
Edge-of-Cloud Fast-Data Consolidation for the

Internet of Things

Gilles Privat, Laurent Lemke

Orange Labs, Grenoble, France

[firstname.lastname@orange.com]

Pascale Borscia, Marc Capdevielle

Orange Labs, Toulouse, France

[firstname.lastname@orange.com]

Abstract—Control-oriented IoT applications that require

time-sensitive information about the entities they control need to

operate in their proximity, from the edge domain of the network,

rather than from a remote cloud. We describe how different

types of data filtering and consolidation may get integrated in a

generic IoT infrastructure in order to support this. We describe

the processing and data models that are required for

consolidating and locally maintaining, if need be, the

corresponding information, combining stateless event stream

processing with the use of discrete-state-based models. We

describe how the corresponding distribution of resources maps to

both edge and cloud platforms and evaluate the tradeoffs that

come with this distribution.

Keywords—Internet of Things; Complex Event Processing ;

Fog Computing

I. INTRODUCTION

The availability of sensors and actuators connected through
open networks opens up a much-touted cornucopia of new
Internet of Things (IoT) application opportunities, yet it does
also require new infrastructures and platforms to collect,
process and maintain these data in support of the corresponding
applications.

The most obvious challenge facing these infrastructures
results from the sheer volume of such plentiful IoT sensors,
capturing all kinds of data in various physical modalities: it
becomes essential to filter these data locally before passing
them on to cloud processing in order to save network and
storage resources, by avoiding to clog WANs and remote
clouds with unchanging, irrelevant or insignificant data that is
tantamount to noise.

Using data locally, back to back with these early stages of
processing, is also required when taking immediate actions on
these data. Most mainstream IoT applications rely exclusively
on upward data collection from sensors, with actions, if any,
being effected non-real-time by human operators. Automatic
control and, more generally, cyber-physical systems integrating
it, still have a long way to go in their journey from custom-
designed one-of-a-kind solutions to automatically configurable
applications on top of generic platforms [1]. These are the
applications we intend to address, neglected as they have been
from mainstream IoT and ambient intelligence research so far.
Some of these control-oriented applications cannot rely
exclusively on filtering “along the flow” a stream of incoming

events: they need to know in real time in which state, in a
system-theoretic sense (see section V), the entities to be
controlled are at any given time in order to control them,
because the action to be performed will depend on this state.
There is a rich body of know-how and models to draw upon,
coming from the embedded/reactive systems literature. IoT
applications need to adapt this know-how in view of the strong
incentives that now push them to operate on top of shared
infrastructures, in stark contrast to the way closed and
dedicated embedded systems would traditionally work.

Crucially, the local vs. remote or edge vs. cloud tradeoff for
IoT data processing is not meant to be addressed on a per-
application basis: it should be part of an overall implementation
tradeoff and a required flexibility for a solution that will
integrate this IoT data processing in a complete
mediation/brokerage infrastructure, offering all attending
configuration and administration facilities. This is part of what
the FIWARE infrastructure

1
, an open source middleware

platform, affords, and our work has taken place in this
framework.

Applications using such infrastructures are entitled to get
access to data at different levels of aggregation/abstraction
along their successive stages of processing, with homogeneous
standard interfaces. Control-oriented applications that need to
operate with bounded latencies may require to be co-hosted on
edge platforms, close to the field, rather than on a remote
backend cloud.

We describe this architecture first functionally in part III.
Section IV describes the classical event stream processing that
may correspond to the first stage of edge data filtering. Section
V gives a brief rationale for the use of state models and how
the data consolidation supported by these models would
become part of an overall IoT infrastructure. The overall
architecture taking into account the implementation platforms
and corresponding tradeoffs are described in section VI.

II. RELATED WORK

A. Context middleware

Context management originates from a traditional view of
telecom applications that rested on a clear-cut separation of

1
 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_

Architecture
Work partially funded under the IoT chapter of the EU FIWARE project

(www.fiware.org).

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

226

content and context [2], such as e.g. for regular audio
interpersonal communication the user’s location or activity
being obviously context, whereas her utterances where just as
obviously content. In this strict context≠content view, telecom
content used to be just carried like a sealed postal envelope
from one point to another and did not undergo any kind of
processing other than regular coding for compression or
network adaptation, whereas context could undergo several
stages of deep processing to extract meaningful data. This
distinction is bound to vanish in IoT applications

2
, where

context becomes content and content becomes context in turn
[2]. In this perspective, the vast body of work on multilayered
context management infrastructures [3] inherited from the era
of ambient intelligence research should carry over to IoT
infrastructures, with deep processing of sensor data being
performed on sensor input, irrespective of whether it operates
on content (primary) or context (ancillary) inputs.

