
CapExec: Towards Transparently-Sandboxed
Services (Short Version)

Mahya Soleimani Jadidi∗, Mariusz Zaborski†, Brian Kidney∗, Jonathan Anderson∗

∗ Department of Electrical and Computer Engineering
Memorial University of Newfoundland

{msoleimanija,brian.kidney,jonathan.anderson}@mun.ca

† Research and Development
Fudo Security Inc.

{oshogbo@FreeBSD.org}

Abstract—Network services are among the riskiest programs
executed by production systems. Such services execute large
quantities of complex code and process data from arbitrary
— and untrusted — network sources, often with high levels of
system privilege. It is desirable to confine system services to a
least-privileged environment so that the potential damage from
a malicious attacker can be limited, but existing mechanisms
for sandboxing services require invasive and system-specific code
changes and are insufficient to confine broad classes of network
services.

Rather than sandboxing one service at a time, we propose
that the best place to add sandboxing to network services is in
the service manager that starts those services. As a first step
towards this vision, we propose CapExec, a process supervisor
that can execute a single service within a sandbox based on a
service declaration file in which, required resources whose limited
access to are supported by Caper services, are specified. Using the
Capsicum compartmentalization framework and its Casper ser-
vice framework, CapExec provides robust application sandboxing
without requiring any modifications to the application itself. We
believe that this is the first step towards ubiquitous sandboxing
of network services without the costs of virtualization.

Index Terms—application security, sandboxing, service man-
ager, Capsicum, compartmentalization

I. INTRODUCTION

Network services and applications have always been attrac-
tive targets for remote attackers. Network services typically
incorporate complex protocol parsing code, often written in
low-level languages, that is exposed to arbitrary content from
the network. Since these services commonly execute with
system privilege, they are at high risk for remote exploitation
as a gateway to other system resources. Owing to both the
risk and the consequence of potential compromises, there is
a need to confine network applications and limit the damage
that can be inflicted by a successful attack.

One broad class of techniques that seem applicable to
the problem of securing network services is sandboxing:
restricting software’s access to system resources such that the
application has the least privilege required to fulfill its func-
tion. However, applying such limitations is challenging. Many
sandboxing frameworks require invasive code modifications,

some of which require a great deal of security expertise to
apply correctly. Incorrectly applied mechanisms may lead to a
false sense of security without additional effectual protection.
What is needed, in addition to the development of effective
sandboxing techniques, is the development of tools to apply
those techniques.

Sandboxing is applicable through different techniques at
various levels within operating systems such as the system
call chroot(2) [1], sandboxing features in service managers
such as systemd [2], or application containers such as jail(8)

[3] or docker [4]. We see service managers as key to securing
systems with network-facing services. Securing systems at this
level, eliminates the need for securing every service separately.

In this paper, we have combined process supervision and
FreeBSD’s capability-oriented compartmentalization frame-
work [5], Capsicum [6], to introduce CapExec as a sandboxing
process supervisor (section II), which runs applications in a
restricted capability mode. CapExec uses Capsicum to restrict
the privileges of services and to limit access to resources
through Capsicum-based Casper daemon framework [7], [8].
To use CapExec, services’ required run-time resources should
be described in service declaration files, as an initial step to
unify security and functionality descriptions. When a service’s
run-time requirements can be described in terms of Casper
services, CapExec provides sandboxing without any modifica-
tions to source code. The mechanism and its various evaluation
results are described in section II and section III respectively.
This project is a significant advance beyond the current state
of the art described in section IV.

II. CAPEXEC: A SANDBOXING SERVICE SUPERVISOR

We have designed and developed CapExec to be a security-
focused service supervisor that executes a service in a sandbox
transparently, which means no modification to the service’s
source code is required. CapExec creates sandboxes relying
on Capsicum and Casper services. Capsicum is a sandboxing
framework developed for FreeBSD [6]. The fundamental idea
for the framework comes from the concept of capabilities in
capability-based systems. Capabilities are unforgeable tokens

978-3-903176-24-9 © 2019 IFIP

of authority carried by processes to authorize access to the
system’s resources [9]. Using Capsicum’s API, once a process
enters to the capability mode, all system calls trying to access
global namespaces, such as the root filesystem or the PID1

namespace, will fail. Capsicum’s sandboxing has changed the
regular flow of the system call mechanism in FreeBSD. In
addition to Capsicum’s general API, Casper has extended
Capsicum’s features by defining capability channels to allow
access to some riskier but widely-used services [7].

