
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED 03, 2023 1

Learning Needle Pick-And-Place without expert
demonstrations

Rokas Bendikas1,2, Valerio Modugno2, Dimitrios Kanoulas2, Francisco Vasconcelos1, Danail Stoyanov1

Abstract—We introduce a novel approach for learning a
complex multi-stage needle pick-and-place manipulation task
for surgical applications using Reinforcement Learning without
expert demonstrations or explicit curriculum. The proposed
method is based on a recursive decomposition of the original
task into a sequence of sub-tasks with increasing complexity and
utilizes an actor-critic algorithm with deterministic policy output.
In this work, exploratory bottlenecks have been used by a human
expert as convenient boundary points for partitioning complex
tasks into simpler subunits. Our method has successfully learnt
a policy for the needle pick-and-place task, whereas the state-of-
the-art TD3+HER method is unable to achieve success without
the help of expert demonstrations. Comparison results show that
our method achieves the highest performance with a 91% average
success rate.

Index Terms—Surgical Robotics, Autonomous Agents, Rein-
forcement Learning, Transfer Learning.

I. INTRODUCTION

END-TO-END control policies obtained via Reinforce-
ment Learning (RL) methods are becoming an emerging

alternative to traditional robot control approaches [1], [2].
Such control policy learning methods are well suited for
short-horizon problems containing smooth state spaces and
continuous reward functions, that can be effectively explored
by an agent. Nevertheless, robotic manipulation settings often
expect behaviours that lead to very specific goals, such as
picking and placing an object at a desired location or inserting
a peg in a hole [3]. While sparse reward functions describe
such environments in a more natural way, they make learning
much more challenging [4].

Learnt control policies can prove especially beneficial in
addressing surgical manipulation problems. This is due to their
ability to overcome typical obstacles that arise when using
conventional non-learning approaches. Learnt methods often
reflect much higher performance speed, which is essential
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Fig. 1: An example of a sequential multi-stage manipulation
required for a wound suturing procedure. It contains three
steps: a) Needle grasping, (b) Needle insertion into the tissue
using Patient Side Manipulator, (c) Needle regrasping.

when working in dynamic surgical environments [5]. Further,
they have the ability to generalize and adapt their actions in
real-time based on changing environmental conditions which
are key toward the implementation of fully autonomous sys-
tems [6]. Therefore, learned control policies have the potential
to enhance the effectiveness of surgical needle manipulation
tasks, ultimately improving patient outcomes.

In the context of surgical needle manipulation, it can be very
complex to learn such policy due to a range of problems, asso-
ciated with the nature of the clinical setting. Such tasks often
contain a multi-stage problem structure, where the execution
of each stage has to be in the correct order [7]. For example,
suturing tissue during robotic surgery to achieve anastomosis
requires needle grasping, insertion, and needle regrasping [8],
as shown in Figure 1. Failing one of the stages often requires
modifying the structure of the task. Furthermore, needle ma-
nipulation procedures require extremely accurate and precise
control throughout the operation. Intuitively, grasping a needle
is much more difficult than grasping a larger object, due to its
size and geometry, requiring a very precise grasping policy.
Furthermore, the material properties of the needle make it
hard to grasp, as smooth metallic surface has very reduced
frictional properties.

The sequential multi-stage structure of such tasks, aug-
mented with strict grasping requirements, introduces bottle-
neck regions that limit the capability of the learner to com-
plete each subtask in the sequence. Following the definition
introduced in [9], bottlenecks are regions in the state space
always traversed by trajectories that solve the desired task.
In the context of multi-stage sequential manipulation and
especially for surgical applications, these regions can become
very narrow, hence hindering the capability of the learner
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to solve the desired task. Here, we will refer to them as
exploratory bottlenecks to stress their role as limiting factors
in learning an effective control policy.

Recently, benchmarks have emerged, each aiming to solve a
sub-part of a bigger surgical procedure. NeedlePickAndPlace
is a common surgery-related benchmark, where the agent has
to pick up a needle and place it in a different location. The
task is crucial for solving autonomous suturing and thus, is
greatly studied in the surgical robotics community [10], [11],
[12].

