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Abstract—This paper studies the problem of content
distribution in wireless peer-to-peer networks with selfish
nodes. In this problem a group of wireless nodes exchange
data over a lossless broadcast channel. Each node aims to
increase its own download rate and minimize its upload rate.
We propose a distributed protocol that provides incentives
for the nodes to participate in the content distribution. Our
protocol does not require any exchange of money, reputa-
tion, etc., and hence can be easily implemented without
additional infrastructure. Moreover, our protocol can be
easily modified to employ network coding.

Focusing on the important case in which the system
contains two files that need to be distributed, we derive
a closed-form expression of Nash Equilibria. We also derive
the prices of anarchy, both from each node’s perspective and
the whole system’s perspective. Furthermore, we propose
a distributed mechanism where the strategy of each node
is only based on the local information and show that
the mechanism converges to a Nash Equilibrium. We also
introduce an approach for calculating Nash Equilibria for
systems that incorporate network coding when more than
two files need to be distributed.

I. INTRODUCTION

Recently, there has been a significant interest in using
wireless peer-to-peer (P2P) networks to distribute infor-
mation between mobile devices. The peer-to-peer content
distribution can improve the system performance in many
different ways. For example, in cellular networks it is of-
ten the case that mobile phones can retrieve the required
information from their peers instead of downloading it
from the remote servers. Since exchanging data between
local devices requires much less power and results in
less interference to other devices, such an approach may
reduce power consumption and increase spatial reuse.

Many existing studies (e.g., [1]–[3]) have demon-
strated the benefits of wireless P2P networks. However,
these studies have assumed that all nodes are cooperative
and do not require additional incentives to cooperate. In
practice, nodes may be selfish and have little incentive
to help other nodes to obtain the data. Therefore, a
major challenge for wireless P2P networks is to provide
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incentives to nodes in the network so that they are willing
to contribute to the network by sharing their data with
other nodes. While there are many studies, such as [4]–
[6], on this topic for wired P2P networks, these works
cannot be applied to wireless P2P networks. Due to the
broadcast nature of the wireless medium, when a node
transmits a packet, all nodes within the proximity are able
to receive the packet. Therefore, in wireless P2P networks,
data exchange involves all nodes within the system, rather
than only two nodes as in wired P2P networks.

In this paper, we study wireless P2P networks composed
of selfish nodes. We first provide a model that considers
the broadcast nature of wireless transmissions and the
incentives of selfish nodes. Each node in the system aims
to increase its download rate and decrease its upload rate,
so as to reduce its own power consumption. We then
propose a protocol for content distribution for this setting.
Our protocol does not require the exchange of money,
reputation, etc., and hence can be implemented without
the need of additional infrastructure. This non-monetary
feature further distinguishes our work from other studies
that rely on additional infrastructure to set prices or
payoffs [6]–[8], or to punish uncooperative nodes [9].
Moreover, our protocol can be easily modified to employ
network coding.

We provide a detailed performance analysis for our
protocol. For the practically important case with two files
in the system, we derive closed-form expressions for each
node’s strategies under a series of Nash Equilibria. We also
derive the prices of anarchy under these Nash Equilibria,
both from a node’s selfish perspective and the whole
system’s perspective.

To compute its strategy under a Nash Equilibrium, a
node needs information of all other nodes, which is not
always available to it. To address this challenge, we pro-
pose a distributed mechanism where each node updates
its strategy only based on its private information and
the history of the system. We show that this distributed
mechanism converges to a Nash Equilibrium. Moreover,
this mechanism is also consistent with each node’s incen-
tive, as the expected cost of each node reduces with each
update.

We then consider systems that have more than two files



and employ network coding. We propose a systematic ap-
proach to compute the Nash Equilibria. The performance
of such systems is further investigated through numerical
studies.

The rest of the paper is organized as follows. Section II
proposes our system model and protocol for content
distribution. Section III studies the Nash Equilibria for
systems with only two files. Section IV studies the prices
of anarchy under these Nash Equilibria. Section V dis-
cusses implementation issues and provides a distributed
mechanism for nodes to update their strategies. Section VI
studies the Nash Equilibria when there are more than two
files in systems that employ network coding. Section VII
provides some numerical results. Finally, Section VIII
concludes the paper.

II. SYSTEM MODEL AND PROTOCOL OVERVIEW

We consider the direct data exchange problem [10] in
which a group of wireless nodes are collaborating to ex-
change the set of files X = {A,B,C, . . . }. Each node has
a subset of files in X available to it and needs to obtain
all other files in X. The nodes use a lossless broadcast
channel to transmit files to other nodes. We assume that
the files are very large, hence a large number of packets
need to be broadcasted over the channel to deliver every
file to other nodes. For clarity of presentation, we assume
that each file contains infinitely many packets. For long
files, this assumption incurs a very small penalty in terms
of the accuracy of the obtained results.

In this paper we focus on the special case in which each
node n requires a single file, denoted by Xn. This is an
important case that captures many of the salient features
of the problem at hand. This case is of a significant
practical importance since in many settings wireless nodes
need to recover only a small number of packets, (e.g.,
packets that are lost due to fading or interference).