Using Capsicum and Casper, CapExec creates and loads
required Casper services to provide access to white-listed run-
time resources. These services and their limits are specified in
the application’s declaration files as the service configuration
such as what has been shown in the listing 1. CapExec
executes one application at the time in a sandbox made with
required Casper’s capability channels. Hence, limited accesses
to the subsetted namespaces are proxied for the application, but
any unprivileged behavior or requests beyond defined limits
will fail due to capabilities violations. The details about this
mechanism are explained in [10].

A. Service Declaration: Unifying Application Functionality
with Security Requirements

CapExec employes libucl [11] to parse the service declara-
tion file conforming to JSON format [12]. The file should de-
scribes the service’s binary and its requirements. Requirements
are those system resources that are disallowed in capability
mode, but their alternative restricted services are supported by
Casper [8]. An example configuration for the traceroute utility
is given in Listing 1.

Listing 1. An example of the content of traceroute(8)’s declaration file
{

binary: "/usr/sbin/traceroute"
"system.fileargs" : {

operations: "OPEN",
flags: "RDONLY",
cap_rights: "READ",
cap_rights: "FCNTL",
cap_rights: "FSTAT",
filename: "/etc/protocols",
filename: "/dev/null"

}
"system.dns" : {

family: AF_INET
}
"system.net" : {

host: "example.com",
family: AF_INET

}
"system.sysctl" : {

"vm.overcommit": {
type: "mib",
flag: "CAP_SYSCTL_READ"

}
}

}

1Process ID

{fgets} {__srefill} {__smakebuf}

{__sys_fstat}

{syscall}

{_fstat}

…

…

Fig. 1. Reduced call graph from traceroute(8) showing how a call to
fgets(3) can result in system calls disallowed in Capsicum.

Service
Manager

Casper Services: Limited defined access

system.dns
system.grp system.sysctl

libssvc_config.json

fork

fexecve

Define

env new_rtld

Original
Application

Sandbox

dns_service_
preload

grp_service_
preload sysctl_service_

preload

Parse

libraries to be preloadedAttach

Fig. 2. CapExec’s approach to run a service in a sandbox

Writing service declarations requires knowledge of system
calls used within the applications code. The problem is compli-
cated by system calls used indirectly by libraries. Recognizing
this issue, we developed CapCheck, a tool for highlighting
library calls that use system calls not allowed in a Capsicum
sandbox. As can be seen in figure 1, even a call to fgets(1)

can result in unexpected system calls that are disallowed in
Capsicum sandboxes.

CapCheck uses readelf and ldd to determine the calls made
to external libraries and the libraries that provide them. It
then builds a full call graph for the application and searches
it to find paths that result in disallowed system calls. This
information is provided to the end user to develop service
declaration files.

B. Sandboxed Execution

As the first step, CapExec parses declaration files and cre-
ates the corresponding Casper services. In addition to support-
ing all Casper services, CapExec needed a capability channel
for simple network communications. Therefore, we developed
an experimental networking Casper service, system.net, sup-
porting bind(2) and connect(2). After parsing service declara-
tion files, CapExec forks and executes the binary sandboxed in
a child process, creating a new environment or context for the
process, including arguments, libraries, environment variables,
the new runtime linker, shared memory mappings and required
libraries to make the process sandboxed. CapExec replaces
disallowed libc system calls with other functions that redirect
requests to the existing Casper services. As a result, the source
code remains unmodified. Figure 2 shows this mechanism.