In this paper, we propose a new framework for learning
NeedlePickAndPlace task, without reward shaping, demonstra-
tions, or the explicit definition of a curriculum. We break the
task down into two sequential sub-tasks that encapsulate each
other recursively. Defining each subtask as a combination of
all the previous ones introduces a methodological difference
with respect to classical approaches, such as Transfer Learning
(TL) or Curriculum Learning (CL). In these methods, each
subtask is learned in isolation and, successively, the acquired
knowledge is transferred by exploiting specific similarity met-
rics among sub-problems [13].

We utilize a Patient Side Manipulator (PSM) to perform
the manipulation task. PSM is a secondary component of
a daVinci Research Kit (dVRK), constrained by a fulcrum
point invariant to the joint configuration, i.e., a Remote Center
of Motion (RCM), thus allowing to perform laparoscopic
procedures [14], [15].

A. Contributions

In this work, we propose a novel method for learning the
NeedlePickAndPlace tasks without using expert demonstration
or explicit CL. To our knowledge, our approach has not been
previously proposed in the surgical robotic control domain,
and it achieves state-of-the-art performance. Summarizing our
contributions, we introduce:

1) A learnt control policy that is able to perform a needle
pick-and-place task using a Patient Side Manipulator.

2) A task restructuring and goal definition technique via
implicit CL.

3) A novel approach to preload a replay buffer with par-
tially completed trajectories that are bootstrapped from
a prior actor.

4) A composite actor loss that leverages the knowledge
from the prior critic using the Q-function transfer
method.

II. RELATED WORK

Automation of surgical robotics is an emerging area
of research, that has gained significant attention in recent
years [16]. Autonomous surgical needle manipulation is a
sub-area of the field, that aims to develop advanced robotic
systems capable of manipulating surgical needles with a high
level of precision and accuracy, without requiring direct human
intervention. [17], [18], [19], [20]. Such tasks often contain
a multi-stage structure and are extremely hard to learn [10].
Nevertheless, the ability to accurately and precisely manip-
ulate surgical needles is a critical step in various surgical

procedures, and the development of autonomous systems that
can perform this task has the potential to revolutionize the
field of minimally invasive surgery [15]. Several researchers
have explored different methods for autonomous surgical
needle manipulation, including vision-based approaches [6],
non-learning approaches [21], [22] as well as learning-based
approaches [23].

Non-learning methods often exhibit higher operational ac-
curacy, but lack performance speed [12], [24], due to the
resource-intense path-planning algorithms. On the other hand,
the state-of-art learning-based approaches employ the Learning
from Demonstrations (LfD) paradigm, where the agents try
to reproduce demonstrations from an expert [17], [5], [6].
Whilst LfD approaches offer great sample efficiency, the
required data collection can be cumbersome. In the context of
surgical robotics, this is also extremely resource-expensive, as
generating good-quality demonstrations may require a trained
surgeon or may vary across different surgeons.

Hierarchical Reinforcement Learning (HRL) is an effective
learning paradigm for multi-stage tasks. However, it has not
been applied in surgical settings. In [25], the authors describe
policy tree approaches, a group of HRL methods consisting of
two stages: subtask subdivision and optimal blending policy
learning. HRL requires a set of pretrained policies to solve
each subtask prior to learning the global policy. This reliance
on pre-learned subtask policies can limit the optimality and
adaptability of the final hierarchical policy. Our approach
differs from policy tree HRL methods in that it uses a single
end-to-end neural network for the final policy, whereas policy
tree methods have multiple networks. This reduces memory
footprint during operation, as all networks do not need to be
stored in memory simultaneously.

Curriculum Learning (CL) is a widely used technique for
learning goal-conditioned tasks with a sparse reward scheme.
CL involves gradually increasing the complexity of the agent’s
experiences during the learning process, allowing it to learn
simpler behaviors before moving on to harder ones [26].
CL methods can be classified as either Explicit or Implicit.
Explicit CL requires the manual definition of an increasing
difficulty strategy for the task, while Implicit CL methods
allow the curriculum to emerge as a side effect of the training
strategy [27].

