
Edge-of-Cloud Fast-Data Consolidation for the 

Internet of Things 
 

Gilles Privat, Laurent Lemke 

Orange Labs, Grenoble, France 

[firstname.lastname@orange.com]  

Pascale Borscia, Marc Capdevielle 

Orange Labs, Toulouse, France 

[firstname.lastname@orange.com]

 

 
Abstract—Control-oriented IoT applications that require 

time-sensitive information about the entities they control need to 

operate in their proximity, from the edge domain of the network, 

rather than from a remote cloud. We describe how different 

types of data filtering and consolidation may get integrated in a 

generic IoT infrastructure in order to support this. We describe 

the processing and data models that are required for 

consolidating and locally maintaining, if need be, the 

corresponding information, combining stateless event stream 

processing with the use of discrete-state-based models. We 

describe how the corresponding distribution of resources maps to 

both edge and cloud platforms and evaluate the tradeoffs that 

come with this distribution. 

Keywords—Internet of Things; Complex Event Processing ; 

Fog Computing  

I.  INTRODUCTION 

The availability of sensors and actuators connected through 
open networks opens up a much-touted cornucopia of new 
Internet of Things (IoT) application opportunities, yet it does 
also require new infrastructures and platforms to collect, 
process and maintain these data in support of the corresponding 
applications.  

The most obvious challenge facing these infrastructures 
results from the sheer volume of such plentiful IoT sensors, 
capturing all kinds of data in various physical modalities: it 
becomes essential to filter these data locally before passing 
them on to cloud processing in order to save network and 
storage resources, by avoiding to clog WANs and remote 
clouds with unchanging, irrelevant or insignificant data that is 
tantamount to noise.  

Using data locally, back to back with these early stages of 
processing, is also required when taking immediate actions on 
these data. Most mainstream IoT applications rely exclusively 
on upward data collection from sensors, with actions, if any, 
being effected non-real-time by human operators. Automatic 
control and, more generally, cyber-physical systems integrating 
it, still have a long way to go in their journey from custom-
designed one-of-a-kind solutions to automatically configurable 
applications on top of generic platforms [1]. These are the 
applications we intend to address, neglected as they have been 
from mainstream IoT and ambient intelligence research so far. 
Some of these control-oriented applications cannot rely 
exclusively on filtering “along the flow” a stream of incoming 

events: they need to know in real time in which state, in a 
system-theoretic sense (see section V), the entities to be 
controlled are at any given time in order to control them, 
because the action to be performed will depend on this state. 
There is a rich body of know-how and models to draw upon, 
coming from the embedded/reactive systems literature. IoT 
applications need to adapt this know-how in view of the strong 
incentives that now push them to operate on top of shared 
infrastructures, in stark contrast to the way closed and 
dedicated embedded systems would traditionally work.  

Crucially, the local vs. remote or edge vs. cloud tradeoff for 
IoT data processing is not meant to be addressed on a per-
application basis: it should be part of an overall implementation 
tradeoff and a required flexibility for a solution that will 
integrate this IoT data processing in a complete 
mediation/brokerage infrastructure, offering all attending 
configuration and administration facilities. This is part of what 
the FIWARE infrastructure

1
, an open source middleware 

platform, affords, and our work has taken place in this 
framework. 

Applications using such infrastructures are entitled to get 
access to data at different levels of aggregation/abstraction 
along their successive stages of processing, with homogeneous 
standard interfaces. Control-oriented applications that need to 
operate with bounded latencies may require to be co-hosted on 
edge platforms, close to the field, rather than on a remote 
backend cloud.  

We describe this architecture first functionally in part III. 
Section IV describes the classical event stream processing that 
may correspond to the first stage of edge data filtering. Section 
V gives a brief rationale for the use of state models and how 
the data consolidation supported by these models would 
become part of an overall IoT infrastructure. The overall 
architecture taking into account the implementation platforms 
and corresponding tradeoffs are described in section VI. 