III. EVALUATION AND COMPARISONS

We have evaluated CapExec in various ways [10]. In this
section, we describe evaluation results and our observations

1 10 100 500 1000

10−2

10−1

100

Size in MBs

Ti
m

e
(s

)

cat(1)

cat(1) with CapExec

Fig. 3. Time to open single file with original cat(1) in comparison with
cat(1) running in CapExec’s sandbox (with negligible uncertainty)

about runtime performance, correctness of our approach and
other similar virtualization-based solutions, by investigating
cat(1) and traceroute(8) in CapExec’s sandbox. As these two
small utilities were previously sandboxed using Capsicum,
examining these application allows us to have a direct compar-
ison to traditional applications of Capsicum requiring source
code modification. So, we have shown the simplicity of having
a declaration file and consequently sandboxed applications,
rather than modifying the source code, even for older ap-
proaches benefiting from Capsicum. Here is a summary of
each evaluation approach.

1) Runtime Performance: To investigate running cat(1)

with CapExec, which only needs one Casper service
(system.fileargs), we examined cat(1) and its sandboxed ver-
sion with two test scenarios. In the first scenario, we examined
invocations of cat with files of various sizes from 1 MB to 1
GB, shown in figure 3.

10 100 1000 10000

10−3

10−2

10−1

100

101

Number of files

Ti
m

e
(s

)

cat(1)

CapExec

Fig. 4. Time to open multiple files with cat(1)(with negligible uncertainty)

As can be seen in figure 3, executing cat(1) in our sandbox
adds overhead to the execution time. We find this delay more
tolerable as the number of inputs grows. The majority of the
cost of using CapExec is spent in setting up the sandbox.
This includes the reading of configuration files, the creating of
Casper services and fork(2) calls to load and open them. Since
a large portion of CapExec’s overhead is spent pre-opening and
holding handles to file descriptors, in the second test scenario,
we ran our tests with a varied number of empty files as the
input set, from 10 to 10000. Figure 4 shows the expected delay.
All measurements were performed ten times per test case.

10 100 1000 10000
0

5

10

15

Number of files

M
em

or
y

(M
b)

cat(1)

CapExec

Fig. 5. Memory utilization for various number of files opened by cat(1)

CapExec’s approach includes the additional cost of spawn-
ing Casper services and CapExec’s preloaded libraries. In
addition to the structures keeping services configurations and
limits, new processes have to be spawned by the supervisor
program. We can see the impact of this design in figure 5,
which shows a broader impact on memory overhead.

2) Completeness and Correctness: We have investigated
the correctness of our sandboxed application through ktrace(1)

output, which provides us detailed information about invoked
system calls and their returned values. In Capsicum, when an
application tries to access a global namespace, a capability
error is returned, and the intended system call fails. Listing 2
is demonstrating the capability error returned from the system
call open(2) in capability mode.

Listing 2. ktrace(1)’s output showing a failure in capability mode
cat CALL cap_enter
cat RET cap_enter 0
cat CALL openat(AT_FDCWD,0x7fffffffe990,0<O_RDONLY>)
cat CAP restricted VFS lookup
cat RET openat -1 errno 94 Not permitted in capability

mode

CapExec delegates tasks to Casper services for disallowed
replaced system calls. Requests are sent to Casper services
through a capability channel which passes commands through
UNIX domain sockets to Casper services. Since in our ex-
amined applications, no system call failed and no related
capability error was observed and they worked normally, we
can infer that the corresponding configuration file sufficed for
the applications.

3) Comparisons with Virtualization-based Solutions: We
have also compared CapExec with equivalent virtualization-
based solutions. There are various aspects to compare these
systems such as required time to set up the sandboxed or
virtualized environment, the complexity of configurations,
required storage for each approach, memory utilization for
each tool and finally the latency of running an application
using each tool. To investigate CapExec against most widely-
used containers, we examined running traceroute(8) under
five situations. First, we examined the utility on the native
system. For the rest of the cases, we started the container,
ran traceroute(8) on it and then stopped it. We practiced this

Native System

VM

Jail

Docker

CapExec
2.03

0.69

30.79

48.63

34.37

0

0.25

9.73

28.42

0

7.64

13

6.4

512

5.07

Memory Usage(MB)
Start and Stop Time(Second)

Latency (Second)

Fig. 6. Comparison of running traceroute(8) in different environments

procedure on a virtual machine, a FreeBSD jail, a docker, and
finally with CapExec. Figure 6 shows the latency and memory
usage of running traceroute(8) using each technology, giving
an average of five test runs, and also the time spent to start
up and to stop each of them.

