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Abstract—The existence of coverage holes in cellular networks
is a common problem for mobile operators. Traditionally, the
cellular coverage is computed using sophisticated planning tools,
and then optimized through drive tests. With the drive tests
information, the operators detect the poorly covered areas and
take actions to eliminate them. The introduction of self-organized
or “cognitive” techniques, would allow the operators to maxi-
mize the network’s information obtained through drive tests or
reported by the mobile users. In this paper we propose the use of
spatial Bayesian geo-statistics to build a Radio Environment Map
(REM) for real coverage hole detection purposes. Results show
that the number of pixels forming the coverage holes, as well as
the probability of detecting them, can be significantly increased
with the use of REMs, compared to the case where only network
measurements are used.

Keywords—Coverage hole detection, minimization of drive tests,
spatial information exploitation, REM.

I. INTRODUCTION

When deploying a Radio Access Technology (RAT), cov-
erage planning is a complex task for operators since they
need to consider multiple and correlated network parameters as
well as environmental conditions that are out of their control.
Completely avoiding the existence of coverage holes in cellular
networks during the planing phase is almost impossible and
therefore, coverage optimization processes are usually required
during the operational phase. Traditionally, cellular coverage
optimization is performed through drive tests, which consist of
geographically measuring different network coverage metrics
with a motor vehicle equipped with mobile radio measurement
facilities. The collected network measurements need to be
processed by radio experts for network coverage optimization,
e.g. by tuning network parameters such as transmission power,
antenna orientations and tilts, etc.

The use of drive tests imply large Operational Expenditure
(OPEX) and delays in detecting the problems, and they cannot
offer a complete and reliable picture of the network situation.
Additionally, they tend to be limited to roads and other
regions accessible by motor vehicles, and are not helpful in
detecting coverage problems inside buildings. They are also an
undesirable source of pollution. These reasons drive operators
to make the most of the information collected through the
drive tests, and to minimize the use of them. Therefore, since
Release 9, the 3rd Generation Partnership Project (3GPP),
the key standardization body for cellular networks, has been
working on the optimization of drive tests [1] and since
Release 10, a feature called as Minimization of Drive Tests
(MDT) has been included in the standard, both for 3G (in-
cluding also High Speed Packet Access (HSPA) and Long

Term Evolution (LTE) [2], [3]). The key idea of the MDT is
that the network operator can request the User Equipments
(UEs) to perform and report specific radio and Quality of
Service (QoS) measurements associated to the UE location for
troubleshooting and optimization purposes. Also, automation
of network operations and management, including network
optimization, is an important topic currently studied in 3GPP,
in the framework of Self-Organized Networks (SONs), com-
prising self-optimization, self-configuration and self-healing
operations. The main targets of SON are to decrease expenses,
increase the network autonomy and achieve an automatic, near
optimal network performance in terms of coverage, resource
exploitation, energy efficiency and load balancing, to name a
few common criteria [4].

In this paper, we introduce an automated coverage hole
detection approach that could be the first step of a coverage
self-optimization process. The proposed approach is based
on a cognitive tool that provides location awareness [5]:
Radio Environment Maps (REMs). The REM concept was first
introduced as an integrated database for Cognitive Radio (CR)
systems that are based on opportunistic spectrum access, such
as TV white spaces [6]. In our work, we consider a broader
view of the concept of REM, which introduces the ideas
of Interference Cartography (IC) [7]–[9], where the REM is
constructed through spatial interpolation of geo-located mea-
surements (i.e. drive test measurements, geo-located network
statistics and UE reports in the context of cellular radio net-
works). The main difference of this IC approach with regards
to the initially proposed concept of REM is that IC constructs
the cartography based on measurements partially spanning the
area of interest, spatial interpolation techniques and additional
measurement request mechanisms. The IC approach for REM
has been shown to be an effective method for wireless network
optimization in [10]–[12]. For the spatial interpolation, we use
the Bayesian kriging technique [13], which exploits all the
available information regarding the network performance.