B. From Big-data to Fast-data, or the other way round?

The recent swell of big-data/analytics activity has tended to
bias IoT applications away from both the embedded/real-time
culture and the requirements of their physical grounding. On
the positive side, big-data leads to pool resources from
different applications and environments, and thus to open up
the siloes that enclose present-day vertically integrated
M2M/IoT applications, but this data pooling occurs in the latest
stages of data acquisition, very far from real-time requirements
and from where the data could be used for control with
predictable timing.

Ironically, “fast-data” appeared a few years ago [4] as a
rather shallow companion buzzword denoting the need for big-
data to become more “real-time”, in a weak sense which just
meant processing data “in-flight”, along the flow, as streams
rather than as batches, so as to be able to take decisions more
quickly on the basis of this data. This may have been most
visibly advertised for such big data applications as market
analysis or financial services that were far from real-time (in
the hard, industrial sense) to start with.

Of course applications that are, by their very nature, real-
time in a rigorous sense, such as automatic control, have
always been “fast-data” applications long before this phrase
appeared, as soon as it was understood that control was
information. As they evolve to become networked IoT
applications operating on top of shared infrastructures, these
“fast-data” applications will in turn become more “big-data” in
the sense of sharing their data and pooling it with other data
sources, making it available for both their own instantaneous
real-time use and the potential use of other applications.

C. Multi-sensor Data Fusion

This is once more the case of a very mature and extensive
body of knowledge [5], mostly developed in the confines of
military research, or more benignly by roboticists, which has to
be rediscovered in order to be put to a new use, in the very

2 It is also becoming less of an ironclad separation for (non-IoT) interpersonal

applications, especially with OTT operators routinely analyzing and exploiting for

targeted advertising the content of their users’ e-mails or web searches, if not (yet) the

content of their interpersonal audio or video communication.

different context of shared networked sensors of IoT.
Traditional sensor fusion problems were addressed, just like
automatic control, on a case by case basis with dedicated and
fixed sensor configurations, possibly taking inspiration from
the human perceptual system (which routinely performs some
very clever tricks of multimodal sensor fusion of its own
between e.g. its auditory and visual subsystems). We explain in
section IV how Complex Event Processing (which was so far
mostly used in very different fields like the analysis of
financial data or customer data), may be used as a more
general-purpose tool to approach this problem for multi-sensor
configurations that will be highly variable and opportunistic in
the IoT context. This does mostly amount to a coarse version of
decision-based event fusion, and remains far from the
computational sophistication of numeric or feature-based
sensor fusion.

D. Edge/fog computing

 “Edge of cloud” (a.k.a.“fog”) computing [6] extends
clouds to embedded platforms on the outer edges of the
network, corresponding in the IoT to platforms that are closer,
not to the end-user, but to the field, more precisely the target
physical system to be controlled, the “plant”, as the automatic-
control community would call it. Edge computing brings
together close-coupling to the field with much-vaunted benefits
of cloud-based data processing and storage, enabling flexible
and virtualizable platform support for real-time applications of
the IoT.

III. PRINCIPLES OF AN OPEN & SHARED IOT INFRASTRUCTURE

A. Moving from an Application-centric to an Environment-

centric view

Most mainstream IoT/M2M applications are still conceived
as the outcome of a top-down and narrowly functional software
design paradigm, not as a system or even as part of a system,
Such a neatly circumscribed view may be fine for the design of
regular stand-alone software applications, but it falls far short
of accounting for the complexity of interactions,
interdependencies and physical grounding that condition the
behavior of Internet of Things applications.

These applications should be envisioned within a multi-
level and multi-scale “system of systems” view that
encompasses as subsystems the relevant physical entities of the
environment in which the application operates. Traditional
automatic control specialists used to design their target control
systems like this, in association with a model of the plant to be
controlled. Powerful as such an approach may be, it cannot
realistically be used as the basis for the design and
development of most IoT applications, except for one-of-a-kind
environments that may warrant such fully customized design
such as e.g. factories, airplanes or manufactured products. By
contrast, regular IoT applications operate in open environments
that not only differ markedly from one instance to another, but
do also evolve over time. Most IoT applications in these
environments cannot afford custom design for both economical
and practical reasons. We have presented in an earlier
publication [1] the invariants of such classical IoT
environments as homes, buildings or cities that may at the

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

227

same time justify a platform-based design approach and
provide the skeleton upon which this platform can be built:

 Even though these environments differ from one instance to

another are different, they are structured by a few broad

organizational features that are invariant from one instance

to another: all cities are structured by streets, crossings,

blocks, all buildings by floors, rooms, corridors, etc.