II. RELATED WORK 

A. Context middleware  

Context management originates from a traditional view of 
telecom applications that rested on a clear-cut separation of 

                                                           
1
 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_

Architecture 
Work partially funded under the IoT chapter of the EU FIWARE project 

(www.fiware.org). 
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content and context [2], such as e.g. for regular audio 
interpersonal communication the user’s location or activity 
being obviously context, whereas her utterances where just as 
obviously content. In this strict context≠content view, telecom 
content used to be just carried like a sealed postal envelope 
from one point to another and did not undergo any kind of 
processing other than regular coding for compression or 
network adaptation, whereas context could undergo several 
stages of deep processing to extract meaningful data. This 
distinction is bound to vanish in IoT applications

2
, where 

context becomes content and content becomes context in turn 
[2]. In this perspective, the vast body of work on multilayered 
context management infrastructures [3] inherited from the era 
of ambient intelligence research should carry over to IoT 
infrastructures, with deep processing of sensor data being 
performed on sensor input, irrespective of whether it operates 
on content (primary) or context (ancillary) inputs. 

B. From Big-data to Fast-data, or the other way round? 

The recent swell of big-data/analytics activity has tended to 
bias IoT applications away from both the embedded/real-time 
culture and the requirements of their physical grounding. On 
the positive side, big-data leads to pool resources from 
different applications and environments, and thus to open up 
the siloes that enclose present-day vertically integrated 
M2M/IoT applications, but this data pooling occurs in the latest 
stages of data acquisition, very far from real-time requirements 
and from where the data could be used for control with 
predictable timing. 

Ironically, “fast-data” appeared a few years ago [4] as a 
rather shallow companion buzzword denoting the need for big-
data to become more “real-time”, in a weak sense which just 
meant processing data “in-flight”, along the flow, as streams 
rather than as batches, so as to be able to take decisions more 
quickly on the basis of this data. This may have been most 
visibly advertised for such big data applications as market 
analysis or financial services that were far from real-time (in 
the hard, industrial sense) to start with.  

Of course applications that are, by their very nature, real-
time in a rigorous sense, such as automatic control, have 
always been “fast-data” applications long before this phrase 
appeared, as soon as it was understood that control was 
information. As they evolve to become networked IoT 
applications operating on top of  shared infrastructures, these 
“fast-data” applications will in turn become more “big-data” in 
the sense of sharing their data and pooling it with other data 
sources, making it available for both their own instantaneous 
real-time use and the potential use of other applications. 

C. Multi-sensor Data Fusion 

This is once more the case of a very mature and extensive 
body of knowledge [5], mostly developed in the confines of 
military research, or more benignly by roboticists, which has to 
be rediscovered in order to be put to a new use, in the very 

                                                           
2 It is also becoming less of an ironclad separation for (non-IoT) interpersonal 

applications, especially with OTT operators routinely analyzing and exploiting for 

targeted advertising the content of their users’ e-mails or web searches, if not (yet) the 

content of their interpersonal audio or video communication. 

different context of shared networked sensors of IoT. 
Traditional sensor fusion problems were addressed, just like 
automatic control, on a case by case basis with dedicated and 
fixed sensor configurations, possibly taking inspiration from 
the human perceptual system (which routinely performs some 
very clever tricks of multimodal sensor fusion of its own 
between e.g. its auditory and visual subsystems). We explain in 
section IV how Complex Event Processing (which was so far 
mostly used in very different fields like the analysis of 
financial data or customer data), may be used as a more 
general-purpose tool to approach this problem for multi-sensor 
configurations that will be highly variable and opportunistic in 
the IoT context. This does mostly amount to a coarse version of 
decision-based event fusion, and remains far from the 
computational sophistication of numeric or feature-based 
sensor fusion. 

D. Edge/fog computing 

 “Edge of cloud” (a.k.a.“fog”) computing [6] extends 
clouds to embedded platforms on the outer edges of the 
network, corresponding in the IoT to platforms that are closer, 
not to the end-user, but to the field,  more precisely the target 
physical system to be controlled, the “plant”, as the automatic-
control community would call it. Edge computing brings 
together close-coupling to the field with much-vaunted benefits 
of cloud-based data processing and storage, enabling flexible 
and virtualizable platform support for real-time applications of 
the IoT. 

III. PRINCIPLES OF AN OPEN & SHARED IOT INFRASTRUCTURE 

A. Moving from an Application-centric to an Environment-

centric view 

Most mainstream IoT/M2M applications are still conceived 
as the outcome of a top-down and narrowly functional software 
design paradigm, not as a system or even as part of a system, 
Such a neatly circumscribed view may be fine for the design of 
regular stand-alone software applications, but it falls far short 
of accounting for the complexity of interactions, 
interdependencies and physical grounding that condition the 
behavior of Internet of Things applications.  