Without exaggeration, we can say that coverage is the most
important and the highest-priority target that has to be achieved
by cellular operators. Without coverage provisioning, it is
meaningless to talk about service, or QoS provisioning. There-
fore, cellular coverage prediction and enhancement remains as
a basic and prevailing area of research and investigation in
wireless communications. To the best of our knowledge, the
problem of automated coverage hole detection based on spatial
statistical processing of geo-located measurements has only
been treated for sensor networks but not for cellular networks,
until the present line of work. Considering that sensor networks
and cellular networks differ to a great extent in aspects such



as coverage definition/requirements and measurement collec-
tion/request mechanisms, we can claim that the present line of
work is the first to investigate automated coverage prediction
in cellular networks.

The work we present in this paper is a continuation of the
work presented in [11]. Differently from [11], in this paper we
give a more realistic evaluation of the REM-based coverage
hole prediction, since in the present analysis, a more realistic
coverage hole definition is considered. In [11], a non-covered
pixel was considered as a coverage hole, independently from
the fact that its neighboring pixels were covered or not.
However, in reality, a coverage hole frequently consists of
neighboring uncovered pixels. Thus, a set of neighboring N
pixels constitute a single coverage hole, but not N separate
coverage holes. Therefore, in this paper, we have adopted
the notion of neighboring pixels in defining a coverage hole
and enhanced our performance analysis with respect to the
pixel-based analysis in [11]. Our aim is to measure the gains
introduced by the use of REMs in coverage hole prediction
where coverage hole is defined in a more realistic sense as
described above. The coverage measurement data used in this
work can be considered as real measurements, since they are
obtained from a very accurate planning tool that uses a ray-
tracing propagation model.

The rest of this paper is organized as follows. Section II
describes the considered scenario, including network measure-
ments and related parameters, as well as the proposed methods
for coverage hole detection and evaluation. Section III presents
the performance of the spatial interpolation process and of the
proposed coverage hole detection method. Finally, Section IV
summarizes the main conclusions.

II. SCENARIO AND METHODOLOGY

In this section we present the considered scenario, the
parameters used to evaluate the proposed coverage hole detec-
tion algorithm, the evaluation methodology and the indicators
defined for evaluation purposes.

A. Scenario, Measurements and Parameters

The analysis is performed over geo-located Received Sig-
nal Code Power (RSCP) values from a 3G network deployed
in a dense urban area in the south of Paris, France. The
used RSCP values are obtained with a reliable planning tool
with highly accurate propagation models, which is commonly
used for operational network planning [14]. For the calibration
of the propagation model, the environmental conditions, i.e.
terrain profile and buildings, were considered and they were
also validated through repeated drive tests. Therefore, it can
be assumed that this RSCP data represents very closely the
“ground-truth” in the given area. In what follows we refer to
the map obtained from this RSCP data as the real coverage
map. It is worth noting that the proposed approach is not
limited to 3G, but is a generic one which can be applied to
any radio access technology. For example, by using the method
proposed in [15], to transform the RSCP values to Reference
Signal Received Power (RSRP) values, a similar coverage hole
detection analysis could be carried out for LTE with a change
in the value of the coverage threshold only.

The above-mentioned real coverage map, presented in
Figure 1, has a grid granularity of 25 m × 25 m. In the
remainder of this paper we refer to this grid area as a pixel.

We define a minimum RSCP coverage threshold of -123 dBm
and those pixels where the received RSCP is below this
threshold are considered to be uncovered. Figure 2 represents
the binary map of the real coverage map, where the uncovered
pixels are represented in gray and the covered pixels are
represented in white. Another important parameter to define is
the minimum number of neighboring uncovered pixels which
an operator considers as an area with coverage problems where
some corrective actions have to be taken. Considering the
environment (urban) and the grid size (25 m × 25 m), we
use a typical value of 4 neighboring pixels and we refer to
this area as a coverage hole.
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Fig. 1. RSCP coverage map measured in dBm used as the ground-truth.