 They comprise basic physical entities that are also similar

from one instance of environment to another: just as homes,

cities have their own set of common “appliances”

(lampposts, bus-stops, garbage containers, vehicles, etc.),

Using these invariants as a basis, an environment-centric
infrastructure may support the design and operation of all IoT
applications operating in the same environment, moving away
from a situation where these applications rely on vertically
integrated solutions that have so far failed to take advantage of
even sharing between them the data that originates from this
environment.

B. Relevant Data Models in IoT infrastructures

Data mediation in IoT infrastructures should revolve
around abstractions of physical entities (subsystems) that can
serve as common denominators between all applications
operating in the same environment. These should be entities
that have a physical location and an extension in the target city
environment, seen as both the most invariant features of these
environments from one instance to another and the most
relevant level at which data can be shared between hitherto
verticalized applications in these environments. They can be
either material “things”, like pieces of furniture or equipment
like lampposts or street signs, or relevant subsets of space like
streets or parking spaces. They can also be moving entities like
vehicles, animals or even humans, the latter being observed as
being passively part of the environment rather than active
parties, as by definition of IoT and in contrast to non-IoT
applications. Borderline as it may be, the example of humans
serves to emphasize the role of devices as mere
interchangeable intermediaries, bringing connectivity and
network presence to entities. On a completely different tack, in
environments like cities, factories or buildings where legacy
equipment is prevalent, the distinction between such legacy
entities (e.g. pieces of street furniture, home appliances,
industrial machine-tools, etc.) and network devices or the latest
breed of state of the art “connected devices” need not be
emphasized. Decentering the IoT from devices is consistent
with a broader acceptation [7] that has also been adopted by
many leading IoT projects and platforms such as IoT-A and
FIWARE, among others.

Similar multilevel and multiscale abstractions have been
defined by context management infrastructures [3] as “context
entities” a definition which has been adopted by the OMA Next
Generation Service Interface (NGSI

3
) standard in its NGSI-9

and NGSI-10 parts relative to context management [8]. The
NGSI-10 context data model has been generalized following

3 http://technical.openmobilealliance.org/Technical/technical-information/release-

program/current-releases/ngsi-v1-0

their adoption by the FIWARE project, where the reference to
“context” entities should be interpreted in the
historical…context outlined above. This data model precisely
revolves around entities that are defined by a set of attributes,
such as shown in the example in section IV. A proposed
evolution of this standard would allow for semantic referencing
in the types of these entities and for typing of generic
attributes, such as date-time (based on ISO 8601) and location
(based on WGS84).

C. Functional Architecture of an IoT platform

Fig.1 Functional architecture of an IoT mediation Infrastructure

An IoT infrastructure mediates data between the target
physical environment and applications, both upwards by fusing
/aggregating/abstracting sensor data, and downwards by
passing on commands to actuators, through the different layers
described in figure 1. To play its proper role as a shared
mediation infrastructure, it should rely on abstractions of
relevant entities of this environment in the sense described
before, making up what we may call an Entity Abstraction
Layer (EAL). This may comprise additional levels of
abstractions when these entities get regrouped as “virtual
entities” according to functional or physical criteria. Beneath
this, the Device Abstraction Layer (DAL) provides a uniform
interface to networked devices (sensors & actuators) that serve
as physical intermediaries to the entities, regardless of
protocols and technologies. DAL and EAL each have their own
separate interface for a full decoupling of the two.

1) Device Iall its planterface Layer
This layer provides an interface to networked devices that

is independent of the protocols used to connect them and of the
technology details of their actual implementation, as proposed
by various standardization bodies. The mapping between
devices and their interfaces is one to one at this level. In the
FIWARE infrastructure, the interface to devices uses the same
NGSI-10 data model as for “context entities”, even though

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

228

context entities are supposed to be higher-level abstractions.
This may appear confusing, but this uniformity of interfaces
along the abstraction stages is nonetheless useful.

2) Data fusion and aggregation/Sensor Event Processing
This layer takes in raw data from devices and extracts

information that may be either input to the entity abstraction
layer or used directly by applications. This is done by numeric
data fusion/aggregation, or more complex and rule-based event
processing that may be either numeric or symbolic. The
process takes in data from both a time window of raw data (as
regular filtering in the proper digital signal processing sense
would do) and a “spatial” window encompassing the outputs of
several devices that pertain to the same part of the environment
or physical entity. This processing is normally stateless, which
means the result of processing incoming data on a given time
window is not dependent on the results of processing previous
time windows.

