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An algorithm for computing correlation filters based on synthetic discriminant functions that can be
displayed on current spatial lightmodulators is presented. The procedure is nondivergent, computation-
ally feasible, and capable of producing multiple solutions, thus overcoming some of the pitfalls of previous
methods.
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1. Introduction

The design of filters for VanderLugt correlators has a
strong mathematical foundation through the syn-
thetic discriminant function 1SDF2 theory.1 The
modulation of the system response provided by SDF
filters is a powerful technique for solving pattern-
recognition problems and makes the design of optical
correlation filters similar to the training procedures
used for neural networks. No particular knowledge
about the structure of the problem is needed, and only
a representative set of examples and solutions must
be obtained.
Furthermore, the theory is general enough to

encompass, in particular cases, many filters obtained
on an independent basis, outside the SDF philosophy;
that is, many well-known filters can be obtained
through the SDF theory by a proper selection of
training images and desired outputs. For example,
minimum average correlation energy 1MACE2, mini-
mum variance SDF’s, and optimum trade-off SDF’s
become inverse, matched, and Wiener filters, respec-
tively, when only one image is included in the training
set.2–4 By designing an SDF filter with enough
in-plane rotated images, we obtain a circular har-
monic filter if the outputs are properly selected.5
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However, until recently, little attention has been
paid to the restrictions that current technology im-
poses on the filter values. Modulators are essential
in the construction of reliable correlators when the
filter must be frequently updated and general-
purpose systems are required to do so many times per
second. Unfortunately, current devices can display
only a small fraction of the complex values required
by the classical designs. The extreme case is that of
binary modulators, in which only two values can be
selected and with which most filters behave quite
differently from their full-complex counterparts.
In this context, Juday6 and recently Laude and Réfr-
égier7 have addressed the problem of the optimum
projection of single-image filters to the domain al-
lowed by a modulator.
For SDF filters with several images in the training

set, the problem is worse, because a simple projection
of the values of the fully complex filter will, in most
cases, dramatically modify the desired outputs.
Therefore the constraints imposed by the filter plane
modulator must be considered in the design of the
filter.
The majority of the efforts has been directed at

obtaining phase-only and binary-phase-only SDF fil-
ters, although the general case of arbitrary con-
straints has also been studied. The first attempt to
design a phase-only SDF was reported by Horner and
Gianino,8 whose solution consisted simply of using
the phase of a conventional composite filter.
Although the first tests gave good results, the ap-
proach is not appropriate because the SDF con-
straints are no longer met.9 Since then a variety of
formulas have appeared in the literature but none of
them seem to give the ultimate answer: Kallman’s
algorithm10 is computationally expensive and gives



little control over the correlation peaks 1according to
Ref. 112. The procedures proposed by Jared and
Ennis11 and Bahri and Kumar12 limit the number of
possible solutions by supposing the filter to be a linear
combination of the training images, thus affecting the
probability of convergence. The Jared and Ennis
algorithm has also been applied to design arbitrarily
constrained filters.13 The entropy-optimized filter
proposed by Mahlab and Shamir14 uses the simulated
annealing algorithm, inheriting its drawbacks: heu-
ristic selection of several parameters 1initial tempera-
ture, number of iterations until thermal equilibrium,
etc.2 and a high computational load 1Ref. 5 reports 7h
30 min on a VAX8200 computer for 10 images of
64 3 64 pixels2.
In this paper a new algorithm for computing con-

strained SDF filters is proposed. It is based on a new
filter design that we call a minimum Euclidean dis-
tance SDF 1MED-SDF2 filter, which enables us to
obtain the closest SDF filter to a given non-SDF filter
in the sense of Euclidean distance. This design is
then used in an iterative algorithm that leads to a
solution in a few steps.
The paper is organized as follows: In Section 2 we

present some previous considerations about the struc-
ture of the algorithm. In particular we see the
necessity of the MED-SDF filter, whose expression is
deduced in Section 3. In Section 4 an sketch of the
algorithm is presented as well as an analysis of the
convergence properties. Section 5 shows the results
of a computer simulation and finally the paper is
closed by the conclusions and a mathematical appen-
dix.