In the field of robotics, Explicit CL is commonly used to
define an increasing difficulty in the objective or operational
environment [28], [29], [30]. This approach allows for better
task learning, but it requires the manual definition of the entire
training curriculum. In contrast, our method only requires the
manual definition of an exploratory bottleneck.

Hindsight Experience Replay (HER) is a popular example of
an Implicit curriculum learning method used in robotics [31].
HER assumes that easier-to-reach states are encountered
first and can be used to gain knowledge from unsuccessful
episodes. To accomplish this, HER reassigns the desired goal
of each episode to be one of the goals that were achieved
during that episode. This allows the agent to learn from its
unsuccessful experiences and as much as from the successful
ones.

In our approach, we leverage an HER replay buffer to
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improve the agent’s learning, but we do not explicitly generate
a curriculum. Instead, a natural curriculum emerges from the
recursive formulation of each subtask. As such, according to
the classification introduced in [27], our proposed method
falls under the Implicit CL category, where a CL technique
is employed without explicitly defining a curriculum.

Our work is related to the Policy Distillation method [32],
which allows the transfer of knowledge from multiple ex-
perts to a single agent. This technique can also compress
the agent’s capabilities while maintaining its performance. In
our approach, we employ a form of Policy Distillation by
transferring the combined knowledge of all previous subtasks
to the next policy. This results in a new distilled policy that can
solve all previous subtasks and any new ones that are added to
extend the sequence. Additionally, since we always retrain the
agent on the entire sequence of subtasks whenever a new one
is added, we avoid the issue of catastrophic forgetting [33].

Transferring knowledge between policies necessitates em-
ploying a Transfer Learning (TL) strategy [34]. In our ap-
proach, we use a combination of Q-function [35] and replay
buffer transfer. To transfer the replay buffer, we preload it
with the transitions collected while executing the previous
sub-task actor. Additionally, we achieve Q-function transfer by
employing the previous sub-task critic to guide the currently
learning actor.

III. METHODS

A. Background

RL problems are formulated as Markov Decision Processes
(MDP), defined by a tuple M = (S,A, P, r, γ). In this
formulation, S is the state space, A is the action space, P is the
transition probability, r is the immediate reward function, and
γ is the discount factor. TD3 is an off-policy RL algorithm
that learns a deterministic policy by back-propagating the
gradient signal through the critic network to the actor network
directly [36]. The algorithm contains two neural networks:
Actor and Critic, that are trained iteratively.

The critic network is used to approximate the Q-function by
learning a mapping S× A→ R, parameterized by ϕ. The Q-
function provides an agnostic measure of the state st quality
when performing an action at from that state. The measure
is expressed as the expected future reward, starting from that
state and operating under policy π, and defined as:

Qπ(s, a) = Eπ[

∞∑
k=0

γkrt+k+1|st = s, at = a] (1)

In Equation 1, st is the current state, and at is an action
that is taken from st and Eπ is the expected weighted total
reward, obtained using policy π, starting from the state st and
taking the first action at. The loss of the critic is defined using
temporal-difference approximation, minimizing the difference
between Q-value at timestep t and the sum of Q-value at st+1

and instantaneous reward rt with respect to ϕ:

LQ(ϕ,D) = E
(st,at,r,st+1,d)∼D

[(Qϕ(st, at)− T )2] (2)

Where the Target Q-value approximation (T) is defined as:

T = (r + γ(1− d)Qϕ(st+1, πθ(st+1)))

In Equation 2, a replay buffer D is used to sample expe-
riences in tuples that contain a current state representation
st, an action at, an instantaneous reward r, the next state
representation st+1 and an episode termination indicator d.
The actor-network represents a learnt policy πθ that performs
a mapping S → A, parameterized by θ. An optimal policy
π∗ provides actions that maximize the total episode reward
R. Therefore, the loss function of the actor-network is set to
maximize the Q-value with respect to θ by encouraging the
actor-network πθ(s) to produce actions, that lead the agent to
states with higher Q-values, such as:

Lπ(θ,D) = E
s∼D

[(Qϕ(s, πθ(s)))] (3)

B. Task Decomposition
In this work, we focus on solving a complex multi-stage

manipulation task that consists of picking and placing a small
needle to a designated location and which we will call from
now on for simplicity NeedlePickAndPlace.