The events being output from this layer are represented as
attributes of relevant entities that are associated to the
corresponding input devices. This makes for a mapping
between devices and entities that is both many to one, with a
plurality of sensor data outputs being regrouped as attributes of
an entity, but also one to many, each sensor output being
typically fed into many different entities. The entities used by
this layer may be mapped to the entity abstraction layer, if they
are generic and permanent enough to warrant this.

3) Entity abstraction layer
The entity abstraction layer provides a one to one mapping

between a set of physical entities, chosen as invariant common
denominators of the environment, and a set of software
representatives (proxies) that maintain their states according to
generic system-theoretic discrete-state models that capture the
key temporal properties of these entities as they may be used
by applications for monitoring but also for control. These entity
proxies are meant to serve as a common denominator interface
to various actual instances of physical entities sharing a
common primary function. These instances may be different
from one another apart from sharing this main function, like
e.g. different makes or commercial brands of the same category
of home appliance as a washing machine. Irrespective of these
differences, the interface provided to higher layers of the
infrastructure and to applications relies on the same generic
entity model.

4) Entity groups abstraction layer
Entity groups are meant to represent a collective behavior

or properties of a plurality entity instances that are represented
individually in the entity abstraction layer. Thus they involve
the composition of several individual entity models. Contrary
to proxy instances which are mapped to physical entities in a
one-to-one way, entity groups are mapped to corresponding
physical entities in a many-to-one or one-to-many way. The
entities being grouped may be instances of the same category
of entities represented by the same individual model (like e.g. a
car park model made up from the composition of models of
individual parking places). They may also be groupings
according to extrinsic properties such as spatial position. In this
case the entities being grouped may be all those that belong to
the same subset of space in the current environment like a

room, floor or street, or that are under the same ownership or
management responsibility. These heterogeneous entities will
not be represented by a common model in the sense of a full-
fledged state model but they may still have common attributes
that warrant representing them through a common “context
entity”.

5) Tightly-coupled applications Layer
This layer is not functionally part of the IoT infrastructure

proper and is mentioned here for reference. Applications are
merely the users of the infrastructure through standard
interfaces, and the infrastructure should not by definition
include any purely application-specific feature if it is meant to
be shared. Remaining at the generic level that makes sense for
an infrastructure, we may still divide applications in two broad
categories depending on whether they are “reactive” or not.
Reactive is not synonymous with real-time in the sense where a
video streaming application could be considered real-time, it
may be defined here in a sense derived from [9] by contrast to
both “transformative” and “interactive”, corresponding to
applications whose behavior is strictly constrained by their
coupling to physical systems and which cannot thus be content
with “best-effort”, requiring strict determinacy and
boundedness of platform and network response times. They
are, to phrase it otherwise, applications that are “defined by
their effect on the physical world”[10], and for which time is
both an input, an output and a strict correctness criterion, not an
ancillary QoS factor These applications need to be co-hosted
with the infrastructure, by contrast to “transformative”
applications like regular batch-mode big data, an
implementation issue that we address in section VI.

IV. COMPLEX EVENT PROCESSING FOR EDGE SENSOR DATA

FILTERING

A. Principle

Complex Event Processing (CEP) operates on a partially
ordered set of asynchronous atomic events, from which it
detects supposedly meaningful complex events. In our
application of CEP, input events originate mostly from sensors
in the target environment, but may also be complemented by
remote online sources for more global events or data.

Raw sensor outputs may correspond directly to
asynchronous events (such as a contact detection event from a
magnetic contact sensor), in which case they may be fed
directly as input to the CEP. Many common sensors produce as
output, however, time-continuous analog measurements (such
as temperature or luminosity) rather than events. These signals
may be transformed into events by single-sensor processing
such as thresholding the signal or its derivative. This simple
mono-sensor event detection may be performed on the sensor
device itself, which makes sense if the sensor operates on a
limited energy budget: it would thus transmit sparse events
corresponding to supposedly significant changes rather than a
continuous flow of possibly unchanging data for transmission
to the gateway/edge platform hosting the CEP

4
. A more

powerful alternative solution would be to perform multi-sensor

4 Local processing on the sensor device does also expend energy, but this is usually much

less than the energy required for transmission from a wireless device

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

229

data fusion on the joint numeric signals from sensors in
different modalities. This is too sensor-specific to be
implemented as a generic enabler in the FIWARE platform, but
it could be performed directly on a multi-sensor device. The
kind of fusion performed by complex event processing on
sensor data from different sources is obviously less powerful
because it does not apply the same kind of sophisticated
processing on the temporally fine-grained data of raw signals.
CEP could not match, say, a moving target being tracked
separately by a radio sensor and an infrared sensor, as data
fusion would do. But CEP is much more generic and much
easier to program without specific knowledge about the
physical characteristics of the sensor data sources being used,
which is why it can play a significant role as a generic enabler
on an IoT platform.