2. Structure of the Algorithm

We designed an iterative algorithm with a structure
similar to that used in the successive forcing algo-
rithm,12 that is, an algorithm in which, at each
iteration, the filter is forced to fulfill the conditions for
the central correlations and subsequently to take
values on the allowed domain 1Fig. 12.
This technique of successive projections is widely

used as a basis of different algorithms in filter synthe-
sis or in image restoration.15,16 The answer to 112
How to project the SDF filter hk onto the domain
allowed by the modulator to obtain filter ak and 122
how to force the constrained filter ak to give the
desired central correlations, that is, to obtain the SDF
filter hk11, will completely shape the algorithm.
Among all the possibilities, we are interested in

those that lead to convergent procedures. Because
we are looking for the SDF filters that take values

Fig. 1. Structure of the algorithm. CONS, constrained filter.
on the specified subset of the complex unit circle, such
convergence should be expressed as
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where h and a are the SDF and the constrained
filters, respectively. The subscripts k and k 1 1
indicate the iteration, and the superscript i indicates
the pixel; finally,N represents the number of pixels of
h and a. Inequality 112 demands that some measure
of similarity between the SDF and the constrained
filter be a quantity decreasing with the number of
iterations. Although it has been written with the
Euclidean distance as a measure of similarity, this is
not the only possibility and other metrics might be of
use. The solution will be reached when the distance
between the two filters drop under some limit, depend-
ing on the desired precision for the correlation values.
However, the imposition of inequality 112 implies

that one solution always exists and that such a
solution can be reached by means of an algorithm
with the chosen structure. We are not able to ensure
this so we had to use the less ambitious condition
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which is similar to inequality 112 but in which the
equality sometimes may hold.
By splitting expression 122 into
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in which expression 122 is obviously implied, we can
answer the two questions stated above in an unique
way.
The first inequality in expression (3),
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is used to project the SDF filter onto the allowed
domain of the complex plane. At this point of the
process we know everything except the filter ak11.
Expression 142 compares the distance of ak and ak11
with respect to the SDF filter at iteration k 1 1, hk11.
Because ak is a constrained filter, if we choose ak11 as
the constrained filter, that makes minimum

E1a2 5 o
i51

N

0hk11
i 2 ai 02; 152

expression 142 is automatically satisfied. Equation
152 is a sum of positive and independent terms and
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therefore the minimum is reached by the minimiza-
tion of each addend. As the coding domain is as-
sumed to be known, the process merely reduces to a
search of the closest domain value to each component
of hk11 1Fig. 22. For example, for a phase-only filter,
ak11 is obtained by the extraction of the phase of the
SDF filter hk11. It is worth pointing out that this
process is used to project, in an optimum way, a
single-image filter.6,7
Equivalently, the second expression,

o
i51
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0hk11
i 2 ak

i 02 # o
i51

N

0hk
i 2 ak

i 02, 162

tells us how to derive the SDF filter at the next
iteration, hk11, from the constrained filter at the
previous iteration, ak. At this point we know every-
thing except hk11. Expression 162 compares the dis-
tance of hk and hk11 with respect to the constrained
filter at iteration k, ak. Because hk is an SDF filter,
when hk11 is selected as the SDF filter, which makes

Fig. 2. Projection of the filter values onto the allowed domain for
1a2 a phase-only filter, 1b2 a binary-phase-only filter, 1c2 an arbitrary
domain.
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minimum

E1h2 5 o
i51

N

0hi 2 ak
i 02, 172

the inequality in expression 162 is automatically met.
The process for obtaining such a filter is not as
evident as before because now the terms of the sum
are not independent; they are linked together by the
conditions imposed on the correlations with the train-
ing images. The appropriate conditions and the
resulting expression for the MED-SDF filter is given
in Section 3.
Figure 3 summarizes the information contained in

this section. Starting from the SDF filter at itera-
tion k, hk, we obtain the constrained filter ak by
looking, among all possible constrained filters, for the
closest to hk. We force this filter to be an SDF design
1to obtain hk112 by looking, among all possible SDF
filters, for the closest to ak. Note that hk11 is not
necessarily equal to the original filter hk and, when
they coincide, the algorithm stops. This issue is
discussed in Section 4. The latter step is carried out
by the computation of the MED-SDF filter.

