Apart
Dpyg Face Fropmugtis 10 Foutneartss 21 In/Outdoor, > 3 Months Apart
Gait GGrass,R,tU 70 GGrass,R,t27 21 6 Months Apart
Dpyr Face FronMugtis 10 Foutnear,ts, 21 In/Outdoor, > 3 Months Apart
Face Frn00t,, 70 Fout,far,t,, 21 In/Outdoor, > 3 Months Apart
Dgia  Gait+  Garass,Riti, 10 GGrass,R,ts, 21 6 Months Apart
Gait GGrass,L,tla 70 GGrass,L,tla 21 6 Months Apart

data taken more than 3 months apart. Each set of five experiments consists of experiments
to study face and gait, individually and with inter-modal and intra-modal combinations.
Similar to previous chapters, we report recognition performance in terms of identification

rate and verification rate.

6.3.1 Inter-Modal Combination

Performance of outdoor face (Exp Sr), cross surface gait (Exp S¢), and gait-+face (Exp
Spig) on same day data with various combination schemes is shown in Fig. 6.5, which
plots the CMC curve up to rank 5 and ROC curve up to 5% false alarm rate. As expected,
the recognition from a single biometric is low, specifically, 40% for face and 39% for gait
at rank 1. However, the combinations of the two weak biometrics using the four schemes
discussed above substantially boosts performance. Particularly, 71% for score sum, 70% for
Bayesian rule, 58% for confidence weighted score sum, and 68% for rank sum. As Fig. 6.6
shows, a similar pattern is seen for performance of outdoor face (Exp D), cross surface

gait (Exp Dg), and gait+face (Exp D) on data taken months apart.
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Figure 6.5. Performance of Outdoor Face (Exp Sp), Cross Surface Gait (Exp S¢), and
Gait+Face (Exp Spig) on Same Day Data with Various Combination Schemes for (a)
Identification and (b) Verification Scenarios.
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Figure 6.6. Performance of Outdoor Face (Exp Dp), Cross Surface Gait (Exp Dg), and
Gait+Face (Exp Dpy¢) on Data taken Months Apart with Various Combination Schemes

for (a) Identification and (b) Verification Scenarios.
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6.3.2 Intra-Modal Combination

The performance of inter-modal combination has to be justified in the context of intra-
modal combination. Inter-modal combinations involves the use of different types of sensors
resulting in added integration costs. The inter-modal performance gain has to be justified
in this context. Inter-modal combination performance has to be greater than intra-modal
combination [Kevin Bowyer, Personal Communication|. In the present context, perfor-
mance of gait and face should be greater than combination of two faces or combination
of two gait signatures. For this, we consider the experiments, Sp.r, S+, Dr+r, and
Dg4g, in Table 6.3.

These intra-modal experiments involve the use of two samples per subject in the gallery
and in the probe. Each probe is matched against the two gallery samples per person and the
maximum similarity score is chosen as the similarity score for that probe. These similarity
scores are then combined, as before, using the rules described in Section 6.2.

Fig. 6.7 plots the ROCs of the intra-modal combinations up to a false alarm rate of
5%. Each plot shows the performance with individual probes and their combinations.
We see that the intra-modal combination does not seem to improve performance by a
significant amount. Fig. 6.8 shows a summary comparison of the inter-modal and intra-
model comparison schemes based on the verification rate at a false alarm rate of 5%. We see
that face+gait performance is better than than the face+face or gait+gait combinations.
This is explained by the strong correlation that exist between the scores for two probes
from the same biometric. It is 0.7 for the intra-modal case and is only 0.05 for the inter-
modal case. Stronger the correlation between the scores, less is the improvement with

combination [88].