The NeedlePickAndPlace task cannot be learnt directly via
random exploration, as the trajectory goal is located beyond
an exploratory bottleneck. This bottleneck is located at the
instance of needle grasping and is caused because only a very
narrow set of actions can be performed in order to cross it.
Furthermore, state representations just before and after the
grasping instance are extremely similar, making it difficult for
an agent to reason about the grasping status.

In our method, we introduce an intermediate goal that allows
learning the overall policy by implicitly increasing the com-
plexity of the curriculum. We first split the NeedlePickAnd-
Place task into 3 distinct manipulation phases: Reaching,
Grasping, and Placing. In this formulation, the second task
contains the exploratory bottleneck, however, it also requires
the shortest manipulation trajectory to complete. We then
define a two sub-task system, defining a two-level curriculum,
each containing a trajectory goal. The first sub-task requires an
agent to reach the needle grasping point and has a goal defined
at the needle grasping point. The second sub-task requires
the completion of all three stages and has a goal defined at
the expected placing position. We do not explicitly learn the
grasping phase, since we use it to isolate the bottleneck in the
shortest possible manipulation trajectory segment. Neverthe-
less, grasping is learnt implicitly when learning to complete
the manipulation task.

Intuitively, both tasks are strongly related, and manipulation
trajectories that are performed in the first sub-task provide
a partial completion of the second sub-task. Therefore, such
decomposition induces an implicit curriculum structure, allow-
ing to learn the shorter manipulation task before learning the
longer one. Our method is presented in Figure 2.

C. State and reward spaces
Our method employs a composite state space representation.

We condition the task-invariant scene observation st with a

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3266720

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 19,2023 at 18:25:24 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED 03, 2023

GraspingReaching Placing

a) Original task stages b) Viable actions

Task Achieved Goal Desired Goals Extends

Needle 
PickAndPlace

Needle position [Placing position] -

NeedleReach PSM tip position [Needle position] -

NeedlePlace Needle position [Needle position, 
Placing position]

Needle Reach

c) Task structures

Goal Exploratory bottleneckNeedle

Needle Reaching Needle Placing

Needle Grasping

d) Task decomposition

NeedlePlaceNeedleReach

Fig. 2: Semantic decomposition of NeedlePickAndPlace task: a) The overall task is divided into three phases: Reaching,
Grasping, and Placing; b) Grasping stage is the exploratory bottleneck, therefore the set of actions that allow to cross it gets
reduced the closer an agent gets to the bottleneck; c) The complete task is refactored into NeedleReach and NeedlePlace
sub-tasks, where the latter contains a partial expected trajectory of the former; d) Summary of the task definition structure.

task-dependent desired goal dgn, that is to be achieved in the
nth task. Such a scheme allows for an easy state representation
generation, that provides intra-task compatibility support when
using our method. Furthermore, the state representation is
normalized before feeding the data to the neural network.
We use a custom input normalization layer, that collects and
updates running mean and standard deviation measures during
training. These measures are then used during the inference
passes.

Furthermore, both sub-tasks are trained using sparse reward
schemes. Any action results in a reward of -1, and only a
transition that leads to a successful episode obtains 0 reward.
The success conditions are explained in section III-E.

D. Learning the policy

The policy for NeedlePickAndPlace task is learnt in two
training stages, utilizing both sub-task as a curriculum with
increasing difficulty. During the first stage, we train the agent
from scratch using a vanilla TD3 + HER algorithm for the
NeedleReach task, with the goal defined at the needle grasping
point. The agent is able to learn such policy via random
exploration due to goal resampling, facilitated by the use of
HER replay buffer.

During the second stage, we are training the agent to
complete the full NeedlePickAndPlace with the goal defined
in the placing location. We further use the agent trained
for the first sub-task to leverage a useful prior, allowing to
overcome the exploratory bottleneck. In order to achieve a
successful transfer, the prior agent must have converged. Using
an agent that has not converged to successfully complete
the NeedleReach task will lead to complete failure in learn-
ing NeedlePickAndPlace task. We determined empirically the

convergence point of the prior to happen at 500k timesteps,
achieving 94% success rate during evaluation, as illustrated in
Figure 4.