3. Minimum Euclidean Distance Synthetic
Discriminant Function

Let us suppose we have a correlation filter a that we
wish to modify to give some prespecified values for the
central correlations with M images. The shape of
the filter is important, and so we want to change it as
little as possible. The question as to which filter
enables us to obtain the desired correlations by pre-
serving the original filter a as far as possible is
answered in this section. We call this design the
minimum Euclidean distance synthetic discriminant
function 1MED-SDF2. The problem can be stated in
the following terms:

Let X1, . . . , XM denote the Fourier transforms of
the M images of N components for which we wish to
obtain the values c1, . . . , cM at the center of the
correlation plane. Let a be the filter we need to

Fig. 3. Sketch of the two successive projections that form an
iteration of the algorithm.



modify. We are looking for the filter h so that

h1X 5 cT, 182

where

E1h2 5 o
i51

N

0hi 2 ai 02 192

is a minimum.
In Eq. 182, X is theN 3 Mmatrix whose columns are

the images Xi, c is the column vector ofM components
containing the values ci, and the superscripts T and 1

mean transpose and conjugate transpose, respectively.
Finally, hi and ai represent the component number i of
h and a, respectively. Equation 192 can be rewritten
with vector notation as

E1h2 5 o
i51

N

31hi 2 ai2*1hi 2 ai24

5 o
i51

N

31hi2*hi 2 1hi2*ai

2 1ai2*hi 1 1ai2*ai4

5 h1h 2 h1a 2 a1h 1 a1a. 1102

If the real and the imaginary parts of all the
quantities are made explicit, namely h 5 hR 1 jhI,
a5 aR 1 jaI,X5XR 1 jXI, and c5 cR 1 jcI, where j is
the imaginary unit, Eqs. 182 and 1102 become

hR
TXR 1 hI

TXI 5 cR
T,

hR
TXI 2 hI

TXR 5 cI
T, 1112

E1hR, hI2 5 hR
ThR 1 hI

ThI 2 2hR
TaR

2 2hI
TaI 1 aR

TaR 1 aI
TaI. 1122

We can find the solution by setting the gradients of
the Lagrange function L1hR, hI2 to 0 with respect to
the filter components, where,

L1hR, hI2 5 hR
ThR 1 hI

ThI 2 2hR
TaR

2 2hI
TaI 1 aR

TaR 1 aI
TaI

2 21hR
TXR 1 hI

TXI 2 cR
T2u

2 21hR
TXI 2 hI

TXR 2 cI
T2v, 1132

and u and v are M-dimensional column vectors
containing the Lagrange multipliers. Such a solu-
tion can be written in vector notation as

h 5 a 1 Xw*, 1142

with w 5 u 1 jv. Substitution of Eq. 1142 into Eq. 182
leads to

1a1 1 wTX12X 5 cT, 1152
whence

w* 5 1X1X2211c* 2 X1a2. 1162

Substituting Eq. 1162 into Eq. 1142, we finally obtain

h 5 X1X1X221c* 1 3IN 2 X1X1X221X14a

; comp 1 Pa, 1172

where IN is theN 3 N identity matrix. Equation 1172
can be rewritten as

h 5 a 1 Da5 a 1 X1X1X2211c* 2 X1a2, 1182

that is, the modification of filter a is a composite filter
that complements the central correlations in the
exact amount needed. Because the composite filter
is, among the SDF’s, that with minimum modulus 1it
minimizes h1h2, it changes the original filter a as
little as possible. The expression in Eq. 1172 admits a
potentially useful interpretation. When a is an arbi-
trarily chosen vector, Eq. 1172 represents the most
general solution to the SDF problem,17 where the
term X1X1X221c* is the classical composite filter and
IN 2 X1X1X221X 1 is the projection operator over the
subspace spanned by the N–M orthogonal vectors to
the training images. Every SDF design can be ex-
pressed in the above form by the proper choice of the
vector a, which can now be interpreted as the filter to
which h most approximates, thus establishing an
interesting link between SDF and non-SDF filters.

