Sidelobe elimination for generalized
synthetic discriminant functions by a
two-filter correlation and subsequent
postprocessing of the intensity distributions
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One of the most important problems in optical pattern recognition by correlation is the appearance of

sidelobes in the correlation plane, which causes false alarms.

We present a method that eliminate

sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any
generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even
higher than the central correlation. Satisfactory results were obtained in both computer simulations

and optical implementation.

1. Introduction

The design of filters that use an optical correlator for
pattern recognition has undergone great develop-
ment during the past few years. The matched fil-
ter,! introduced by VanderLugt in 1964, consists of
the Fourier transform of the object to be recognized.
This filter gives the maximum signal-to-noise ratio in
the correlation plane but is unable to discriminate
between similar objects. The discrimination capabili-
ties and the light efficiency can be enhanced with a
phase-only filter,2 whose main drawback is its sensitiv-
ity to noise.

The response of these filters depends on the scale,
the orientation, and in general any deformation in the
input pattern. A possible solution is to expand the
reference objects into a set of orthogonal functions
that are invariant to one of these deformations. For
instance, rotation invariance can be achieved with a
circular-harmonic expansion® (CHE). The informa-
tion about the object to be recognized and the object
to be discriminated against can be introduced simulta-
neously by means of synthetic discriminant filters*
(SDF’s).
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The main shortcoming in the last two designs is the
appearance of sidelobes caused by the loss of informa-
tion in the circular-harmonic-expansion case and the
lack of control over the whole correlation plane in the
SDF approach. Several partial solutions to this prob-
lem can be found in the literature.56

The SDF filters are designed so that the central
correlation with the training set takes prespecified
values. This can be though of as a set of K equations
with N unknowns, where K is the number of objects
in the training set and N is the number of compo-
nents in the filter. Such a system has infinite solu-
tions, of which the SDF is a particular one, formed by
a linear combination of the training images. The
N-K degrees of freedom in the system may be used to
optimize a performance criterion giving a family of
filters known as generalized SDF’s.” The minimum
average correlation energy (MACE) filter® is a particu-
lar solution that minimizes the energy in the correla-
tion plane, thus providing sharp peaks and reducing
the sidelobes. There are other filters such as en-
tropy optimized filters® or maximum-discrimination
filters® that are also designed to control the whole
correlation plane and to produce sharp correlations.

In this study we present a method to eliminate
sidelobes, provided certain conditions are met. The
process consists of the use of two filters and the
subsequent postprocessing of the correlation distribu-
tions. The two filters are obtained by a new filter
being established that modifies the whole correlation
plane except the central point. This new filter is



then either added to or subtracted from the filter
being corrected.

The remainder of the paper is organized as follows.
In Section 2 we introduce the method and develop the
mathematical expression of the filter. In Section 3
the validity conditions are discussed and a perfor-
mance analysis is carried out. The results of a
computer simulation of the method are presented in
Section 4, together with several examples. In Sec-
tion 5 we present the results of the optical implemen-
tation of the method, and in Section 6 some remarks
and conclusions are made.

2. Method

A. Theoretical Considerations

If we perform the correlation of an input image with
two differently designed filters restricted to produce
the same central correlation, we can postprocess the
output distributions in order to improve the results.
For example, if we binarize them by applying a given
threshold and then multiply the output planes pixel
by pixel (which is equivalent to processing them with
the logical operation AND), we can eliminate the
sidelobes that are more than the threshold value that
are not common to both planes, and we can maintain
the central peak.

The existence of false alarms in such a procedure
depends on the appearance of common sidelobes.
The method we present ensures, in certain condi-
tions, that no sidelobe is common to both correlation
planes

The idea of an image belng processed by means of
two digital or optical processes and of the final image
being obtained by the pointwise multiplication of
each single output has been applied in the past in
various problems. The procedure is similar to opera-
tions commonly used in mathematical morphology.
Casasent et al.,!! using the correlation with two
different filters, detected simple geometrical shapes
immersed in high clutter and noise. The procedure
involved the binarization of the correlations and the
pixel-by-pixel multiplication of both results. The
method was an optical implementation of the morpho-
logical hit—miss transform. More recently, Crowe et
al.’2 proposed the utilization of a similar method to
reduce the sidelobes appearing in imaging systems
owing to the finite size of the pupil, thus improving
the spatial resolution. _

We restrict our study to the case in which we obtain
real-valued correlations. The general case of having
complex distributions (such as those produced by
circular-harmonic-expansion filters) is treated briefly
in Section 6.