These applications should be envisioned within a multi-
level and multi-scale “system of systems” view that 
encompasses as subsystems the relevant physical entities of the 
environment in which the application operates. Traditional 
automatic control specialists used to design their target control 
systems like this, in association with a model of the plant to be 
controlled. Powerful as such an approach may be, it cannot 
realistically be used as the basis for the design and 
development of most IoT applications, except for one-of-a-kind 
environments that may warrant such fully customized design 
such as e.g. factories, airplanes or manufactured products. By 
contrast, regular IoT applications operate in open environments 
that not only differ markedly from one instance to another, but 
do also evolve over time. Most IoT applications in these 
environments cannot afford custom design for both economical 
and practical reasons. We have presented in an earlier 
publication [1] the invariants of such classical IoT 
environments as homes, buildings or cities   that may at the 
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same time justify a platform-based design approach and 
provide the skeleton upon which this platform can be built: 

 Even though these environments differ from one instance to 

another are different, they are structured by a few broad 

organizational features that are invariant from one instance 

to another: all cities are structured by streets, crossings, 

blocks, all buildings by floors, rooms, corridors, etc. 

 They comprise basic physical entities that are also similar 

from one instance of environment to another: just as homes, 

cities have their own set of common “appliances” 

(lampposts, bus-stops, garbage containers, vehicles, etc.),  

Using these invariants as a basis, an environment-centric 
infrastructure may support the design and operation of all IoT 
applications operating in the same environment, moving away 
from a situation where these applications rely on vertically 
integrated solutions that have so far failed to take advantage of 
even sharing between them the data that originates from this 
environment.  

B. Relevant Data Models in IoT infrastructures 

Data mediation in IoT infrastructures should revolve 
around abstractions of physical entities (subsystems) that can 
serve as common denominators between all applications 
operating in the same environment. These should be entities 
that have a physical location and an extension in the target city 
environment, seen as both the most invariant features of these 
environments from one instance to another and the most 
relevant level at which data can be shared between hitherto 
verticalized applications in these environments. They can be 
either material “things”, like pieces of furniture or equipment 
like lampposts or street signs, or relevant subsets of space like 
streets or parking spaces. They can also be moving entities like 
vehicles, animals or even humans, the latter being observed as 
being passively part of the environment rather than active 
parties, as by definition of IoT and in contrast to non-IoT 
applications. Borderline as it may be, the example of humans 
serves to emphasize the role of devices as mere 
interchangeable intermediaries, bringing connectivity and 
network presence to entities. On a completely different tack, in 
environments like cities, factories or buildings where legacy 
equipment is prevalent, the distinction between such legacy 
entities (e.g. pieces of street furniture, home appliances, 
industrial machine-tools, etc.) and network devices or the latest 
breed of state of the art “connected devices” need not be 
emphasized.  Decentering the IoT from devices is consistent 
with a broader acceptation [7] that has also been adopted by 
many leading IoT projects and platforms such as IoT-A and 
FIWARE, among others. 

Similar multilevel and multiscale abstractions have been 
defined by context management infrastructures [3] as “context 
entities” a definition which has been adopted by the OMA Next 
Generation Service Interface (NGSI

3
) standard in its NGSI-9 

and NGSI-10 parts relative to context management [8]. The 
NGSI-10 context data model has been generalized following 

                                                           
3 http://technical.openmobilealliance.org/Technical/technical-information/release-

program/current-releases/ngsi-v1-0 

their adoption by the FIWARE project, where the reference to 
“context” entities should be interpreted in the 
historical…context outlined above. This data model precisely 
revolves around entities that are defined by a set of attributes, 
such as shown in the example in section IV. A proposed 
evolution of this standard would allow for semantic referencing 
in the types of these entities and for typing of generic 
attributes, such as date-time (based on ISO 8601) and location 
(based on WGS84). 