4. Algorithm

The whole process to compute constrained SDF filters
is depicted in Fig. 4 and can be sketched as follows:

Step 1: Choose an initial vector a0 of N compo-
nents.

Fig. 4. Block diagram of the proposed algorithm.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3907



Step 2: Start iteration k: compute

hk 5 a comp 1 Pak21 1192

bymeans of Eq. 1172, where a is a scaling constant that
is justified below.
Step 3: Compute for i 5 1 toN:

ak
i5 arg min;s[D1 0hk

i 2 s 022 1202

where D represents the coding domain and s is an
arbitrary value of this domain.
Step 4: If the difference between the constrained

and the SDF filters is small or if the algorithm stops
its convergence, i.e., if

Ek 5 o
i51

N

0hk
i 2 ak

i 02 , uf, 1212

or

0Ek 2 Ek21 0 , um, 1222

then exit; uf and um are arbitrarily chosen small
numbers.
Step 5: If the condition in step 4 is not satisfied,

finish iteration k by going to step 2.

The computation of the MED-SDF filter is carried
out in step 2. It involves a matrix–vector multiplica-
tion to project the constrained filter onto the orthogo-
nal subspace to the training images and the addition
of the resulting vector to the composite filter. Note
that both this filter and the projection matrix are
fixed and can be precomputed and stored. However,
the projection operator is a matrix of N 3 N compo-
nents and would require a huge amount of memory
1for 128 3 128 images it needs over 1 Gbyte2. A good
compromise between memory requirements and com-
putation complexity is to precalculate only S 5
X1X1X221, which is an N 3 M matrix 1for 20 images of
128 3 128 pixels it needs ,1 Mbyte2. Then the com-
putation is completed at each iteration when the
stored matrix is multiplied by the M-dimensional
vector X1a and the result is added to the N-
dimensional vector a:

3I 2 X1X1X221X14a 5 a 2 X1X1X221X1a

5 a 2 S1X1a2. 1232

The scaling constant in step 2 provides an addi-
tional degree of freedom. It accounts for the fact that
the specified values for the central correlations can be
rescaled to obtain a better match between the com-
puted filter and the values available in the coding
domain. We want a bright correlation spot with the
target images and a dim one with the nontarget
patterns, but the exact value to be imposed at the
center of the correlation plane to achieve this depends
a good deal on the characteristics of the filter plane
modulator. In appendix A we deduce the expression
for the scaling constant that leads to a minimum
3908 APPLIED OPTICS @ Vol. 34, No. 20 @ 10 July 1995
distance between hk11 and ak. Note that we have
two additional sources of degrees of freedom:

x The phases of the central correlations with theM
training images can be used to minimize further the
difference between the SDF filter hk11 and the con-
strained filter ak. The same procedure proposed for
optimizing the phase in previous SDF designs can be
used.18,19

x The SDF filter hk11 can be rescaled again by a
complex constant to obtain ak11 with minimal error,
as proposed in Ref. 6 for single-image filters.

We did not exploit these two possibilities in order to
not overly complicate the algorithm. Although the
nondivergent behavior of the algorithm will not be
affected by not performing these additional opera-
tions the probability of convergence is lower.
The process stops only when 1a2 one solution is

reached; the constrained filter ak fulfills the SDF
conditions, i.e.,

ak 5 comp 1 Pv, 1242

where v is some N-dimensional vector. Filter hk11 is
then

hk11 5 comp 1 P1comp 1 Pv2

5 comp 1 P1comp2 1 P2v

5 comp 1 0 1 Pv 5 ak, 1252

and the output is constant from this point on. We
derived Eq. 1252 by using P as a projection operator,
and therefore P2 5 P, and the filter comp as a linear
combination of the training images and thus its
projection P1comp2 is null.
1b2 If ak is not an SDF filter but can be written as