Before the training starts, we preload a newly initialized
HER buffer with partially completed trajectories, provided by
the NeedleReach agent. This ensures that the actor and critic
networks of the second sub-task are immediately exposed to
trajectories that they are expected to perform. Further, pre-
trained actor occasionally grasps the needle and moves it to
a different location due to uncertainty of the correct actions
after reaching is completed and added exploratory noise. Such
trajectories provide a direct learning signal after HER goal
resampling is applied.

Furthermore, we redefine the NeedlePlace actor loss formu-
lation, allowing to exploit the NeedleReach critic knowledge
when learning NeedlePlace task. This is accomplished by ob-
taining a compound loss for the NeedlePlace actor, generated
by both NeedlePlace and NeedleReach critics. Therefore, we
update the actor loss to maximize the combination of both
critics with respect to θ, as:

Lπ(ϵ, θ,D) = E
s∼D

[ (1− ϵ) C2 + ϵ C1 ] (4)

C1 = Qn
ϕ′(sn, πθ(s))

C2 = Qn+1
ϕ (sn+1, πθ(s))

In Equation 4, ϵ is a linearly decaying parameter, and
it decays from 1 to 0 as the training of the second stage
progresses. Values sn and sn+1 are state representation for
the NeedleReach and NeedlePlace task, respectively. Lastly,
C1 and C2 represent outputs of the critics of each task,
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Algorithm 1 Training policy for sub-task n+ 1 via prior n

Require: Trained prior actor An and critic Qn, initialised
environment Env

Ensure: Initialise HER buffer D, current agent actor An+1
θ ,

critic Qn+1
ϕ and target critic Qn+1

target

while Preloading D do
episode← Env,An(sn)
Append episode to D

end while

while training do
episode← Env,An+1(sn+1)
Append episode to D
batch ∼ D
r ← Env.get rewards(batch)
d← Env.get dones(batch)
T ← r + γ(1− d)Qn+1

target(s
n+1
t+1 , A

n+1(sn+1
t+1 ))

LQ(ϕ, batch) = E
batch

[(Qn+1
ϕ (sn+1

t , a)− T )2]

Qn+1
ϕ ← Qn+1

ϕ +∇ϕLQ

if policy update step then
C1 ← Qn(snt , Aθ(s

n+1
t ))

C2 ← Qn+1
ϕ (sn+1

t , Aθ(s
n+1
t ))

LA(θ, batch, ϵ) = E
batch

[(1− ϵ)C2 + ϵC1]

An+1
θ ← An+1

θ −∇θLA

end if
Qn+1

target = (1− γ)Qn+1
target + γQn+1

ϕ

end while

parameterized by ϕ and ϕ′. The pseudocode of the algorithm
is presented in Algorithm 1.

E. Environment setting

We perform the training of both sub-task in a modified
SurRoL training environment [10]. SurRoL employs a phys-
ical interaction and friction-based grasping approach called
“interact”, reducing the reality gap between the simulation
and the real world. Both sub-tasks contain two objects of
importance: a PSM and a needle that is placed on a surgical
tray. The PSM is initialized so that the End-Effector tip pose is
[(2.5, 0.25, 3.6), (0, pi

2 , π)] when an episode starts. The needle
is randomly sampled on the tray with a deviation of 5 cm from
the tray centre in parallel to the tray surface. Furthermore, its
yaw angle is randomly set in the range [−π

2 ,
π
2 ].

We further define the state representation using the data
provided by the environment. The simulated environment
returns a raw state representation, containing three contextual
objects: a task-invariant scene observation, an achieved goal,
and a list of desired goals. The scene observation contains
robot and needle pose information, ensuring a fully-observable
domain and is shared between both sub-tasks.

For the NeedleReach task, the achieved goal is defined to be
the end-effector tip position and the desired goal contains the
needle body central point position. To complete the episode
successfully, the L1 norm between the achieved goal and
desired goal has to be below 4 mm. The task has a maximum
episode length of 50 steps. For the NeedlePlace task, the

achieved goal is defined to be the needle body central point
position and the desired goal list contains two goals: the needle
body central point position and a randomly sampled position
in the operational space, where the object has to be placed.
To complete the episode successfully, the L1 norm between
the achieved goal and the second desired goal has to be below
2.5 cm. The task has a maximum episode length of 100 steps.
Both settings are presented in Figure 3.