The method can be applied to a wide variety of
filters (which is referred to as the base filters in what
follows) and consists of addition and subtraction of a
new filter (called the correcting filter), designed so
that the following conditions are fulfilled:

(I) The filter is orthogonal to every image in the
training set (the filter and the images are treated as

vectors with the usual lexicographic ordering). This
requirement ensures that the central correlations
produced by the base filter remain unchanged.

(II) The correlation between the correcting filter
and the images produces a constant plane with a
predefined value. This condition is accomplished
only in an approximate form by means of a Lagrange
mlmmlzatlon process

The output distributions obtalned with the new
filters have two terms:

(hb+hc)‘*xi=hb*xi+hc*xi, e (]._)
(hb_hc)*xi:'hb*xi—‘hc*xi, (2)

where h, is the base filter, A, is the correcting filter, x;
is one of the images in the training set, and the
symbol * means correlation.

The expression A, * x; is real and may take positive
and negative values. The term h, * x; in Eq. (1),
which is constant over the whole plane, increases the
positive sidelobes and decreases the negative ones.
Conversely in Eq. (2), k. * x; increases the negative
sidelobes and decreases the positive ones. A suitable
choice of the value of the constant plane and the
threshold ensures that no sidelobe is common to both
binarized correlations. These considerations are dis-
cussed in detail in Section 3.

Although we put the emphasis on generalized SDF
filters because of the practical importance of these
designs, the method can be applied to other filters
with minor modifications. The only condition that
is necessary for the base filter is to show a good
discrimination between the true and the false classes
since the only point that is not changed is the central
correlation. Therefore the method can be used in
conjunction with filters that are already designed to
avoid sidelobes, such as the entropy optimized filters®
or the maximum-discrimination filters,!° to achieve
higher discrimination capabilities.

B. Filter Design

Let x,(j), a(j), - - . , x2(j) be the % training images of

N components (j=1,...,N), and let X (w),...,
X, (w) denote their Fourier transforms. Let H,(w)be
the Fourier transform of the correcting filter.

Condition (I) in Subsection 2.A can be written as
follows:

N ,
2, Ho(w)X3(w) = 0,

Condition (II), as mentioned above, can be achieved
only approximately by minimization of the following
error function:

i=1,...,k. (3)

N .
2 21D @Xiw)%,  (4)

II
|
NG

where D(w) represents the Fourier transform of the
desired shape for the correlation between the images
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and the filter (a plane in our case). Expression (4) is
therefore a measure of the mean error between the
correlations obtained and those desired. This filter
is a particular case of the minimum-squared-error
synthetic discriminant function!?® design introduced
by Vijaya Kumar et al.

Expression (3) can be written compactly as

S*h. =0, (5)

where h, is the N-dimensional vector whose compo-
nents are H (w):
he = [H,(1), H,(2), . . ., H/(N)J". (6)

S is an N X K matrix formed by the Fourier trans-
forms of the images arranged in columns:

Xi(1) Xy(1) Xx(1)
S= XI.(Z) Xz:(Z) ":‘ XK.(Z) . (7)
X(N) XfN) -+ XelV)

The superscript + means the conjugate transpose of
the matrix. Finally, O represents the K-dimensional
vector with all its components zero.