ak 5 ak21 1 v, 1262

where v belongs to the kernel of the projectionmatrix,
i.e., v [ ker1P2. Filter hk11 is then

hk11 5 comp 1 Pak 5 comp 1 P1ak21 1 v2

5 comp 1 Pak21 5 hk, 1272

whence

ak 5 ak11 5 ak12 5 . . . ,

hk 5 hk11 5 hk12 5 . . . , 1282

and the distance between the SDF and the con-
strained filter remains constant. This possibility is
unlikely, as the dimension of the kernel of the projec-
tion matrix is M, the number of training images,
which is in general much smaller than the dimension
of the space, the bandwidth productN.
1c2 If ak is not an SDF filter but

hk fi hk11,

ak 5 ak11, 1292



then

ak 5 ak11 5 ak12 5 . . . ,

hk11 5 hk12 5 . . . , 1302

i.e., when the projection of two consecutive and differ-
ent SDF filters is the same, the algorithm stops its
convergence. This possibility is difficult to analyze
and depends on the coding domain. It represents the
intuitive notion that the smaller the number of coding
values the smaller the probability of finding a solution.
When there are no restrictions and the entire complex
plane is available, the SDF and the constrained filters
are always equal and expression 29 is self-contradic-
tory and never holds. When only one coding value is
allowed, all the constrained filters are the same and
the process stops at the first iteration. No solution is
possible. Binary modulators permit the coding of 2N
different filters, which for 1283 128 images is greater
than 104900. In spite of this seemingly large number,
because two consecutive SDF filters may be similar,
especially when we are near the solution, their bina-
rization may be equal with relative ease. Although
we found this problem with binary-phase-only filters
we show in Section 5 that the algorithm can still
produce usable filters.

5. Results

The algorithm was tested by means of computer
simulation of the optical correlation process. To-
ward this end, we designed several filters to solve a
two-class problem involving different views of out-of-
plane rotated objects. The true class was formed by
20 images of a tank captured every 18°. The false
class contained 20 images of a truck obtained under
the same conditions. All the images were 128 3 128

Fig. 5. Training set: 1a2 true-class images, 1b2 false-class images.
pixels, and no special preprocessing such as edge
enhancement was carried out. The training set, that
is, the set of images used in designing the filters, for
all the examples that follow is shown in Fig. 5. It is
composed of the ten samples of each object taken at 0°,
36°, . . . , 324° angles. The performance of the algo-
rithm was studied for four different coding domains
1Fig. 62: a phase-only domain, a binary-phase-only
domain, a spiral coupling between amplitude and
phase, and an arbitrary domain. Phase-only filters
are attractive designs because they provide a good
trade-off between noise resistance and peak sharp-
ness together with optimum light efficiency.5,20
Binary-phase-only filters retain to a large extent the
properties of the latter design, but they can be imple-
mented in actual devices such as magneto-optic spa-
tial light modulators, which, in addition, are very fast.
The spiral domain is typical for liquid-crystal displays.
Finally, Fig. 61d2 shows a rather arbitrary modulator
characteristic for which the algorithm will work.
The first issue addressed was the choice of the

initial filter a0. The algorithm was found to be
capable of producing SDF filters with a wide variety of
starting points. In particular we tested

1a2 Full complex SDF filters designed to solve the
same problem. We used them because sometimes
the simple projection of an SDF filter is a good
solution. For example, the phase of a composite
filter is sometimes a good phase-only SDF8 and thus
would require only small modifications.

1b2 Random complex vectors. In contrast to case
1a2, they contain no information about the problem.

Fig. 6. Different coding domains used to test the method: 1a2
phase-only domain, 1b2 binary-phase-only domain, 1c2 spiral cou-
pling between amplitude and phase, 1d2 arbitrary domain.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3909



1c2 The same starting point used in the Jared and
Ennis algorithm,11 i.e.,

a0 5 o
i51

M

ciXi, 1312

whereXi is theN-dimensional vector representing the
i training image, ci is its desired output, andM is the
number of training images.