In dealing with coverage holes over a geographical zone
of operation, usually a practical approach taken by operators
is to prioritize (groups of) coverage holes rather than handling
all the coverage holes at once. Therefore, those coverage holes
that have the potential to have a larger (negative) impact on
operator’s prioritized targets are dealt with higher priority than
the others. In this work, we adopt a similar local approach and
consider a typical prioritization aspect: we focus on the largest
coverage hole (i.e. coverage hole with the largest geographical
area). Therefore, the proposed analysis is carried out on the
neighboring area around the largest coverage hole, as can be
seen Figure 2.

Operators already have an idea on such neighboring areas
thanks to traditional network diagnostics based on human-
expert processing of alarm tickets, customer complaints and
routine drive-test measurements collected from the neighbor-
hood. When such an area is suspected to have a coverage
hole, the traditional method to deal with this situation is to
send out drive test equipment and experts to that area to
perform detailed/thorough drive tests and analyze the obtained
measurements in order to: (1) detect the presence and (2)
accurately identify the shape of the coverage hole for further
(corrective) actions.

The REM-based analysis proposed in this paper is meant
to replace this phase of detailed/local drive test measurement
collection and analysis, by using geo-located measurements
reported by UEs present around the coverage hole. Although
UEs cannot report immediate measurements when they are
within a coverage hole, mechanisms such as logged Radio Link
Failure (RLF) reporting exist in the MDT framework, which



Fig. 2. Coverage area corresponding to the RSCP map shown in Fig. 1.

allow the UEs to log the measurements when they lose the
network connection and report the logged measurements as
soon as they get reconnected [2]. Furthermore, measurements
could be requested to UEs inside the covergae hole, attached
to other technologies. In this way, valuable geo-located data
related to the coverage loss can be used by the network
operator. Thus, instead of performing a second round of (local
and dedicated) drive test measurements and manually process-
ing/analyzing those measurements, the operator constructs a
remote representation of the local network coverage (i.e. REM)
over the suspected area, hence minimizing the overall number
of drive tests and the expenses/delays they imply.

In Figure 3(a), we can see the binary map of the larger
coverage hole found in the real coverage map, and zoomed in
Figure 2. Figure 3(b) represents the operator’s (partial) view
on the zoomed area: black pixels show locations where there
are no measurements.

The automated construction of REM uses spatial statistics,
namely Bayesian kriging, to have a realistic representation of
the ground-truth. Application of Bayesian kriging to coverage
REM construction is described in [11], where a preliminary
performance analysis on pixel-level coverage is also given.
The entity which carries out the REM construction is a soft-
ware framework called as the REM manager [16]. The REM
manager is located at the Operations and Maintenance Centre
(OMC) and it is in charge of collecting and analyzing the UE
reports, the collected measurements, etc. and to perform the
coverage prediction.

B. Proposed Methodology and Evaluation Method

We assume that, based on UE reports, network measure-
ments used for common Radio Resource Management (RRM)
purposes, drive test, users complaints, etc., the REM manager
can identify areas with coverage problems. Once the operator
detects an area with a potential coverage hole, it applies
the coverage hole detection approach, which consists in the
following steps:

1) The REM manager verifies whether it has enough
network information, i.e. a required percentage of
pixels, p, with available measurements for performing

the interpolation process. If not, the REM manager
sends a measurement request to those UEs around
the problematic area until it collects measurements
on p pixels. Here, it is worth pointing out that we
consider a static scenario, and thus there are not time
constraints. In any case, the delay in waiting for the
required UE measurements will always be lower than
the required time to perform drive tests. Therefore,
we can affirm that the delays introduced by the
proposed coverage hole detection methodology are
not significant in comparison with the conventional
methods. Figure 3(b) represents an example of a real
information situation for the area under study, for the
case of p = 50%, where the squares in color represent
real measurements and the black squares represent
those pixels where measurements are not available
and the interpolation is to be performed.