6.4 Discussion

Table 6.4 lists the number of subjects that are affected by the combination. It lists the
number of subjects who were failed to be recognized by each individual modality or both,

but were successfully recognized after combination. It also lists the number of subjects who
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Figure 6.7. Performance of Intra-modal Combination Using Different Strategies. The ROC
Curves are Shown for (a) Face+Face, Same Day, (b) Gait+Gait, Same Day, (c) Face+Face,
Months Apart, and (d) Gait+Gait, Months Apart. Each Plot shows the Performance with
Individual Probes and their Combinations.

were successfully recognized by one modality or both, but their combination resulted in
failure. We see that the performance gained by the combination are mostly from subjects
who failed only for one of the two biometrics. The combination helps little for subjects
who were not correctly identified by both the individual biometrics. On the other hand,
we found that fewer subjects were correctly identified in one classifier but failed after
combinations. This is especially true for the score sum combination.

To gain some insight into the nature of the face and gait combination, we plot the

decision boundary of the experiment for score sum and Gaussian Bayesian fusion at 5%
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Figure 6.8. Bar Plot of Verification Rate at a False Alarm Rate of 5% for Inter- and Intra-
Modal Combination of Gait and Face for (a) Same Day Data, and (b) Data Separated by

Months.

Table 6.4. Number of Subject Correctly Recognized or Failed to be Recognized by Each
Individual Modality or their Combination for the Same-Day Data. The total Number of

Subjects is 39.

Combination # failed before combination but | # succeeded before combination
Scheme succeeded after combination but failed after combination
Face Only Gait Only  Both | Face Only Gait Only  Both
Rank Sum 15 12 4 5 1 0
Confidence
Weighted Sum 8 12 0 1 4 0
Score Sum 14 14 3 2 1 0
Bayesian Rule 14 14 3 1 0
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false alarm rate in Fig. 6.9. The axes are the normalized similarity scores from each
modality. We see that (i) the optimal Bayesian decision boundary is roughly linear and is
close to the score sum boundary, which explains the high performance with just score sum
schemes. And (ii) the non-match scores seem to be uncorrelated forming a nice, symmetric
central cluster. This observation would be important for parametric modeling studies.

Gaussian models seem to be good for non-match scores.

6.5 Summary of Gait and Face Combination Study

In this chapter we demonstrated an effective strategy for improving overall biomet-
ric recognition under “hard” convariates by combining gait with face. Hard problems
in face recognition involve comparing across indoor and outdoors conditions and over
time (months). We find that the score sum rule of combination offer the best perfor-
mance. We also find the the inter-modal combination, i.e. face+gait, is better than not
only the individual modalities but also combinations of the same modality, i.e. face+face
and gait+gait. The inter-modal combination has excellent potential for overcoming the

“tough” covariates affecting individual biometrics.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we investigated computer vision based gait recognition. We pro-
posed four new gait algorithms, ranging from the simple parameterless baseline algorithm
to the dynamics normalized approaches that emphasize shape over dynamics. Based on
the performance on the publicly available gait databases, such as the USF/NIST HumanID
database, the UMD database and the CMU Mobo database, we (i) established the hard
problems in gait biometrics, (ii) investigated the impact of segmentation on recognition,
(iii) proposed approaches to improve performance of both gait algorithms, and (iv) explored
fusion of gait with face biometrics for outdoor conditions.

We investigated gait recognition with changes in five different conditions and their
combinations. To gain an insight of the potential of gait biometrics, we used the simple
baseline algorithm. Focused of the study of the impact of a covariate on match-score
distribution suggests that shoe type has the least effect on performance, but the effect is
nevertheless statistically significant. This is followed by either a change in camera view
or carrying a brief case. Carrying a briefcase does not affect performance as much as one
might expect (Section 3.2.4). This effect is marginally larger than changing shoe type but
is substantially smaller than a change in surface type. The largest effects are due to time

and surface.