We can express Eq. (4) with the same formalism by
defining the N X N diagonal matrix,

X(1) 0 - 0
0 X2 -+ O©

=1 . . . . (8)
0 0 X(N)

and the N-dimensional vector,
=[D(1),D(2), ..., DIN)". (9)

With such definitions the error can be written as

1 k
=z & (@ — Ptho)*(d - Pth,)]
i=1
=d*d - h}r — r*h, + k}Ph,, (10)
where
1 K
r=% g (P;d), (1)
1 K
P =% 2 (PtP). (12)

X
-

13

Conditions (I) and (II) can be accomplished simulta-
neously by minimization of

L[k,] = (d*d - ki — r*h, + h}Ph,) — 2\*(S*H,)
(18)
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by means of a Lagrange optimization process. In
expression (13), A denotes a K-dimensional complex
vector containing the Lagrange multipliers.

By calculating the gradients with respect to the
filter components and the Lagrange multipliers and
by setting them to zero, we obtain the following
expression for the correcting filter (the mathematical
details can be found elsewhere!3):

h=[I - P-1S(S*P-1S)1S+|P-1r.  (14)

3. Necessary Conditions and Performance Analysis

Let us suppose we have designed a generalized SDF
that solves a two-class problem. The prespecified
values for the correlation with classes A and B are
called p, and p,, respectively, and with no loss of
generality we suppose that p, > p;. The criterion
for classification of an image as a member of one of
the two classes is the following: If the correlation
intensity at the center exceeds a given threshold, the
image is classified as belonging to class A; otherwise,
the image is assigned to class B.

As commented on in Section 2, the method for
elimination of sidelobes involves the correlations with
two filters that have an opposite effect. The first,
which we call the positive filter, reduces the negative
sidelobes and enhances the positive ones. The sec-
ond filter, called negative, reduces the positive peaks
and enhances the negative ones. Our goal is to
determine the proper settings for the threshold and
the constant plane resulting from the correlations
between the images and the correcting filter in such a
way that the only point in the output intensity
distributions that passes the threshold in both cases
is the central peak.

The equations that ensure the above statement can
be written as follows:

8(|x| + ¢)* < p3, (15)
(Jx| = c)? < op§, (16)
c? < 0p2, (17

pi < 6pj, (18)

where 6 is a factor between zero and one that
represents the threshold, c¢ is the value of the con-
stant plane, and x is the height of the maximum
sidelobe to be suppressed.

The necessity of conditions (15)—(18) is discussed in
the following considerations. Maximum sidelobe x
increased by constant ¢ may become higher than
value p, of the correlation for class A. This situation
is illustrated in Fig. 1. In Fig. 1(a) the positive
sidelobe (x > 0) is increased by positive constant c.
The resulting intensity can be seen in Fig. 1(b), in
which it appears higher than the intensity of the
central correlation p2. For negative sidelobes we
have an equivalent situation. In Fig. 1(c) the nega-
tive sidelobe (x < 0)is increased (in absolute value) by
negative constant —c, and the resulting intensity
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Fig. 1. (a) Amplitude of the correlation plane produced by the
base and the correcting’ filters when both are added (positive
filter). The dashed curves represent the constant amplitude
correlation value given by the correcting filter. The solid lines
represent the correlation peaks (po and p;) and the sidelobes (x > 0
andx < 0) obtained with the base filter. (b) Intensity distribution
for the positive filter. (c), (d) Same as (a) and (b) for the case of the
negative filter.

[Fig. 1(d)] is also higher than the central correlation
for class ‘A. Inequality (15) is then necessary to
guarantee that p, passes the threshold. The expres-
sion (|x| + ¢)?is the intensity of the increased peak no

matter whether the maximum sidelobe is positive or
negative. In other words, this factor takes into
account the case (x,—c)*> for negative peaks and
(x + ¢)? for positive ones.

Inequality (16) represents the condition for the
decreased maximum sidelobe to be eliminated in the
binarization; i.e., when the absolute value of the
sidelobe is decreased, the resulting intensity has to be
lower than the limit marked by the threshold value
[see Figs. 1(a) and 1(b) forx < 0 and Figs. 1(c) and 1(d)
for x > 0]. The condition is written assuming that
the threshold is applied on py, but the maximum
value in the output intensity distribution might be
different. For instance, if we had two maximum
sidelobes, both with the same absolute value but with
different sign, and if the increased term (|x| + c¢)?
were higher than p3, the threshold value would be
0(|x| + c)? because when one decreases, the other
increases (the case represented in Fig. 1). By setitng
a more restrictive condition, such as Eq. (16), we can
cover all the cases.