2) Once the minimum required measurements are gath-
ered, the REM manager performs the Bayesian in-
terpolation [13] to estimate the RSCP values in
those points where it lacks information. Examples of
Bayesian interpolation for REM construction can be
found in [10], [11]. Finally, the REM manager can
construct the REM by overlapping the available real
measurements (Figure 3(b)) and the ones resulting
from the interpolation process. When the threshold is
applied, it results, for instance, in a map as the one
presented in Figure 3(c).

An important aspect to highlight is that the proposed
methodology does not imply any modification in the existing
network entities. The new functionalities, i.e. the REM man-
ager, is a software-based approach to be introduced at the OMC
level [16]. This makes upgrading existing networks, to benefit
from the proposed methodology, both very straightforward and
cost-effective.

For the evaluation process we define, at a pixel level, the
average interpolation error. It measures the average amount
of pixels incorrectly estimated in the interpolation process.
This average consists of the false alarm and misdetection
probabilities. On the one hand, the false alarm probability
measures how many pixels are estimated to have a RSCP
below the threshold when in reality it is above the threshold.
On the other hand, the misdetection probability measures how
many pixels are estimated to have a RSCP above the threshold
when the real measurement is below or equal to the RSCP
threshold [11].

We then present the results obtained when the coverage
hole concept, of N uncovered neighboring pixels, is considered
in the evaluation process. First, we measure the gain in the
detection probability of the pixels forming the coverage holes.
Second, we estimate the probability of detecting the coverage
hole. This probability is measured in such a way that if more
than a given percentage of the pixels, c, belonging to the
coverage hole are correctly identified, then we assume that
the coverage hole has been detected, otherwise, we consider
that the detection procedure has failed.

III. EVALUATION RESULTS

In this section we present the evaluation results for our
methodology from two perspectives. On the one hand, we
evaluate the accuracy of the interpolation process, and on
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Fig. 3. Real and interpolated ground-truth maps.

the other hand, we evaluate the effectiveness of the proposed
methodology for the real coverage hole detection. We focus on
the largest detected coverage hole in the binary coverage map
for the statistical evaluation. Statistics are computed for 1000
snapshots, from where on the results converge. Results pre-
sented in this section have been estimated for different percent-
ages of available measurements, p = {50, 60, 70, 80, 90}%,
used in the interpolation process (see Figure 3(b)). Translating
p into required measurements per square meter, results in
q = {0.08, 0.096, 0.112, 0.128, 0.144} UE’s RSCP reports per
square meter, which is a very small amount of measurements
due to the static nature of the problem and the size of the grid.
As future work, we would like to consider in the evaluation
process the patterns of the density of population as well as the
uncertainty on the measurement locations.

A. Pixel Level Detection Performance

Results presented in this section evaluate the interpolation
reliability on a pixel level. Figure 4 represents the average
interpolation error. This average error is broken down into
false alarm and misdetection probabilities. Results presented
in Figure 4 show that the interpolation process performs
well, even for low amount of available measurements, i.e.
p = 50%, with an average error around 10%. As expected,
as the amount of available measurements for the interpolation
process increases, its accuracy improves and therefore, the
average error decreases, reaching a value of around 2% when
p = 90%.

B. Coverage Hole Detection

In this section we evaluate the accuracy of the proposed
pixel-wise methodology for realistic coverage hole detection.
In the following figures we use the acronym CH to refer to
Coverage Hole. In Figure 5 we find:
• Light blue bars representing the average percentage

of measured pixels, which is equal to the number of
coverage hole pixels measured by the operator, divided
by the number of pixels forming the coverage hole.