7.1 Effect of Time on Gait

One of the factors that has large impact is time, resulting in lower recognition rates for
changes when matching sequences over time. This dependence on time has been reported

by others too, but for indoor sequences and for less than 6 months differences. When the
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difference in time between gallery (the pre-stored template) and probe (the input data) is
on the order of minutes, the identification performance ranges from 91% to 95% [93, 30, 15],
whereas the performances drop to less than 30% when the differences are on the order of
months and days [53, 16, 15] for similar sized datasets. Particularly, for the HumanID
gait challenge database with 122 subjects, recognition with 6 months apart is lower than
10% for most algorithms. Our speculation is that other changes that naturally occur
between video acquisition sessions are very important. These include change in clothing
worn by the subject, change in the outdoor lighting conditions, and inherent variation
in gait over time. For applications that would require matching across days or months,
these would most likely be the important variables. We also found that compared with
dynamics, body shape is less sensitive to these variables. This is illustrated by the fact that
the dynamics normalization algorithm has substantially improved the recognition across
time, specifically, the top rank identification rate increased from 10% to 21% for HumanID

database (122 subjects), and increased from 70% to 85% for UMD database (55 subjects).

7.2 Effect of Surface on Gait

The other factor with large impact on gait recognition is walking surface. With the
subject walking on grass in the gallery sequence and on concrete in the probe sequence (Hu-
manID challenge experiment D with 122 subjects), rank-one recognition is only 32%. Per-
formance degradation might be even larger if we considered other surface types, such as
sand or gravel, that might reasonably be encountered in some applications. However, we
also found that the effects can be compensated for only using the cue of body shape. And in
Chapter 5 we showed that the recognition rate increases from 32% to 64% after normalizing

gait dynamics.

7.3 Segmentation on Gait Recognition

We have established that the low performance under the impact of surface and time

variation can not be explained by poor silhouette quality. We base our conclusions on
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two gait recognition algorithms, one exploits both shape and dynamics, while the other
exploits just shape. The drop in performance due to surface condition that we observe in
the gait challenge problem is not due to differences in background. This observation is also
corroborated by the performances reported in a fairly recent work by the Lee et al. [52].
The observation has implication for future work direction in gait recognition. Instead of
searching for better methods for silhouette detection to improve recognition, it would be
more productive to study and isolate components of gait that do not change under shoe,
surface, or time. One example of this type of study is [86] in which relationship between
silhouette shape and speed was studied and then was compensated for by transforming
the silhouettes. While it is doubtful whether speed variations can fully explain the drop
in performance due to surface or time change, systematic studies such as this would be

needed to understand the limitation of gait recognition.

7.4 Improving Recognition: Shape over Dynamics

Shape (body shape and stance shape) and dynamics are two components of gait. We
tried to separate these two components and studied approaches that emphasize shape,
which is more likely to be invariant under changes in covariates, such as surface and time.
In this regard, we proposed three gait recognition algorithms: (i) an averaged silhou-
ette based algorithm that deemphasizes gait dynamics, (ii) an algorithm that normalizes
gait dynamics and then uses Euclidean distance between corresponding selected stances,
and (iii) an algorithm that also normalizes gait dynamics but computes similarity in the
Linear Discriminant Analysis (LDA) gait space after morphological deformation. Based
on extensive experimentation on multiple, publicly available databases (HumanID Gait
Challenge, UMD, and CMU-Mobo), we can assert that dynamics-normalization greatly
improves overall gait recognition performance, especially when comparing across surface,
carrying condition, time, and different speed. The approach is not dependent on the train-
ing set choice. It generalizes well not only across different subjects, but also across different

datasets with varying imaging geometries. We attribute this significant improvement to
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gait dynamics-normalization. The other two components: the LDA stance shape space
and the morphological operation based distance computation also improve performance,
but the former has more impact than the latter.

Efficacy of dynamics normalization suggests that body-stance shape plays a more im-
portant role than dynamics in gait recognition. This is also supported by good performance
of gait recognition algorithms of Veeraraghavan et al. [90] and Collins et al. [15], which
focus more on body shape than dynamics. To get some insight into the kinds of shape fea-
tures that seem to be important we consider the top-two most inter-subject discriminating
directions for each stance, as found by LDA of the silhouette shapes in the training set
used for gait-normalization. We plotted these directions in Fig. 5.14 and see that (i) upper
body, (ii) knee, and (iii) lower leg during gait swing phases seems to be the important

features that are being picked up.