In addition, we need to ensure that the sidelobes
lower than x disappear. We have to treat two cases
separately:

(@) Ife < |x{/2, then (|x| — ¢)?2 > ([x| — |x|/2)? >
¢2. In this situation, inequality (16) guarantees the
elimination of every sidelobe in the range from zero to
x [see Figs. 2(a) and 2(b)].

(b)Ifc > |x|/2, the former condition is not assured,
and small sidelobes may surpass the threshold. This
situation is depicted in Figs. 2(c) and 2(d).

Inequality (17) is then necessary to take into ac-
count case (b). Finally, inequality (18) is required
for a correct classification of class B.

In the typical case in which py = 1 and p; = 0,
inequalities (15)—(18) become

|x| — 82 < ¢ < 7Y/2 — |x|, (19)
c < 8Y/2, (20)

As can be observed in the above expressions, the
value of ¢ is not completely determined by the condi-
tions, but there is a range of permissible values that is
necessary for the reliability of the method. This
necessity is caused by, as mentioned above, the
correlation planes with the correcting filter not being
exact planes but approximate versions obtained by
means of a minimization process.

The maximum sidelobe that fulfills expression (19)
is obtained when

Je] - 0Y/2 = 1/2 — || (21)
whence
x| = (8 + 1)871/2/2, (22)

On the other hand, by considering inequality (20) and
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Fig. 2. Illustration of the necessity of inequality (17): (a) Case
¢ < x/2. The solid lines represent the amplitude of the correla-
tion with the base filter, which produces a high (peak x) and a small
(peak s) sidelobe. (b) Intensity distribution corresponding to
(a). If ¢ < x/2, sidelobes lower than x are suppressed by Eq.
(16). {c) Thesameas(a)whenc > x/2. (d)Intensity distribution
corresponding to (c). When ¢ > x/2, small sidelobes increased by
the constant may surpass the threshold value.

the leftmost part of inequality (19), or
c < 02
c > |x| — 023
we obtain the maximum |x| when
x| — 61/2 = §1/2, (23)
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whence |x| is
|| = 20%/2, (24)
Therefore the maximum sidelobe can be written as
|% | max = min[20Y/%, (6 + 1)6~1/2/2]. (25)
The optimum threshold, 6, would be
202 = (0 + 1)07Y2 = 9 = 1/3,

and finally | x|qex = 1.15 (115% of the central correla-
tion) in amplitude or |x|2,, = 1.32 (182% of the
central correlation) in intensity.

In practice it is not possible to reach this limit
because the range of permissible values for ¢ in
inequality (19) is reduced to a single point. How-
ever, in most practical situations the method enables
the elimination of sidelobes higher than the central
peak, which cannot be corrected by binarization of
the output intensity produced by the base filter with a
single threshold.

Figure 3 represents the permissible variation of
constant ¢ (shaded area) when the threshold value is
fixed (po = 1, p; = 0,and 6 = 0.5). The graph shows
that for small variations in ¢, large sidelobes can be
eliminated, but for wide variations the height of the
sidelobe must be small. By varying the threshold
and by fixing the desired height of the sidelobe to be
suppressed, we obtain Fig. 4. (|x| = 1). Ascanbe
observed, there is a value of 8 for which the permis-
sible range of ¢ is maximum because of the monotonic
behavior of the restrictions in inequalities (19) and
(20). This optimum threshold can be calculated by
use of the following equation:

0507 = 05572 — |x]. (26)

Consequently we can determine all the parameters

1.00

c=(1N0.5) - |x]|

0.80

o
o
o

Permissible range
5

0.20

c=|x| -V0.5

0.00 , "
0.0 0.1 02 03 0.4 05 06 07 0.8 0.9 1.0

Maximum sidelobe height (8=0.5)

Fig. 3. Permissible range for constant ¢ as a function of the
maximum sidelobe to be eliminated (po = 1, p; = 0, 6 = 0.5).
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envisaged by the method by selecting the maximum
height of the sidelobe to suppress, by calculating the
optimum threshold by means of Eq. (26), and finally
by choosing constant ¢ as the midpoint value of the
range given by inequality (19).