C. Functional Architecture of an IoT platform 

 

Fig.1 Functional architecture of an IoT mediation Infrastructure 

An IoT infrastructure mediates data between the target 
physical environment and applications, both upwards by fusing 
/aggregating/abstracting sensor data, and downwards by 
passing on commands to actuators, through the different layers 
described in figure 1. To play its proper role as a shared 
mediation infrastructure, it should rely on abstractions of 
relevant entities of this environment in the sense described 
before, making up what we may call an Entity Abstraction 
Layer (EAL). This may comprise additional levels of 
abstractions when these entities get regrouped as “virtual 
entities” according to functional or physical criteria. Beneath 
this, the Device Abstraction Layer (DAL) provides a uniform 
interface to networked devices (sensors & actuators) that serve 
as physical intermediaries to the entities, regardless of 
protocols and technologies. DAL and EAL each have their own 
separate interface for a full decoupling of the two. 

1) Device Iall its planterface Layer 
This layer provides an interface to networked devices that 

is independent of the protocols used to connect them and of the 
technology details of their actual implementation, as proposed 
by various standardization bodies. The mapping between 
devices and their interfaces is one to one at this level. In the 
FIWARE infrastructure, the interface to devices uses the same 
NGSI-10 data model as for “context entities”, even though 
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context entities are supposed to be higher-level abstractions. 
This may appear confusing, but this uniformity of interfaces 
along the abstraction stages is nonetheless useful. 

2) Data fusion and aggregation/Sensor Event Processing 
This layer takes in raw data from devices and extracts 

information that may be either input to the entity abstraction 
layer or used directly by applications. This is done by numeric 
data fusion/aggregation, or more complex and rule-based event 
processing that may be either numeric or symbolic. The 
process takes in data from both a time window of raw data (as 
regular filtering in the proper digital signal processing sense 
would do) and a “spatial” window encompassing the outputs of 
several devices that pertain to the same part of the environment 
or physical entity. This processing is normally stateless, which 
means the result of processing incoming data on a given time 
window is not dependent on the results of processing previous 
time windows.  

The events being output from this layer are represented as 
attributes of relevant entities that are associated to the 
corresponding input devices. This makes for a mapping 
between devices and entities that is both many to one, with a 
plurality of sensor data outputs being regrouped as attributes of 
an entity, but also one to many, each sensor output being 
typically fed into many different entities. The entities used by 
this layer may be mapped to the entity abstraction layer, if they 
are generic and permanent enough to warrant this. 

3) Entity abstraction layer 
The entity abstraction layer provides a one to one mapping 

between a set of physical entities, chosen as invariant common 
denominators of the environment, and a set of software 
representatives (proxies) that maintain their states according to 
generic system-theoretic discrete-state models that capture the 
key temporal properties of these entities as they may be used 
by applications for monitoring but also for control. These entity 
proxies are meant to serve as a common denominator interface 
to various actual instances of physical entities sharing a 
common primary function. These instances may be different 
from one another apart from sharing this main function, like 
e.g. different makes or commercial brands of the same category 
of home appliance as a washing machine. Irrespective of these 
differences, the interface provided to higher layers of the 
infrastructure and to applications relies on the same generic 
entity model.  

4) Entity groups abstraction layer 
Entity groups are meant to represent a collective behavior 

or properties of a plurality entity instances that are represented 
individually in the entity abstraction layer. Thus they involve 
the composition of several individual entity models. Contrary 
to proxy instances which are mapped to physical entities in a 
one-to-one way, entity groups are mapped to corresponding 
physical entities in a many-to-one or one-to-many way. The 
entities being grouped may be instances of the same category 
of entities represented by the same individual model (like e.g. a 
car park model made up from the composition of models of 
individual parking places). They may also be groupings 
according to extrinsic properties such as spatial position. In this 
case the entities being grouped may be all those that belong to 
the same subset of space in the current environment like a 

room, floor or street, or that are under the same ownership or 
management responsibility. These heterogeneous entities will 
not be represented by a common model in the sense of a full-
fledged state model but they may still have common attributes 
that warrant representing them through a common “context 
entity”. 

5) Tightly-coupled applications Layer 
This layer is not functionally part of the IoT infrastructure 

proper and is mentioned here for reference. Applications are 
merely the users of the infrastructure through standard 
interfaces, and the infrastructure should not by definition 
include any purely application-specific feature if it is meant to 
be shared. Remaining at the generic level that makes sense for 
an infrastructure, we may still divide applications in two broad  
categories depending on whether they are “reactive” or not. 
Reactive is not synonymous with real-time in the sense where a 
video streaming application could be considered real-time, it 
may be defined here in a sense derived from [9] by contrast to 
both “transformative” and “interactive”, corresponding to 
applications whose behavior is strictly constrained by their 
coupling to physical systems and which cannot thus be content 
with “best-effort”, requiring strict determinacy and 
boundedness of platform and network response times. They 
are, to phrase it otherwise, applications that are “defined by 
their effect on the physical world”[10], and for which time is 
both an input, an output and a strict correctness criterion, not an 
ancillary QoS factor These applications need to be co-hosted 
with the infrastructure, by contrast to “transformative” 
applications like regular batch-mode big data, an 
implementation issue that we address in section VI. 