7.5 Gait And Face

One of the open questions is the potential for gait to perform identification. We ad-
dressed this question by comparing our gait results with face recognition. Our analysis
provides a rough guide to the current state of gait recognition. Face recognition perfor-
mance has been well characterized by a number of evaluations, the most recent being the
Face Recognition Vendor Test (FRVT) 2002 [40]. Because gallery size is different in the
gait challenge problem and FRVT 2002, comparison is made for verification performance at
a false accept rate of 1%. Unlike identification, verification performance is not a function
of gallery size. Since the gait challenge problem performs recognition from outdoor video,
we need to look at face recognition results from outdoor images. In FRVT 2002 there are
two results on outdoor facial images. In both cases, the gallery is of indoor full frontal
images. In the first result, the probe set consists of outdoor images taken on the same
day as the gallery images. Verification performance varied for different systems ranging
from 54% to 5%, with a median of 34%. From Fig. 5.8 (The best gait algorithm), gait

performance varied from 98% to 35% on the ten experiments where the gallery and probe
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set sequences were taken on the same day. The median performance score was 70%. In
the second set of outdoor face recognition results, the probe set consists of outdoor images
taken on a different day than the gallery image of a person; the median difference in time
is about 5 months. Verification performance varied from 47% to 0% for different systems,
with a median of 22%. Experiments K and L in the gait recognition problem, which have
probes from 6 months later, are comparable to this scenario. The verification rate for both
experiments is about 21%. A number of caveats need to be mentioned in this analysis. The
FRVT 2002 performance numbers are from a blind evaluation on sequestered data. This is
not the case for our gait results. Using the respective performances only as a rough guide,
we see that video-based gait as an outdoor at-a-distance biometrics has 1) the potential to
be competitive with faces, and 2) as a biometrics to be fused with face.

We demonstrated that combining face and gait is an effective strategy to improve overall
biometric recognition under hard conditions. Hard problems in face recognition involve
comparing across indoor and outdoors conditions and over time (months). We found that
the score sum rule of combination offer the best performance, possibly because they appear
to be uncorrelated as demonstrated in scatter plot of scores (Fig. 6.9). We also found
that the inter-modal combination, i.e. face+gait, is better than not only the individual
modalities but also combinations of the same modality, i.e. face+face and gait+gait. The
inter-modal combination has excellent potential for overcoming the “tough” covariates

affecting individual biometrics.

7.6 Future Research Directions

With respect to recognition performance, our results indicate that investigations should
be focused on body shape because gait dynamics is shown to be more sensitive to condition
changes. It would be necessary to model and correct for the stance-shape changes under
varying conditions. An excellent start is the work of Tanawongsuwan and Bobick [87]
who studied the effect of walking speed on silhouette shapes. Another direction is to

employ 3D modeling because the three-dimensional morphable models are a technique for
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improving recognition of non-frontal images in face recognition, according to the FRVT
2002 report [40]. And it is interesting to discover whether this is true for gait.

Can one predict psychological and physiological properties of carrying weight or age
from gait? The gait challenge problem comprises the condition of carrying a briefcase. In
future experiments, it may be interesting to investigate the effect of carrying a backpack
rather than a briefcase, or to vary the object that is carried. Based on such studies it
might be possible to estimate the weight carried by the person. One such interesting work
that has started to look at this is the work of Wittman [99], who studied body response to
increasing concealed weight.

The large effect of surface type on performance suggests an important future research
topic might involve investigating whether changes in gait with surface type is predictable.
For example, given a description of gait from walking on concrete, is it possible to predict
the gait description that would be obtained from walking on grass or sand? Alternatively,
is there some other description of gait that is not as sensitive to change in surface type?
The study can be generalized into other within-subject changes, e.g., predict slow gait from
fast gait or vice versa. In addition, can gait dynamics be separated from shape so that one
can create an artificial sequence involve one subject’s shape but using another subject’s

dynamics?
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