• Dark blue bars representing the average percentage of
detected pixels with REM which is equal to the num-
ber of coverage hole pixels measured by the operator
plus those (uncovered) pixels correctly estimated by
the REM, divided by the number of pixels forming
the coverage hole

These average percentage values are obtained over a sta-
tistically significant number of independent “snapshots” where
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Fig. 4. The average error, false alarm, and misdetection probabilities in the
interpolation process.

at each snapshot, the available measurement pixels are uni-
formly chosen. It is due to this uniform distribution that the
average percentage of measured pixel values (light blue bars)
correspond exactly to the percentage of available measurement
(horizontal axis) values in Figure 5. It can be observed that, as
the number p of measurements available for the interpolation
process increases, the average number of the coverage hole
pixels known by the operator also increases. Figure 5 shows
that the REM introduces a 20% of additional knowledge on
the coverage hole pixels to the network measurements, when
p = 50%. The knowledge on the coverage hole pixels reaches
an approximate value of 94% for p = 90% when REM is used.

Figure 6 represents the probability of detecting the cov-
erage hole for c = {50, 70, 90}% when the REM is used. It
can be observed that, when half of the coverage hole pixels
are required to be known, c = 50%, the coverage hole is
detected in more than 92% of the cases, even for low amounts
of available measurements, i.e. p = 50%. Here it is worth
highlighting that for the highly demanding case of c = 90%,
the detection probability increases up to 95% for p = 90%.

Comparing the probability of detecting a coverage hole
for the cases when the REM is constructed and when only
network measurements are used, we can conclude that the
detection probability significantly increases with the use of
REM. Figure 7 depicts the coverage hole detection probabil-
ity for both cases for the highly demanding requirement of
coverage hole detected pixels c = 90%. We see that for a
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and REM.
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Fig. 6. Average probability of coverage hole detection as a function of c (see
end of Section II) for different percentages p of pixels for which measurements
are available, when using REM.

low amount of measurements, p = 50%, the coverage hole
detection probability increases 35% when REM is used and
for high amount of available measurements, p = 90%, the
coverage hole detection probability still increases by about 6%
with the REM. Furthermore, a very striking fact evidenced by
Figure 7, and highlighted by the dashed black line is that, for
achieving a 70% coverage hole detection probability, the REM
requires 70% of available measurements, whereas without the
REM, we need more than 80% of measurements to achieve the
same detection probability. Thus, REM saves more than 10%
of measurements for the same performance level of coverage
hole detection.

IV. CONCLUSION

In this paper we have evaluated the improvements obtained
when introducing REMs for coverage hole detection in cel-
lular networks. The REM we propose to implement is built
through spatial Bayesian predictions. The presented results
were obtained for realistic coverage data, computed through
an accurate operator planning tool. Analyzing the obtained
results we can affirm that the proposed solution allows a remote
and automated cellular coverage detection, that enhances the
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Fig. 7. Average probability of coverage hole detection for only network
measurements and REM.

accuracy of the coverage hole detection with a limited required
number of measurements. The next step in the troubleshooting
process, once the coverage hole detection is performed, is
to carry out the optimization of parameter settings, such as
transmission power, antenna configurations, etc., to solve the
coverage problem. In the parameter optimization phase, the
information offered by the REM can also be exploited in order
to enrich the system knowledge and enhance the optimization
efficiency. Using REM information for network parameter
optimization is one of the key research areas we are pursuing
in future work.

The spatial estimation techniques used in this work have
also further applications beyond estimation of received power
values and other signal domain characteristics. For example,
by carrying out measurements in the uplink band, similar
techniques could be used to more precisely map the density of
users in different regions covered by the operator’s network.
Having such information in a finer level of detail than allowed
by existing approaches would be very useful as a foundation
of next generation network planning tools, for example. The
developed Bayesian reasoning framework forms a very flexible
foundation for such applications, as it allows to take various
uncertainties, such as localization errors by devices carrying
out the measurements in a natural manner. Exploring these
issues in more detail and through experimental prototypes
forms a core part of our ongoing research.
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