Figure 7 shows the convergence of the algorithm
when a phase-only SDF is designed with a MACE
filter as a starting point. The Y axis, which has a
logarithmic scale, represents the error between the
SDF and the constrained filter at a given iteration
divided by the sum of the squared magnitude of the
components of the SDF filter, i.e.,

ENORM1h2 5 1o
i51

N

0hk
i 2 ak

i 022/1oi51

N

0hk
i 022 , 1322

where h is the SDF filter and a is the phase-only
version of h. The superscript i indicates the compo-
nent, and the subscript k indicates the iteration. For
an ideal phase-only filter this error function is 0.
The graph shows an exponential decay with the
number of iterations, indicating a fast approach to the
desired phase-only filter.
The accuracy attained for the SDF conditions was

found to be only slightly dependent on the initial
point, although different number of iterations 1from
10 to 202 were required for different points. How-
ever, depending on a0, the behavior of the final filters
may be different because the algorithm seems to find
a solution easily, without modifying the starting

Fig. 7. Plot showing the convergence of the algorithm for a
phase-only SDF.
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point so much. Because the solution is close to the
initial filter, it preserves its characteristics to some
extent.
We give two examples of this feature. In the first

one, three phase-only SDF’s were computed by the
use of the phase of a MACE filter, a phase-only
random vector, and a constant plane in Fourier space
1a delta function in object space2 as initial points.
Figure 8 shows the impulse responses of the obtained
filters. All three meet the SDF conditions with an
accuracy of 96% and are very similar to their respec-
tive starting filters. For instance, the filter of Fig.
81b2 is clearly random or the filter of Fig. 81c2 is almost
a delta function. The rest of the correlation plane is,
of course, very different, and this property enables a
indirect control over the characteristics of the final

Fig. 8. Impulse response of three phase-only SDF’s designed with
the same training set but with different starting points: 1a2 the
phase of a MACE filter, 1b2 a phase-only random vector, 1c2 a
constant plane in Fourier space.



filters. The second example illustrates this point
more clearly.
Figure 91a2 shows the central correlations between

the whole set of 40 images 120 tanks and 20 trucks2
and a phase-only SDF designed with only the 20
views shown in Fig. 5. The starting point was the
sum of the 10 target images 1the 10 tanks2. Note that
although there is a perfect control over the central
correlations with the training images and small side-
lobes 1see Fig. 14 below2, the correlations with the

Fig. 9. Central correlations obtained with two different phase-
only SDF’s: 1a2 with a starting point formed by the sum of the 10
tanks of the training set 3Fig. 51a24, 1b2 with a starting point formed
by the sum of the whole set of 20 tanks. Open circles represent
the correlations with the trucks. Filled circles represent those of
the tanks.
tanks not included in the training set are too small to
be separated from those of the trucks. The true-class
images can be separated from those belonging to the
false class, if the initial point is formed by the sum of
the whole set of true-class images 120 tanks2, as shown
in Fig. 91b2. Thus the election of an initial vector a0
that includes information about the intermediate
views leads to a filter with enhanced generalization
capabilities.
The type of coding domain is the most influential

factor with respect to the control of the central
correlations. Figures 10, 11, and 12 show respec-
tively the central correlations between the images of
the training set and the binary-phase-only filter, the
spiral filter, and the arbitrarily constrained filter
whose domains are shown in Fig. 6. The correlations
with the nontraining images 1the intermediate views2
are not shown because they strongly depend on the
filter a0 as stated above. The two latter designs
accurately meet the SDF constraints. The binary-
phase-only filter presents more difficulties because,
although the values for the true-class images are
significantly higher than those of the false class, they
show the most marked variation. This is due to the
stop of the algorithm at approximately four iterations
with all the initial points we used. Finally, Figs.
14–17 present three-dimensional plots as well as a
front and a lateral view of the intensity of the
correlation between the test scene of Fig. 13 and the
four filters. A good detection of the tank is possible
in all cases.