CEP operates “along the flow” but normally over a sliding
time window (temporal scope), which can be either overlapping
(as for classical Finite Impulse Response or Infinite Impulse
Response filtering of a synchronous digital signal) or non-
overlapping, incurring a corresponding delay in both cases. A
similar notion of space window can be defined for our IoT-
oriented application of CEP, corresponding to a spatial scope
over which sensor events are analyzed. This scope can be
specified in an intensional

5
 rather than extensional

6
 way if

position attributes are available for all data sources.

This can be done upon the requirements of a particular
application, or as a general-purpose filtering meant to winnow
down the streams of raw sensor data to meaningful
information, without throwing away any information that might
be useful to applications that operate in this environment. This
filtering has to take in sufficient breadth on both a time window
of sensor data and a spatial window of multiple collocated
sensors that may in some way be correlated.

B. Rule Specification

Complex event processing has roots in active databases,
which explains why the languages used to specify the rules for
programming CEP engines are derived from database query
languages. Our CEP enabler is based on the Esper

7
 CEP

engine, which uses a Domain Specific Language, EPL (Event
Processing Language) for programming of rules. A typical
statement looks like the following (brackets indicate optional
features) :

[INSERT into insert_into_def] SELECT select_list FROM
stream_def [AS name] [, stream_def [AS name]] [,...]
[WHERE search_conditions] [GROUP BY
grouping_expression_list] [HAVING
grouping_search_conditions] [OUTPUT output_specification]
[ORDER BY order_by_expression_list]

C. Functional Integration in FIWARE Architecture

The CEP engine works by processing incoming events and
generating output events, both mapped to updates of Context
Entities in the NGSI data model used by FIWARE

5 by way of characteristic properties
6 by explicitly listing all instances
7 http://www.espertech.com/esper/

When the CEP engine receives an update to a Context
Entity using the NGSI 10/updateContext request, it will fire the
corresponding events and process the related EPL statements.

If one or more outgoing events are fired by the CEP engine,
the corresponding /updateContext requests will be called to
notify Context Brokers of the updates to the mapped Context
Entities

D. Simple control example with CEP

This extremely basic example uses CEP for controlling
shutters from the temperature of a room. We assume
temperature sensors are attached to the room entity through
corresponding attributes as follows

8
 :

 {
 "id": "Room1",

 "type":"Room",

 "attributes": [

 { "name":"temperature", "type":"double",

"value":"21" },

 { "name":"shutter", "type":"string",

"value":"shutter1" }

]

 }

The shutters are entities in their own right, associated with the

room entity and controlled by setting the appropriate attribute
{

 "id": "Shutter1", #

 "type":"Shutter",

 "attributes": [

 { "name":"status", "type":"string",

"value":"closed" },

]

}

The EPL rules to trigger the shutter commands based on the
previous model could be :

INSERT INTO Shutter

SELECT R.r.shutter as id, 'closed' as status

FROM pattern [every r=Room(temperature > 26.0) ->

(timer:interval(10 sec) and not Room(temperature <

26.0 and id=r.id))] as R unidirectional

LEFT OUTER JOIN

Shutter.std:groupwin(id).std:lastevent() as S

ON R.r.shutter = S.id

WHERE S is null OR S.status = 'opened'

This uses the shutter attribute of the Room as the id of the

Shutter. The status is set to closed or opened for

Shutter if the pattern is matched. The patterns trigger when the

temperature keeps above 26° or under 24° for 10 uninterrupted

seconds. The left outer join on the Shutter window allows to

only trigger the command if the current status is different. The

unidirectional instruction restricts to evaluate the join only

when the pattern is matched (not when the Shutter window is

updated).
Events detected are not complex in any way, and the

control effected is also the simplest possible. We show in the
following section this “along the flow” type of event
processing and instantaneous control should be complemented
by a stronger consolidation of data through state models of
entities whenever the action to be effected to attain a desired

8 We use a JSON serialization of the NGSI data model ; more details on http://fiware-

cepheus.readthedocs.org/en/latest/examples/2_CloseShutters/index.html

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

230

state does actually depend on the previous state of these
entities.