IV. COMPLEX EVENT PROCESSING FOR EDGE SENSOR DATA 

FILTERING 

A. Principle 

Complex Event Processing (CEP) operates on a partially 
ordered set of asynchronous atomic events, from which it 
detects supposedly meaningful complex events. In our 
application of CEP, input events originate mostly from sensors 
in the target environment, but may also be complemented by 
remote online sources for more global events or data. 

Raw sensor outputs may correspond directly to 
asynchronous events (such as a contact detection event from a 
magnetic contact sensor), in which case they may be fed 
directly as input to the CEP. Many common sensors produce as 
output, however, time-continuous analog measurements (such 
as temperature or luminosity) rather than events. These signals 
may be transformed into events by single-sensor processing 
such as thresholding the signal or its derivative. This simple 
mono-sensor event detection may be performed on the sensor 
device itself, which makes sense if the sensor operates on a 
limited energy budget: it would thus transmit sparse events 
corresponding to supposedly significant changes rather than a 
continuous flow of possibly unchanging data for transmission 
to the gateway/edge platform hosting the CEP

4
. A more 

powerful alternative solution would be to perform multi-sensor 

                                                           
4 Local processing on the sensor device does also expend energy, but this is usually much 

less than the energy required for transmission from a wireless device 
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data fusion on the joint numeric signals from sensors in 
different modalities. This is too sensor-specific to be 
implemented as a generic enabler in the FIWARE platform, but 
it could be performed directly on a multi-sensor device.  The 
kind of fusion performed by complex event processing on 
sensor data from different sources is obviously less powerful 
because it does not apply the same kind of sophisticated  
processing on the temporally fine-grained data of raw signals.  
CEP could not match, say, a moving target being tracked 
separately by a radio sensor and an infrared sensor, as data 
fusion would do. But CEP is much more generic and much 
easier to program without specific knowledge about the 
physical characteristics of the sensor data sources being used, 
which is why it can play a significant role as a generic enabler 
on an IoT platform. 

CEP operates “along the flow” but normally over a sliding 
time window (temporal scope), which can be either overlapping 
(as for classical Finite Impulse Response or Infinite Impulse 
Response filtering of a synchronous digital signal) or non-
overlapping, incurring a corresponding delay in both cases. A 
similar notion of space window can be defined for our IoT-
oriented application of CEP, corresponding to a spatial scope 
over which sensor events are analyzed. This scope can be 
specified in an intensional

5
 rather than extensional

6
 way if 

position attributes are available for all data sources. 

This can be done upon the requirements of a particular 
application, or as a general-purpose filtering meant to winnow 
down the streams of raw sensor data to meaningful 
information, without throwing away any information that might 
be useful to applications that operate in this environment. This 
filtering has to take in sufficient breadth on both a time window 
of sensor data and a spatial window of multiple collocated 
sensors that may in some way be correlated. 

B. Rule Specification 

Complex event processing has roots in active databases, 
which explains why the languages used to specify the rules for 
programming CEP engines are derived from database query 
languages. Our CEP enabler is based on the Esper

7
 CEP 

engine, which uses a Domain Specific Language, EPL (Event 
Processing Language) for programming of rules. A typical 
statement looks like the following (brackets indicate optional 
features) :  

[INSERT into insert_into_def] SELECT select_list FROM 
stream_def [AS name] [, stream_def [AS name]] [,...] 
[WHERE search_conditions] [GROUP BY 
grouping_expression_list] [HAVING 
grouping_search_conditions] [OUTPUT output_specification] 
[ORDER BY order_by_expression_list]  

C. Functional Integration in FIWARE Architecture 

The CEP engine works by processing incoming events and 
generating output events, both mapped to updates of Context 
Entities in the NGSI data model used by FIWARE 

                                                           
5 by way of  characteristic properties 
6 by explicitly listing all instances 
7 http://www.espertech.com/esper/ 

When the CEP engine receives an update to a Context 
Entity using the NGSI 10/updateContext request, it will fire the 
corresponding events and process the related EPL statements. 