The validity of the method is determined by the
extent to which the actual correlations between the
images and the correcting filter are constant planes
with the expected accuracy. The possibility of the
sidelobes being eliminated in the range from 0 to a
prespecified value, | x|, depends on whether the mini-
mization procedure is capable of producing a correct-
ing filter so that the correlations obtained with the
images in the training set satisfy inequality (19).
Therefore the performance of the method is deter-
mined by the deviations in the correlation distribu-
tion from the expected plane; in other words, the
maximum sidelobe that can be suppressed depends on
the range of variation of the points in the correlation
plane. On the other hand, the height of the side-
lobes depends on the similarity between images in
different classes; i.e., the more similar the images
with different conditions are, the larger the expected
values of the sidelobes become.

The method gives more accurate correlations planes,
i.e., the correcting power is higher, when the images
in the training set are more similar and therefore
when higher sidelobes appear. To demonstrate this
property, let us assume we have two N-dimensional
images whose Fourier transforms are X;(w) and X,(w).

The expression for the error in Eq. (4) can then be
written as '

or in vectorial form as
E = Y%[(d - P%h,)*(d — P%h,)
+ (d — P%h.)*(d — P%h,)]. (28)

Let us suppose that P, and P, which are diagonal
matrices, can be inverted (i.e., there is no frequency
for which the Fourier transform of the images is
zero), and let us define filters 4, and A, so that

hy = (P%)"d, (29a)

hy = (P%)™'d; (29D)

h, and h, represent the filters that give exactly the
desired shape when they are correlated with images
X, and X;, respectively. The assumption that P; and
P, are invertible is not so restrictive, and similar
requirements are needed in other filter designs. In
particular, in MACE filters, the matrix that repre-
sents the average energy of the images in the training
set must also be full rank.

Because A, is the optimum filter, by substituting A,
for ; in Eq. (28) we have

E < %[(d — P%h,)*(d — P%h,)
+ (d — P%h1)*(d — P%hy)]
= %((d — P%hy)*(d — P%hy)]
= Y[(P%hy — P%h1)* (P%hy — Phhy)]
= %{[P%(hs — hi)["P%(hs — h1)}, (30)
and from Eqs. 29(a) and 29(b),
P%h, — P%h, = 0. (31)

If we express image X, as a function of X;, we can
write

P, =P; + A, (32)
and therefore
(P* + A*)hg — P%h, =0, (33)
P¥(hy — hy) = — A*hy
= —A¥P*% + A*)"d. (34)

As P, is a full-rank matrix, if A tends to zero, then
(he — h,) tends to zero, and in consequence the error
in inequality (30), which depends on this difference,
becomes increasingly small:

A->0,P,—>P =2(h;—h)—>0=E—0. QE.D.

We carried out an experimental verification of this
property. The details are given in Section 4.
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Fig. 5. Sequence of images used in the simulation. Letter a is
ab(0), letter b is ab(10), and the intermediate patterns are ab(i),
withi=1,...,9.

4., Computer Experiments

In this section we present the results of several
experiments carried out by means of a computer
simulation in order to test the suitability of the
method in practical situations. We performed a
study of the dependence between the value of the
expected sidelobes and the correcting capabilities of
our method by using the images depicted in Fig. 5.
A set of ten correcting filters was designed, each of
them calculated by use of a pair of images from the
sequence ab(0)-ab(i); namely, filter 1 was calculated
with ab(0) and ab(1), filter 2 with ab(0) and ab(2), and
soon. The measure of the similarity between image
ab(i) and ab(0) was calculated with the following
expression:

|[ab(0) * ab(i)}e0*
|[ab(0) * ab(0)],0)|?
where the symbol * means correlation.