V. ENTITY STATE INFORMATION CONSOLIDATION

A. Rationale

A control application need not be much more complex that
the previous example for an approach based on instantaneous
sensor event detection and stateless setting of actuator values to
fail. Let us assume the triggering condition depends not only
on the temperature of the room over a given time window, but
also on whether the room is empty or occupied. Let us assume
further that the only means we have to infer this occupancy
state is through a sensor that detects people getting in or out of
the room. Obviously we cannot trigger the control directly
from sensor events, the “people going in/out” events can be
interpreted as relevant state transitions only in relationship to
the previous state of the room. Of course anyone could
program this in any programming language with a simple
counter, but the point we want to make is that this key
information should not be just a hidden variable inside some
little programming kludge: this entity state is the key
abstraction for consolidating information about the room entity,
of interest to all applications that may wish to monitor or
control it, and it should be exposed as such, as the linchpin of a
model of the room upon which upward and downward data
mediation will rest.

Staying with the previous example, we could also try to
account along the same lines for some physical constraints of a
shutter: a shutter is not just a binary variable that can be set
instantaneously, it is a physical system that may respond in
different ways, depending also on its current state. If we
assume it is a roller shutter, we might represent it as having 5
internal states rather than just open or closed, the additional
states being “blocked”, “moving up”, “moving down”. Control
of the shutter occurs through a “move-up” or “move-down”
action sent to its actuator, but the final result and timing of this
action will also depend on its current state: if the shutter is
blocked, it will not move at all, and if it is currently moving up,
it might for some reason have to go all the way up before
starting to move down. The abstraction exposed to applications
might still be a binary state as in the previous example, the
other 3 being hidden states, but the structure and timing of all
transitions between the 5 states should still be accounted for in
the underlying model. Considering that the result of an action is
not instantaneous, applications might wish to get notified when
the action is actually completed, or if it failed, which should
also be part of the necessary data mediation and consolidation.

B. Principle

In the proposed approach, all self-contained physical
entities of the target environment are represented as subsystems
by minimal discrete-state models, drawing upon the knowhow
of embedded systems to capture their essential timing and
reactivity properties. These models represent generic categories
to which all kinds of physical entities of the target environment
(pieces of equipment or relevant subsets of space) may get
approximately matched, capturing a domain knowledge that
can be shared by all applications operating in these

environments. We will not focus here on how this
identification of such models from entities of the environment,
could be made (at least partially) automatic, something which
has been the subject of our previous research

State in a system-theoretic summarizes the history of the
system, i.e. the behavior of the system up to time t>t0 depends
only on its state at time t0 and inputs from t0 to t. In practice
we always use a simple discrete abstraction of the actual state
of the physical system.

These entities expose northbound interfaces affording
shared monitoring and control of corresponding entities from
both tightly-coupled and loosely-coupled applications, and the
arbitration of potential conflicts between these. The loose
coupling interface is fully compliant with the REST
architectural style: states of the instantiated models are the
resources exposed through this interface to be either read or, if
applicable, updated, while transitions provide links to locally
attainable states, dispensing with a global functional
description of the target entity.

C. Entity models

The entity models we propose to use are derived from
Argos automata [11] within the broader family of synchronous
languages and formalisms.

These automata have finite sets of explicit states and
transitions, with a single initial state. The transitions are labeled
by: a triggering condition (also called the input part) and an
effect (also called the output part), separated by a slash sign.
The input part may be a Boolean formula (in the sequel, j
denotes the disjunction); the output part is a set.

Each automaton should be deterministic and reactive,
ensuring that, in any state, for any possible input, the reaction
of the automaton is uniquely defined; the reaction might be a
self-loop with no outputs, meaning that the effect is not
observable, in which case the transition can be omitted. Some
of the states are timed states, meaning that, once entered, a
time-out transition will be automatically triggered after some
predefined amount of time; there can be one or several ordinary
transitions sourced in a timed state. When defining a language
on top of this formal model, it is usual to allow additional
variables (typically counters) to be tested and set on transitions.
As presented in the followings section, the formalism allows
the use of several “parallel” automata instead of a single one, if
this is more convenient for modeling purposes.

D. Mapping to REST interface and from stateful entity

Models

From an entity model we generate automatically a
corresponding REST resource by exploiting the fact that our
automata have a particular structure. Our mapping is based on
the following rules: (i) an automaton A will be mapped to one
resource RA; (ii) the states s1; s2; ::: of A will be mapped to
sub-resources of RA, denoted by RA=s1;RA=s2; :::; (iii) the
GET method applied on RA returns a link to the sub-resource
RA=s corresponding to the current state s of A, and three sets
of sub-resources describing what actions are possible on A
when in state s; (iv) the POST method can then be used on any

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

231

of the sub-resources mentioned in the sets returned by GET, to
activate a transition. (v) the outputs of the automaton (the
acknowledgements) are returned by a POST call, as part of its
response code.