If one or more outgoing events are fired by the CEP engine, 
the corresponding /updateContext requests will be called to 
notify Context Brokers of the updates to the mapped Context 
Entities 

D. Simple control example with CEP 

This extremely basic example uses CEP for controlling 
shutters from the temperature of a room. We assume 
temperature sensors are attached to the room entity through 
corresponding attributes as follows

8
 : 

 { 
     "id": "Room1",   

     "type":"Room",    

     "attributes": [ 

        { "name":"temperature", "type":"double",  

"value":"21" },   

        { "name":"shutter", "type":"string", 

"value":"shutter1" }  

             ] 

 } 

The shutters are entities in their own right, associated with the 

room entity and controlled by setting the appropriate attribute 
{ 

    "id": "Shutter1", # 

    "type":"Shutter",  

    "attributes": [ 

        { "name":"status", "type":"string", 

"value":"closed" },  

    ] 

} 

The EPL rules to trigger the shutter commands based on the 
previous model could be : 

INSERT INTO Shutter 

SELECT R.r.shutter as id, 'closed' as status 

FROM pattern [ every r=Room(temperature > 26.0) -> 

(timer:interval(10 sec) and not Room(temperature < 

26.0 and id=r.id))] as R unidirectional 

LEFT OUTER JOIN 

Shutter.std:groupwin(id).std:lastevent() as S 

ON R.r.shutter = S.id 

WHERE S is null OR S.status = 'opened' 

 

This uses the shutter attribute of the Room as the id of the 

Shutter. The status is set to closed or opened for 

Shutter if the pattern is matched. The patterns trigger when the 

temperature keeps above 26° or under 24° for 10 uninterrupted 

seconds. The left outer join on the Shutter window allows to 

only trigger the command if the current status is different. The 

unidirectional instruction restricts to evaluate the join only 

when the pattern is matched (not when the Shutter window is 

updated). 
Events detected are not complex in any way, and the 

control effected is also the simplest possible. We show in the 
following section this “along the flow” type of event 
processing and instantaneous control should be complemented 
by a stronger consolidation of data through state models of 
entities whenever the action to be effected to attain a desired 

                                                           
8 We use a JSON serialization of the NGSI data model ; more details on http://fiware-

cepheus.readthedocs.org/en/latest/examples/2_CloseShutters/index.html 
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state does actually depend on the previous state of these 
entities. 

V. ENTITY STATE INFORMATION CONSOLIDATION  

A. Rationale 

A control application need not be much more complex that 
the previous example for an approach based on instantaneous 
sensor event detection and stateless setting of actuator values to 
fail. Let us assume the triggering condition depends not only 
on the temperature of the room over a given time window, but 
also on whether the room is empty or occupied. Let us assume 
further that the only means we have to infer this occupancy 
state is through a sensor that detects people getting in or out of 
the room. Obviously we cannot trigger the control directly 
from sensor events, the “people going in/out” events can be 
interpreted as relevant state transitions only in relationship to 
the previous state of the room. Of course anyone could 
program this in any programming language with a simple 
counter, but the point we want to make is that this key 
information should not be just a hidden variable inside some 
little programming kludge: this entity state is the key 
abstraction for consolidating information about the room entity, 
of interest to all applications that may wish to monitor or 
control it, and it should be exposed as such, as the linchpin of a 
model of the room upon which upward and downward data 
mediation will rest. 

Staying with the previous example, we could also try to 
account along the same lines for some physical constraints of a 
shutter: a shutter is not just a binary variable that can be set 
instantaneously, it is a physical system that may respond in 
different ways, depending also on its current state. If we 
assume it is a roller shutter, we might represent it as having 5 
internal states rather than just open or closed, the additional 
states being “blocked”, “moving up”, “moving down”. Control 
of the shutter occurs through a “move-up” or “move-down” 
action sent to its actuator, but the final result and timing of this 
action will also depend on its current state: if the shutter is 
blocked, it will not move at all, and if it is currently moving up, 
it might for some reason have to go all the way up before 
starting to move down. The abstraction exposed to applications 
might still be a binary state as in the previous example, the 
other 3 being hidden states, but the structure and timing of all 
transitions between the 5 states should still be accounted for in 
the underlying model. Considering that the result of an action is 
not instantaneous, applications might wish to get notified when 
the action is actually completed, or if it failed, which should 
also be part of the necessary data mediation and consolidation. 