The error function in Eq. (4) as well as the devia-

tion from a perfect plane (¢ = 0.35) for each single
image was computed for every correcting filter, and

S[ab(0), ab(i)] =

(35)

16.00 .
] otk Error for ab(Q)
. ab(0) 80P Error for abli)
h il Average error
12.00 o
— -
o ]
— -
- -
) ]
T 8.00 o
o ]
— ]
@] o
=) u
O R
n ]
4.00
o-oo IRALARAR RN AR AR R S LR R N NN RN NN R R AR YRR RN
0.40 5 0.9 1.00

0.60 0.70 9.80
S(ab(0),ab(i))
Fig. 6. Squared error as a function of similarity between images.
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Fig. 7. al, a2, Images used to design the MACE filter. The
imposed values were 1 for image al and 0 for image a2. bl, b2,
Intensity of the correlation betweeen the MACE filter and images
al and a2, respectively. cl, c2, Intensity of the correlation
between the positive filter and imagesal and a2. d1, d2, Intensity
of the correlation between the negative filter and images in al and
a2. el,e2, Same as images cl and c¢2 binarized with 6 = 0.36. f1,
f2, Same as images d1 and d2 binarized with 8 = 0.36. g1, Result
of pixel-by-pixel multiplication of images el and f1. g2, Result of
pixel-by-pixel multiplication of images e2 and 2.

the results are represented in Fig. 6. The graph
shows the dependence between these deviations from
the expected shape and the similarity measure given
by Eq. (35). For very similar images such as ab(0)

= L E

Fig.8. Images used to design the filters. The imposed values for
the central correlations were 1 for S, 1 for C, and 0 for E.



and ab(1) {S[ab(0), ab(1)] = 0.96} the error is small
(E = 0.25), and conversely, when the similarity be-
tween images is small {S[ab(0), ab(1)] = 0.57 for ab(0)
and ab(10)}, the error is high (E = 10.3). The result
shows the expected behavior; i.e., when large side-
lobes are more likely to appear, owing to the similar-
ity between images with different constraints, the
procedure we propose is more powerful because of a
smaller variation with respect to the desired plane.
The increasing correcting power enables the elimi-
nation of sidelobes, even if they are higher than the
central peak, as illustrated in Fig. 7. In Fig. 7, tweo
images with a similarity S = 0.90 were used to build a

MACE filter by imposition of images (al) and (a2) to
give values of 1 and 0, respectively. The MACE filter
is an antisidelobe design, but in this situation it gives
several lateral peaks, the largest of which has a value
of 126% of the central correlation (in intensity), as
shown in images (b1) and (b2).

In order to eliminate the sidelobe, we prepared the
correcting filter using the following parameters:

|| = (1.26)2 = 1.12,
B, = 0.36,
¢ = 0.53.

i

K
L

Fig.9 continued.
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Fig. 9. (a), (b), (c) Intensity of the correlation between the
composite filter and letters S, C, and E, respectively. (d), (e), (f)
Same as (a), {b), and (c) with the positive filter. (g), (h), (i) Same as
(a), (b), and (c) with the negative filter.

The results of the correlations between the positive
and the negative filters are shown in images (c1)—(d2)
of Fig. 7, and the binarized results are shown in
images (e1)—(f2). After pixel-by-pixel multiplication
of both binarized planes, images (gl) and (g2) were
obtained. As can be observed, all the sidelobes are
suppressed, and a perfect detection of the central
correlations is possible.

The method is then capable of producing a signifi-
cant increase in the diseriminant abilities of the SDF
filters, including those such as the MACE design,

3058 APPLIED OPTICS / Vol. 33, No. 14 / 10 May 1994

which are specifically designed to avoid the appear-
ance of sidelobes. However, there is no noise resis-
tance included in the minimum-squared-error SDF
filter design, so the procedure is highly sensitive to
noisy inputs.

The possible solutions to this problem are the same
as those used to introduce noise resistance in the
MACE design: trade-off filters'* and the modifica-
tion used in minimum noise and correlation energy
filters.’5 A further study on the suitability of these
solutions will be carried out in the future.