Along with setup difficulties, there is a need for additional
storage for virtualization-based solutions to keep images of
containers. As an example, the size of the image for a virtual
machine, a docker image, and a jail image in our tests, were
2.6 GB, 204 MB, and 800 MB respectively. These all show that
how much isolating a small application might cost. This issue
makes a light user-level sandboxing application like CapExec
distinguished from other sandboxing solutions.

IV. RELATED WORK

To design CapExec’s scheme, we have studied several
sandboxing mechanisms and service managers, focusing on
their security options. As the most important options, user
permissions and privileges are essential for most of contem-
porary init systems. Configuring uid and gid in systemd [2], s6
[13] or other service managers, are examples of these options.
However, they are still susceptible to complex attacks such as
those utilizing privilege escalation.

launchd [14], the service manager on macOS, was the
first system that expanded inetd’s [15] socket activation, and
was adopted because of its performance. launchd provides
security options that are mostly focused on permission features
such as username, groupname, initgroup and umask. The only
option concerning sandboxing schemes is the ability to set
the root directory. The short list of security options in launchd

originated from the internal security scheme of macOS, which
is consistent and well-designed.

systemd [2] is another widely-used service manager in
which various security options are supported. In contrast with
launchd,systemd supports very fine-grained security controls
such as uid/gid control and isolation options such as inacces-
sible or read-only paths, root, and tmp directories. Benefiting
from seccomp [16], system call filtering is also provided.
However, with all of these features, it is left to the developer
to verify the configuration’s compatibility with the use of the
application, which can result in inappropriate policies.

There are also other service managers with similar security
mechanisms such as relaunchd, also known as jobd [17], nosh

[18], and s6 [13], which are quite different in design. For
example, relaunchd runs services in jails [3], and its options are
configurable for the user, while most of nosh’s security features
are internal. Also, nosh uses the concept of capabilities in
design. nosh’s design and mechanism are based on daemontools,
which is a package of tools for UNIX service management
[19]. There are also other service management tools inspired
by deamontool such as runit [20] and s6 that are much more
than an init system. s6 is a package of tools including
various security features such as access control management
on client connections, supporting uid-less privileges, ability to
define sudo family, etc [21]. Most of deamontool-based service
managers benefit security applied in their internal design.

In addition to service managers, we also have studied
widely-used existing sandboxing tools such as chroot(2) as
a sandboxing system call, FreeBSD’s jail and docker that
were examined as containers in section III, seccomp(2) [16]
as a framework that applies system call filtering, andCloudABI
[22] which provides process-level sandboxing benefiting from
capabilities. An interesting point about all of these applications
is the different level at which each of them is providing
sandboxing.

V. FUTURE WORK

CapExec is a service supervisor that executes one appli-
cation at a time. That application executes in isolation, a
sandbox provided by Capsicum with limited access to global
resources mediated by Casper. However, CapExec is not a
complete service manager. Our intent is to use CapExec as
a foundation for a service manager that handles interdepen-
dencies and sandboxes groups of network services. To aid
in this goal, we are also developing more network-oriented
Casper services. Additionally, we are investigating ways to
reduce the amount of security-specific knowledge required
to use CapExec. We aim to make defining security policies
as simple as specifying white-listed resources required by
services, so that CapExec decides which Casper services, with
what configuration, should start.