B. Principle 

In the proposed approach, all self-contained physical 
entities of the target environment are represented as subsystems 
by minimal discrete-state models, drawing upon the knowhow 
of embedded systems to capture their essential timing and 
reactivity properties. These models represent generic categories 
to which all kinds of physical entities of the target environment 
(pieces of equipment or relevant subsets of space) may get 
approximately matched, capturing a domain knowledge that 
can be shared by all applications operating in these 

environments. We will not focus here on how this 
identification of such models from entities of the environment, 
could be made (at least partially) automatic, something which 
has been the subject of our previous research  

State in a system-theoretic summarizes the history of the 
system, i.e. the behavior of the system up to time t>t0 depends 
only on its state at time t0 and inputs from t0 to t. In practice 
we always use a simple discrete abstraction of the actual state 
of the physical system. 

These entities expose northbound interfaces affording 
shared monitoring and control of corresponding entities from 
both tightly-coupled and loosely-coupled applications, and the 
arbitration of potential conflicts between these. The loose 
coupling interface is fully compliant with the REST 
architectural style: states of the instantiated models are the 
resources  exposed through this interface to be either read or, if 
applicable, updated, while transitions provide links to locally 
attainable states, dispensing with a global functional 
description of the target entity. 

C. Entity models 

The entity models we propose to use are derived from 
Argos automata [11] within the broader family of synchronous 
languages and formalisms. 

These automata have finite sets of explicit states and 
transitions, with a single initial state. The transitions are labeled 
by: a triggering condition (also called the input part) and an 
effect (also called the output part), separated by a slash sign. 
The input part may be a Boolean formula (in the sequel, j 
denotes the disjunction); the output part is a set. 

Each automaton should be deterministic and reactive, 
ensuring that, in any state, for any possible input, the reaction 
of the automaton is uniquely defined; the reaction might be a 
self-loop with no outputs, meaning that the effect is not 
observable, in which case the transition can be omitted. Some 
of the states are timed states, meaning that, once entered, a 
time-out transition will be automatically triggered after some 
predefined amount of time; there can be one or several ordinary 
transitions sourced in a timed state. When defining a language 
on top of this formal model, it is usual to allow additional 
variables (typically counters) to be tested and set on transitions. 
As presented in the followings section, the formalism allows 
the use of several “parallel” automata instead of a single one, if 
this is more convenient for modeling purposes. 

D. Mapping to REST interface and  from stateful entity 

Models 

From an entity model we generate automatically a 
corresponding REST resource by exploiting the fact that our 
automata have a particular structure. Our mapping is based on 
the following rules: (i) an automaton A will be mapped to one 
resource RA; (ii) the states s1; s2; ::: of A will be mapped to 
sub-resources of RA, denoted by RA=s1;RA=s2; :::; (iii) the 
GET method applied on RA returns a link to the sub-resource 
RA=s corresponding to the current state s of A, and three sets 
of sub-resources describing what actions are possible on A 
when in state s; (iv) the POST method can then be used on any 
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of the sub-resources mentioned in the sets returned by GET, to 
activate a transition. (v) the outputs of the automaton (the 
acknowledgements) are returned by a POST call, as part of its 
response code. 

The mapping of the state representation to NGSI data 
model could be done by assigning corresponding values to a 
state attribute of the entity. Weak typing of such attributes with 
strings, in version 1 of the NGSI standard makes this solution 
inconvenient. It would be much preferable to make use of an 
extension of the standard, currently under consideration, that 
would make it possible to represent state transitions as 
described above, as links from retrieved resources to available 
resources, and also structured attributes types based on a JSON 
serialization of this data model. 