5. Optical Results

The method proposed for elimination of sidelobes was
tested by use of a convergent correlator.’® This
setup has an advantage in that it permits easy
matching between the scales of both the input image
and the filter.

The filters were built by means of computer-
generated holograms codified by Burkhardt’s
method,!” displayed on a laser printer, and photore-
duced. The holograms were sandwiched to avoid
uncontrolled phases owing to thickness variations in
the photographic film. A low-power He-Ne laser
provided the coherent illumination. Finally, a CCD
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Fig. 10. (a), (b), (c) Intensity of the correlation between the
positive filter and letters S, C, and E, respectively, binarized with
6 = 0.4. (d), (e), (f) Same as (a), (b), and (c) with the negative
filter. (g) Result of pixel-by-pixel multiplication of images (a) and
(d). (h) Result of pixel-by-pixel multiplication of images (b) and
(e). (i) Result of pixel-by-pixel multiplication of images (c) and (f).




camera and a frame grabber were used to capture the
resulting correlation distributions.

The images that were used in the design of the
filters are shown in Fig. 8. The values imposed for
the correlation at the origin were 1, 1, 0, for S, C, and
E, respectively. The correlations between the three
letters and a composite filter are shown in Figs.
9(a)-9(c), in which large sidelobes can be observed.

The correlations obtained with the positive and the
negative filters are depicted in Figs. 9(d)-9(i). Ascan
be seen, the effects of the two filters are opposite; the
sidelobes reduced by the first one are enhanced by the
other and vice versa, as expected. By binarizing the
results obtained with the positive and the negative
filters with a threshold of 0.40, we obtain the images
in Figs. 10(a)~10(f). Finally, in Figs. 10(g)-10(i) the
results of pixel-by-pixel multiplication of binarized
images are represented.

The results observed in the optical implementation
were satisfactory and showed good agreement with
previous computer simulations. Therefore the
method seems to be suitable for application in a
practical situation.

6. Final Remarks and Conclusions

The existence of lateral peaks is one of the most
important problems in optical pattern recognition by
means of correlation. In this study we present a
method that eliminates every sidelobe within a given

range, provided certain conditions are fulfilled. The

method has the following properties:

® It can be applied to a wide variety of filters.

® The method ensures the elimination of the
sidelobes if certain conditions are satisfied.

® Sidelobes higher than the central correlation
can be suppressed.

® The method is more powerful when higher
sidelobes are expected.

The procedure was tested with simulation and
optical implementation and gave satisfactory results
inboth cases. However, some limitations were found.
In Section 4 the noise sensitivity of the filter was
pointed out. A possible way to reduce this drawback
is by means of a compromise filter.!4 Theunderlying
idea of this type of design is to introduce a new term
in the error function to be minimized, which repre-
sents the output variance of the noise. A parameter
is used to balance the importance of the two conflict-
ing goals. This solution represents a trade-off be-
tween the noise resistance and the minimization with
respect to the desired shape, which thus affects the
height of the sidelobes that can be eliminated by the
procedure. A similar idea, which also involves a
compromise between the two magnitudes to be mini-
mized, is applied in minimum noise and correlation
energy filters.®> A further study of the optimum
selection for this trade-off is needed.

On the other hand, the method we present is valid

only for filters that produce correlations distributions
with real values. The procedure may be generalized
to the case in which complex distributions are ob-
tained, by use of a battery of filters, each producing a
constant complex-valued plane whose phases are
distributed over the entire unit circle.

The greater the number of filters used, the greater
the height of the lateral peaks that can be eliminated,
because the directions of the opposing vectors ap-
proach 180° with respect to the direction of the
sidelobe. However, an increasing number of filters
implies a more complex procedure. The study of the
minimum number of filters required for elimination
of sidelobes with a given height is currently in
progress.

This work has been supported in part by the
Spanish Comisién Interministerial de Ciencia y Tec-
nologia under project ROB91-0554.
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