6. Final Remarks and Conclusion

A new algorithm for computing SDF’s adapted to the
restrictive modulation characteristics of present-day

Fig. 10. Central correlations between a binary phase-only SDF
and the images of the training set. Open circles represent the
correlations with the trucks; filled circles represent those of the
tanks.
10 July 1995 @ Vol. 34, No. 20 @ APPLIED OPTICS 3911



devices has been developed. In contrast to other
previously proposed methods, our procedure can be
proved to be nondivergent. Furthermore it has a
solid mathematical background that enables the analy-
sis of the cases that do not lead to a solution. The
algorithm needs only a few iterations, ranging from
10 to 20, to obtain the desired filter so the computa-
tional load is moderate. Finally, no special assump-

Fig. 11. Central correlations between a spirally constrained SDF
filter and the images of the training set. Open circles represent
the correlations with the trucks; filled circles represent those of the
tanks.

Fig. 12. Central correlations between an SDF with values on the
domain of Fig. 61d2 and the images of the training set. Open
circles represent the correlations with the trucks; filled circles
represent those of the tanks.
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tion of the shape of the filter was made, such as the
imposition for the filter to be a linear combination of
the training images and therefore multiple solutions
could be reached by changing the initial point. This
property enables an indirect control over the charac-
teristics of the final filter, as indicated by the results
of the simulation. Nevertheless, a systematic ap-
proach for the selection of the initial filter to take full
advantage of this feature must still be devised. We
are currently working in this direction to introduce
optimality considerations into the algorithm.
There are other possibilities worth exploring, such

as the use of different metrics to measure the similar-

Fig. 13. Test input scene. Both images belong to the training
set.

Fig. 14. Correlation between the phase-only SDF and the input
scene of Fig. 13.



ity between the SDF and the constrained filter. The
change of the similarity criterion might permit us to
obtain a solution when this is not feasible with the
Euclidean distance. This possibility is also being
studied, and the results will be reported in a future
work.

Fig. 15. Correlation between the binary-phase-only SDF and the
input scene of Fig. 13.

Fig. 16. Correlation between the spirally constrained SDF and
the input scene of Fig. 13.
7. Appendix A

We derive an expression for the scaling of the central
correlations leading to minimum error, as mentioned
in Section 4.
The expression for the error function to be mini-

mized can be written in vector notation as 3see Eq. 11024

E 5 h1h 2 a1h 2 h1a 1 a1a, 1A.12

where h is the MED-SDF filter:

h 5 a comp 1 Pa, 1A.22

and a is a real constant that scales the central
correlations. By substituting Eq. 1A.22 into Eq. 1A.12
we get

E1a25 3a1comp21 1a1P41a comp1Pa2

2a11a comp1Pa2

2 3a(comp21 1a1P4a1a1a

5 a21comp21comp1 a1comp21Pa

1 aa1P1comp21a1P2a2 aa1 comp2a1Pa

2 a1comp21a2a1Pa1a1a. 1A.32

Owing to the properties of the projection operatorP,

1comp21Pa 5 0,

a1P1comp2 5 0,

a1P2a 5 a1Pa ⇒ a1P2a 2 a1Pa 5 0, 1A.42

Fig. 17. Correlation between the arbitrarily constrained SDF
3Fig. 61d24 and the input scene of Fig. 13.
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we can write

E1a25 a21comp21comp2 2aa1 comp2a1Pa1a1a,

1A.52

and, finally, by setting the derivative of E to 0, we find
the expression for a leading to minimum error:

≠E

≠a
5 0⇔ 2a1comp21comp2 2a1 comp5 0, 1A.62

whence

a 5
a1 comp

1comp21comp
. 1A.72
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corrélation optique,’’ Rev. Tech. Thomson-CSF 22, 649–734
119902.

6. R. D. Juday, ‘‘Optimal realizable filters and the minimum
Euclidean distance principle,’’ Appl. Opt. 32, 5100–5111 119932.
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