VI. CONCLUSION

In this paper, we introduced CapExec, a prototype sand-
boxing supervisor that facilitates service sandboxing both on
local and network services. Using Capsicum and Casper, along
with a simple configuration file, we transparently provide this
isolation at run time without any modification on the applica-
tion’s source code. The system requires to be configured based
on essential Casper services, which is challenging for the
user. Facilitating this procedure, we provide CapCheck, a tool to
discover system calls that require wrapping. This demonstrates
that sandboxing itself can be a service, a key foundation for
building security-aware service managers in the future.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the
NSERC Discovery program (contract RGPIN-2015-06048).

REFERENCES

[1] (Retrieved at: June 6, 2019) Freebsd manual pages: chroot(8). [Online].
Available: ”https://www.freebsd.org/cgi/man.cgi?chroot(8)”

[2] (Last edited: May 23, 2019) systemd system and service manager. [On-
line]. Available: ”https://www.freedesktop.org/wiki/Software/systemd/”

[3] (2018) Freebsd’s mannual page: jail(8). [Online]. Available:
”https://www.freebsd.org/cgi/man.cgi?query=jail&sektion
=8&apropos=0&manpath=FreeBSD+12.0-RELEASE+and+Ports”

[4] (Retrieved at: June 14, 2019) Docker security. [Online]. Available:
https://docs.docker.aom/engine/security/security/

[5] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and
implementation of the FreeBSD operating system. Pearson Education,
2014.

[6] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical capabilities for unix,” in Proceedings of the 19th
USENIX Conference on Security, ser. USENIX Security’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929820.1929824

[7] P. J. Dawidek and M. Zaborski, “Sandboxing with capsicum,” ; login::
the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 12–17, 2014.

[8] Z. Dawidek, Pawel Jakub. (2016, 2) Freebsd
manual pages: libcasper’. [Online]. Available:
”https://www.freebsd.org/cgi/man.cgi?query=libcaspe
r&sektion=3&apropos=0&manpath=FreeBSD+11.0-
RELEASE+and+Ports”

[9] R. S. Fabry, “Capability-based addressing,” Commun. ACM,
vol. 17, no. 7, pp. 403–412, Jul. 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361070

[10] M. S. Jadidi, M. Zaborski, B. Kidney, and J. Anderson, “Capexec:
Towards transparently-sandboxed services (extended version),” 2019,
arXiv:1909.12282.

[11] (Retrieved at: June 14, 2019) Libucl. [Online]. Available:
http://rodrigo.ebrmx.com/github /vstakhov/libucl

[12] D. Crockford. (2000) Json’s website. [Online]. Available:
”https://json.org”

[13] (Last update: June 2019) Gentoo linux’s article: s6. [Online]. Available:
”https://wiki.gentoo.org/wiki/S6”

[14] (Retrieved at: June 6, 2019) Official introduction page: Launchd.
[Online]. Available: ”https://www.launchd.info”

[15] (Retreived at: June 6, 2019) inetd daemon. [Online]. Available:
”https://www.ibm.com/support/
knowledgecenter/en/ssw aix 72/com.ibm.aix.cmds3/inetd.htm”

[16] (Retrieved at: June 6, 2019) Seccomp bpf (secure computing with filters).
[Online]. Available: ”https://www.kernel.org/doc/html/v4.16/userspace-
api/seccomp filter.html”

[17] M. Heily. (Retrieved at: June 6, 2019) relaunchd. [Online]. Available:
”https://github.com/csjayp/relaunchd”

[18] (Retrieved at: June 6, 2019) The nosh package. [Online]. Available:
”https://jdebp.eu/Softwares/nosh/”

[19] (Last update: 2019) Gentoo linux’s article: daemontools. [Online].
Available: ”https://wiki.gentoo.org/wiki/Daemontools”

[20] (Last update: June 2019) Gentoo linux’s article: runit. [Online].
Available: ”https://wiki.gentoo.org/wiki/Runit”

[21] (Retrieved at: June 6, 2019) An overview of s6. [Online]. Available:
”https://skarnet.org/software/s6/overview.html”

[22] (Retrieved at: June 14, 2019) Introducing cloudabi. [Online]. Available:
https://cloudabi.org