VI. IMPLEMENTATION ARCHITECTURE OF FIWARE IOT 

INFRASTRUCTURE 

The gap between standalone embedded systems and 
networked IoT systems should ultimately be bridged, yet it is 
by now widening rather than closing... On one side are 
contrivances that are custom designed as informationally 
closed and physically enclosed systems, with every 
performance requirement guaranteed by the hardwired design 
choices being baked into a self-contained one-of-a-kind 
apparatus. On the other side are IoT systems that are, by 
definition, distributed, and are moving slowly towards being 
more open and less vertically integrated. Yet this welcome 
opening occurs in tandem with a systematic move towards all-
cloud operations that, beneficial as they may be for big-data 
types of applications, comes with a performance penalty that is 
unacceptable for reactive applications as defined previously. 
These applications require an infrastructure that can provide 
performance guarantees on a par with traditional embedded 
systems, while keeping the benefits of openness, genericity, 
reusability, data sharing and economies of scale that come 
bundled with open platform-based solutions. 

It is the distributed nature of this infrastructure, 
encompassing close-to-the-field- hardware platforms as well as 
regular cloud platforms, which should make it possible to 
support both locally hosted tightly-coupled reactive 
applications with strong latency constraints, as well as remote 
loosely-coupled applications. It will also, crucially, provide the 
benefit mentioned as a requirement at the outset, i.e. the 
possibility to filter raw data before it swamps networks and 
storage sites. 

A. Backend enablers 

Public cloud platforms called FIWARE labs host working 
instances of FIWARE available for experimentation. FIWARE 
Labs are hosted on multiple nodes across Europe. 

The architecture of the IoT chapter of FIWARE uses a 
specific registry enabler called IoT Discovery

9
, under which 

entities in the sense defined above, comprising non-connected 
things, space entities but also connected devices, may be 
registered and discovered. The interface used for this is NGSI-
9, a part of the NGSI standard complementary to the NGSI-10 

                                                           
9 http://catalogue.fiware.org/enablers/iot-discovery 

part used for entity information representation. This “backend” 
enabler is typically hosted on a remote FIWARE node. Another 
backend enabler called IoT Broker

10
 has a functionality 

somewhat similar to the proposed entity and entity group 
abstraction layers, without the state models and CEP data 
fusion, and implements them on the cloud without real-time 
properties. Backend device management and protocol 
abstraction are handled by another enabler called IDAS

11
 

B. Candidate Edge domain platforms and proposed 

implementations 

Target platforms of this edge domain cover a spectrum 
from Raspberry Pi boards to high-end servers.  Home gateways 
have been at the forefront of the evolution of such platforms, 
initiating the opening of hitherto closed boxes, turning them 
into open platforms that will, ultimately, become the network-
edge outposts of cloud platforms. Security and isolation 
between applications have been first concerns addressed [12], 
but time-response should be next if the new breed of open 
gateways are to support time-sensitive applications.  

The evolution of “points of presence” [13] supporting 
network function virtualization could provide a more high-end, 
less widely distributed and hopefully more secure alternative 
for the hosting of such platforms close to the field and the 
physical systems to be monitored and controlled. Ensuring 
bounded latency and strictly deterministic response times in 
this case will also require operator-grade last-mile “capillary” 
networks, rather than the kind of best effort Low Power Wide 
Area networks being deployed by now on unlicensed bands. 
Just as for computing platforms, many network technologies 
may still take time into account only as a QoS rather than a 
functional requirement [10] 

The reference implementation called Cepheus of the 
Complex Event Processing part of our edge enabler called “IoT 
Data Edge Consolidation”

12
  has been ported on a Raspberry Pi 

platform. The time performance of this implementation 
compared to backend implementations of similar 
functionalities also available in FIWARE is currently being 
evaluated. 

VII. CONCLUSION AND PERSPECTIVE 

The “edge” implementation of IoT data mediation that we 
have described is but a first stage in the direction of a truly 
distributed cloud, supporting the constraints of time-sensitive 
reactive applications while keeping all the benefits of data 
pooling, virtualization and elasticity of a regular cloud 
implementation. Communication within such a distributed 
cloud could also be handled through an overlay network that 
would make it easier to enforce latency and jitter requirements. 
The next stages of work will require a comparative evaluation 
of the execution environments such as OSGI which have been 
used since quite some time for gateway platforms, against 
virtual appliances or containerization solutions which are 
currently being used as a lightweight alternative to full-fledged 

                                                           
10 http://catalogue.fiware.org/enablers/iot-broker 
11 http://catalogue.fiware.org/enablers/backend-device-management-idas 
12 http://catalogue.fiware.org/enablers/iot-data-edge-consolidation-ge-cepheus 
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virtualization, and could make it possible to come closer to the 
transparent distribution of a full IoT infrastructure.  
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