The mapping of the state representation to NGSI data
model could be done by assigning corresponding values to a
state attribute of the entity. Weak typing of such attributes with
strings, in version 1 of the NGSI standard makes this solution
inconvenient. It would be much preferable to make use of an
extension of the standard, currently under consideration, that
would make it possible to represent state transitions as
described above, as links from retrieved resources to available
resources, and also structured attributes types based on a JSON
serialization of this data model.

VI. IMPLEMENTATION ARCHITECTURE OF FIWARE IOT

INFRASTRUCTURE

The gap between standalone embedded systems and
networked IoT systems should ultimately be bridged, yet it is
by now widening rather than closing... On one side are
contrivances that are custom designed as informationally
closed and physically enclosed systems, with every
performance requirement guaranteed by the hardwired design
choices being baked into a self-contained one-of-a-kind
apparatus. On the other side are IoT systems that are, by
definition, distributed, and are moving slowly towards being
more open and less vertically integrated. Yet this welcome
opening occurs in tandem with a systematic move towards all-
cloud operations that, beneficial as they may be for big-data
types of applications, comes with a performance penalty that is
unacceptable for reactive applications as defined previously.
These applications require an infrastructure that can provide
performance guarantees on a par with traditional embedded
systems, while keeping the benefits of openness, genericity,
reusability, data sharing and economies of scale that come
bundled with open platform-based solutions.

It is the distributed nature of this infrastructure,
encompassing close-to-the-field- hardware platforms as well as
regular cloud platforms, which should make it possible to
support both locally hosted tightly-coupled reactive
applications with strong latency constraints, as well as remote
loosely-coupled applications. It will also, crucially, provide the
benefit mentioned as a requirement at the outset, i.e. the
possibility to filter raw data before it swamps networks and
storage sites.

A. Backend enablers

Public cloud platforms called FIWARE labs host working
instances of FIWARE available for experimentation. FIWARE
Labs are hosted on multiple nodes across Europe.

The architecture of the IoT chapter of FIWARE uses a
specific registry enabler called IoT Discovery

9
, under which

entities in the sense defined above, comprising non-connected
things, space entities but also connected devices, may be
registered and discovered. The interface used for this is NGSI-
9, a part of the NGSI standard complementary to the NGSI-10

9 http://catalogue.fiware.org/enablers/iot-discovery

part used for entity information representation. This “backend”
enabler is typically hosted on a remote FIWARE node. Another
backend enabler called IoT Broker

10
 has a functionality

somewhat similar to the proposed entity and entity group
abstraction layers, without the state models and CEP data
fusion, and implements them on the cloud without real-time
properties. Backend device management and protocol
abstraction are handled by another enabler called IDAS

11

B. Candidate Edge domain platforms and proposed

implementations

Target platforms of this edge domain cover a spectrum
from Raspberry Pi boards to high-end servers. Home gateways
have been at the forefront of the evolution of such platforms,
initiating the opening of hitherto closed boxes, turning them
into open platforms that will, ultimately, become the network-
edge outposts of cloud platforms. Security and isolation
between applications have been first concerns addressed [12],
but time-response should be next if the new breed of open
gateways are to support time-sensitive applications.

The evolution of “points of presence” [13] supporting
network function virtualization could provide a more high-end,
less widely distributed and hopefully more secure alternative
for the hosting of such platforms close to the field and the
physical systems to be monitored and controlled. Ensuring
bounded latency and strictly deterministic response times in
this case will also require operator-grade last-mile “capillary”
networks, rather than the kind of best effort Low Power Wide
Area networks being deployed by now on unlicensed bands.
Just as for computing platforms, many network technologies
may still take time into account only as a QoS rather than a
functional requirement [10]

The reference implementation called Cepheus of the
Complex Event Processing part of our edge enabler called “IoT
Data Edge Consolidation”

12
 has been ported on a Raspberry Pi

platform. The time performance of this implementation
compared to backend implementations of similar
functionalities also available in FIWARE is currently being
evaluated.

VII. CONCLUSION AND PERSPECTIVE

The “edge” implementation of IoT data mediation that we
have described is but a first stage in the direction of a truly
distributed cloud, supporting the constraints of time-sensitive
reactive applications while keeping all the benefits of data
pooling, virtualization and elasticity of a regular cloud
implementation. Communication within such a distributed
cloud could also be handled through an overlay network that
would make it easier to enforce latency and jitter requirements.
The next stages of work will require a comparative evaluation
of the execution environments such as OSGI which have been
used since quite some time for gateway platforms, against
virtual appliances or containerization solutions which are
currently being used as a lightweight alternative to full-fledged

10 http://catalogue.fiware.org/enablers/iot-broker
11 http://catalogue.fiware.org/enablers/backend-device-management-idas
12 http://catalogue.fiware.org/enablers/iot-data-edge-consolidation-ge-cepheus

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

232

virtualization, and could make it possible to come closer to the
transparent distribution of a full IoT infrastructure.