F. Control setting

We utilize a model of the Da Vinci Research Kit (dVRK)
surgical robotic system [14] for minimally invasive la-
paroscopy. We employ a single PSM arm, containing 7 degrees
of freedom. The dVRK system comes with a quality kinemat-
ics framework included through the CIST library, therefore
allowing for effective control through high-level control inputs.

We utilize delta-pose method to control the manipulator.
Delta pose method refers to a positional control approach,
where spatial change values of the End-Effector Cartesian
position and orientation are provided by the agent. In our
setting, these values are bounded in the range of [−0.5, 0.5].
The first three control values represented delta End-Effector
(EE) position in the world coordinate frame, allowing for the
gripper translations in the operational space. Furthermore, a
single delta-yaw value is used to achieve a gripper tip rotation,
which allows fitting the curvature of the manipulated object.
Lastly, a single-valued gripper action is used, where a value
≥ 0.0 represents an open gripper state.

IV. TRAINING AND RESULTS

A. Comparison with the baseline

We compared our agent’s performance against four baseline
methods: TD3 with HER replay buffer (HER), TD3 with
HER replay buffer and Behavioral Cloning (BC) loss (HER +
BC), TD3 with HER replay buffer that was preloaded with
expert demonstrations (HER+DEMO) and TD3 with HER
replay buffer that was preloaded with expert demonstrations
and Behavioral Cloning (BC) loss (HER + DEMO + BC).
The first two baselines showed that pure exploration is not
enough to learn NeedlePickAndPlace task from scratch, even
with BC loss being applied directly to the actor. Whereas
the latter two both employ expert demonstrations and are
the current state-of-art solution for learning end-to-end policy
for NeedlePickAndPlace task, as demonstrated by [10]. Our
method required also obtaining a prior agent, that was trained
for 500k time steps, preloading 10k time steps of experience
collected via random exploration.

We trained all five models for 2 million time steps whilst
maintaining the hyperparameters as similar to each other
as possible in order to allow for a reasonable comparison.
All five instances were preloaded with 50k time steps of
transitions, coming from the random exploration, path planner,
and prior actor for HER and HER+BC, HER+DEMO and
HER+DEMO+BC, and our methods respectively. Then each
agent was trained for the remaining 1.95 million time steps,
using ADAM optimiser with a learning rate of 1e−4 and
batch size of 2048 samples. For BC methods, we implemented
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a) Episode data b) Sampling episode c) Sampling steps d) Batch e) Neural Networks

Fig. 3: The complete model pipeline, describing the data processing operations. The data, containing state representations (s),
actions (a), desired goals 1 (dg1), desired goals 2 (dg2), and achieved goals (ag) are collected from the simulator one episode
at a time and stored in a replay buffer D. A number of episodes, equal to batch size B, is sampled from the buffer and a single
step is sampled from each episode, uniformly. Hindsight Experience Replay (HER) sampling scheme is used to re-sample the
desired goals of the selected samples, forming a batch of data. NeedleReach models employ the inputs conditioned on desired
goal 1, whereas NeedlePlace models employ inputs, conditioned on the desired goal 2.

a separate replay buffer, that was pre-loaded with the same
expert demons as the main buffer. During each policy training
step, an expert demonstration state-action pairs (s∗, a∗) were
sampled from the buffer and the actor training signal was
obtained by combining the critic loss as well as a BC loss,
defined as ||a∗ − π(s∗)||2.

Our policy achieved a peak average success rate of
91.1% across five random seeds. Therefore, it outper-
formed HER+DEMO and HER+DEMO+BC approaches,
which achieved 87.4% and 88.2% success rate over the same
five seeds. The HER and HER+BC agents did not manage
to learn the policy, thus achieving the success rate of 0%.
However, HER+DEMO method outperformed our agent in the
average episode length comparison, completing an episode us-
ing 42.26 steps on average. Our agent performed significantly
slower, requiring 50 steps on average to complete an episode.
Nevertheless, our method reflected a much more stable episode
length convergence. We evaluated each agent after every 100k
time steps of training to provide a better insight into the
training performance. The results are presented in Figure 4,
parts a) and b). It can be observed that whilst it takes longer
to train our agent, the peak performance is higher at the end
of the training.