ACKNOWLEDGMENTS

Part of the work on which this article is based has been
carried out within the IoT Chapter (WorkPackage1.4) of the
EU FIWARE project, with key contributions from all the
following people on the overall architecture and especially
from Carlos Ralli-Ucendo from Telefonica I&D for the IDAS
Device Management Generic Enabler, Dr. Tobias Jacobs,
Stefan Gessler and Dr. Ernö Kovacs from NECLab Europe for
the IoTBroker Generic Enabler , Tarek Elsaleh and Maria
Bermudez from the University of Surrey for the IoTDiscovery
(registry) Generic Enabler. The development of the Cepheus
(called at this time Espr4Fastdata) Complex Event Processing
enabler was initiated in the first phase of the FIWARE project
by Laurent Artusio, under the leadership of Thierry Nagellen
for the IoT chapter. We are most grateful to Stephane Vialle for
supporting the participation of his team to the project and to
Christophe Azemar for his contributions.

The ideas on identification of generic system-theoretic
discrete-state and discrete-time models for physical entities
build upon the PhD research of Zheng Hu and Mengxuan Zhao
and have evolved from there by drawing upon the invaluable
embedded-systems experience of Pr. Florence Maraninchi
(Grenoble-IPNP/Verimag) and the insights of Pr. Didier
Donsez (Université Grenoble Alpes/LIG) on distributed IoT
middleware.

Thanks to Dr. François-Gaël Ottogalli for his review of the
paper and his insights on fog computing and to anonymous
reviewers for their constructive remarks.

REFERENCES

[1] G. Privat, M. Zhao, and L. Lemke, “Towards a Shared Software
Infrastructure for Smart Homes, Smart Buildings and Smart Cities”,
International Workshop on Emerging Trends in the Engineering of
Cyber-Physical Systems, Berlin, April 14, 2014

[2] G. Privat, N. Streitz, "Ambient Intelligence" ,Chapter 60 of Universal
access Handbook, Constantine Stephanidis, Editor, CRC Press, 2009
http://www.crcpress.com/product/isbn/9780805862805

[3] Ramparany, F., Poortinga, R., Stikic, M., Schmalenstroer, J., & Prante,
T. (2007). An open context information management infrastructure-the
IST-Amigo project. Intelligent Environments 2007

[4] H. Rizvi “Fast Data gets a Jump on Big Data”, Forbes, March 2013
http://www.forbes.com/sites/oracle/2013/03/01/fast-data-gets-a-jump-
on-big-data/

[5] Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data
fusion. Proceedings of the IEEE, 85(1), 6-23.

[6] F Bonomi, R Milito, J Zhu and S Addepalli, “Fog computing and its role
in the internet of things”, ACM MCC workshop on Mobile cloud
computing., 2012. p. 13-16

[7] G. Privat, “Extending the Internet of Things”, Communications &
Strategies, Digiworld Economic Journal , vol 87, 2012, pp101-119

[8] Bauer, M., Kovacs, E., Schülke, A., Ito, N., Criminisi, C., Goix, L. W.,
& Valla, M. (2010, October). The context API in the OMA next
generation service interface. In Intelligence in Next Generation
Networks (ICIN), 2010 14th International Conference on (pp. 1-5).

[9] Halbwachs, N. Synchronous programming of reactive systems. Springer
Science & Business Media, 2013.

[10] Lee, E. A. (2009). Computing needs time. Communications of the ACM,
52(5), 70-79.

[11] F. Maraninchi and Y. Rémond, “Argos: an automaton-based
synchronous language,” Computer Languages, no. 27, pp. 61–92, 2001.

[12] K. Attouchi, Gael Thomas, André Bottaro, Gilles Muller. Memory
Monitoring in a Multi-tenant OSGi Execution Environment. CBSE '14 -
17th international ACM Sigsoft symposium on Component-based
software engineering, Jun 2014, Marcq-en-Baroeul, France.

[13] Gosselin, S., Mamouni, T., Bertin, P., Torrijos, J., Breuer, D., Weis, E.,
& Point, J. C. (2013, July). Converged fixed and mobile broadband
networks based on next generation point of presence. In Future Network
and Mobile Summit (FutureNetworkSummit), 2013 (pp. 1-9). IEEE

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

233