B. Ablation study

We further investigated the importance of both method
components: buffer preloading with NeedleReach actor and
NeedlePlace actor guidance using NeedleReach critic. It was
determined that only a combination of both components allows
an agent to learn the desired policy. Buffer preloading alone

allows the agent to learn a suboptimal policy, peaking at a
42% success rate. We noticed that the agent learns to reach
the object quite quickly. However, the policy starts diverging
shortly after, due to many unstable grasps being loaded to the
buffer, thus making policy assign equal rewards for (unstably)
grasped needle states and random states. On the other hand,
actor guidance does not manage to learn a successful policy
in isolation. By visually inspecting the training process, we
observed that the actor is being guided in the right direction.
However, the small scale of the object and its physically rich
interaction nature prevents the agent from grasping the needle
successfully, thus preventing the agent from obtaining any
reward. The ablated performance is presented in Figure 4, part
c).

V. DISCUSSION AND CONCLUSIONS

In this paper, we present a novel learning approach, that al-
lows learning a multi-stage NeedlePickAndPlace manipulation
task with sparse rewards without using explicit export demon-
strations. Our agent successfully outperformed a HER+DEMO
trained agent, achieving a state-of-the-art performance of 91%
success rate.

Whilst our method was not tested in a real-world setting,
previous work has shown that such transfer should be possi-
ble [5], [10]. SurRoL platform interface is directly compatible
with dVRK control inputs, as explained in [10] by following
the transfer protocol defined in [37]. It was shown that object
of interest based state-space representation can be transferred
by placing objects of interest in predetermined poses in World
Cartesian coordinates. On the other hand, visual tracking

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3266720

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on April 19,2023 at 18:25:24 UTC from IEEE Xplore.  Restrictions apply. 



BENDIKAS et al.: LEARNING NEEDLE PICK-AND-PLACE WITHOUT EXPERT DEMONSTRATIONS 7

Fig. 4: a) The success rate of our method, versus baselines;
b) Episode length of our method, versus baseline; c) Ablation
study: the success rate of our complete method, versus only
buffer preloading with partially correct trajectories, versus only
critic transfer; d) Prior agent training progress. The bold line
represents the average performance values, whereas the shaded
boundary demonstrates the 95% confidence interval.

methods have also been successful and used in determining
accurate tool poses in the World Coordinate Frame [5], [38].
Such methods can be applied to estimate the poses of the
objects of interest, allowing to transfer our policy directly to
the real robot. Nevertheless, there is a performance drop to be
expected between the simulation and the real world due to the
noise induced by a state estimator [5].

Our method allows learning end-to-end control policy with-
out expert demonstrated trajectories. Nevertheless, it still re-
quires performing a manual task decomposition by a human
entity. Furthermore, the person has to be familiar with the me-
chanics of the problem, therefore, they might be referred to as
an expert. Nevertheless, the expertise required to break down
the task is significantly reduced, as it only requires a strong
understanding of the manipulation process, rather than specific
domain knowledge and surgical dexterity. Furthermore, such
decomposition raises a one-off cost, that is temporarily much
cheaper than performing a number of trajectories manually.

Further, adaptations of the method can potentially cause
negative TL issues. Our problem setting meets the basic
assumptions of TL: 1) domain similarity, 2) data sampled
from both tasks comes from the same distribution, and 3)
an appropriate model can be fit to both domains [39]. This
is further experimentally confirmed by a successive transfer.
However, changing the problem setting might break the set of
assumptions, making the method unfeasible for such tasks.

Lastly, our method is also less sample efficient compared
to expert demonstration-based approaches, which means that a
higher number of trajectories needs to be collected compared
to HER+DEMO approach. Our method allows for increasing
the sample efficiency by saving the replay buffer after each
stage and loading it directly for the subsequent training stages
since all the goals are saved simultaneously. Nevertheless, we
found that a freshly initialized buffer for each stage provides
less noisy data and thus more stable training.
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