The broadcasting nature of wireless transmissions may
result in a “free rider” problem as illustrated in the follow-
ing example. Due to the free-rider problem, the existing
protocols designed for wired networks cannot be applied
directly to the wireless setting.

Example 1: Consider a system with four nodes and
two files where X1 = X2 = A and X3 = X4 = B.
Suppose that node 1 and node 3 exchange data, that is,
node 1 transmits packets of file B, and node 3 transmits
packets of file A in return. As all nodes can receive all
transmissions, node 2 and node 4 can obtain packets of
A and B without transmitting any packet. Therefore, we
say that nodes 2 and 4 are free riders.

In addition to being unfair, the possibility of being a free
rider may prevent selfish nodes from transmitting data
and contributing to the network. In the above example,
each node may refrain from transmitting data, in the hope
that other nodes participate in exchanging data, making
itself a free rider.

In this paper, we propose a non-monetary protocol for
P2P content distribution and study its performance when
all nodes are selfish. Before introducing the protocol, we
first formally describe the goal of each node.

A. Definitions

We define the time needed for transmitting a data
packet to be one unit time. Let rn(k) denote the time
when node n downloads the k-th packet from the re-
quired file. We define the download rate of node n as
lim infk→∞

k
rn(k)

. The download rate captures the average
number of packets that node n downloads per time unit.

The goal of each node is to maximize its download
rate and, at the same time, to reduce the number of
transmissions it makes. To be more specific, we assume
that whenever node n transmits a data packet, it needs
to pay a transmission cost gn. The transmission cost can
be chosen, for example, to reflect the amount of power
needed for making a transmission. On the other hand,
node n pays a waiting cost wn per unit time through the
course of the protocol.

Let αn(k) be the number of transmissions that
node n makes until time rn(k). Consider the time
period (rn(k − 1), rn(k)]. During this time period,
node n receives one packet and transmits αn(k) −
αn(k − 1) packets. Thus, the total cost for node n
to download packet k during this time period is
(αn(k)− αn(k − 1))gn + (rn(k)− rn(k − 1))wn. The aver-
age total cost of node n is then defined as the long-term
average total cost per downloaded packet.

Definition 1: The average total cost of node n is defined
as

lim sup
k→∞

αn(k)gn + rn(k)wn
k

.

The goal of each node is to minimize its average
total cost. More specifically, node n wishes to reduce
lim supk→∞

αn(k)
k in order to achieve small transmission

cost. On the other hand, lim supk→∞
rn(k)
k is the average

delay between two successive packet downloads, which is
also the inverse of the download rate. Therefore, to have
small delay and high download rate, node n would like
to minimize lim supk→∞

rn(k)
k .

B. Protocol description

We now describe our protocol for P2P content distri-
bution. The process consists of rounds such that during
each round one packet from A and one packet from B
is broadcasted over the channel. At the beginning of a
round, each node n secretly picks a back-off time, τn.
Node n then waits and listens to the channel for τn time. If
no transmissions take place in τn time, node n transmits
a control packet that contains the name Xn of the file
required by n. The control packet can be interpreted as
an obligation of node n to transmit the next packet from
a file held by n if any other node transmits the next
packet from file Xn (the next packet refers to the packet
which has not been broadcasted over the channel). Since
the control packets are very small, we assume that their
transmission does not incur any cost and that the time
required for transmission of such packets is negligible.
We refer to the time between the beginning of the round
and transmission of the control packet as the initiation
phase.
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Fig. 1: An example of a round.

After node n transmits the control packet, every node
m that has file Xn and whose required packet Xm is
available at node n secretly and randomly picks a back-
off timer τ̂m. Every node m then waits and listens to the
channel for τ̂m time. If no other nodes transmit in τ̂m time,
node m transmits a data packet of Xn, and piggybacks its
value of Xm. Upon receiving the data packet from node
m, node n responds with a packet of Xm, as promised in
its control packet. The round ends after node n completes
broadcast of packet Xm and a new round begins. We refer
to the time interval between the end of the initiation
phase and the transmission of a packet by node m as
the response phase. Note that τn and τ̂m are lengths of
the initialization and response phase, respectively. The
protocol execution is demonstrated in Fig. 1.

Intuitively, when a node n chooses large values of τn
and τ̂n, it is likely that node n does not transmit, which
increases its chance of being a free rider and reduces
its transmission cost. However, large values of τn and τ̂n
might result in large waiting times for n, which, in turn,
might result in a large waiting cost. By taking waiting
costs into account, our protocol provides incentive for the
nodes to choose reasonably small values of τn and τ̂n, and
hence enables the nodes to exchange data in an efficient
manner. We also note that our protocol is non-monetary
and can be easily implemented for modern wireless net-
works without the need of additional infrastructure.

Finally, we show that our protocol can be modified for
the settings in which the network coding technique is
used. The modified protocol is very similar to the one
described above. Still, at each round, exactly two data
packets will be transmitted. With the network coding
technique, the packet broadcasted at the response phase
will be a linear combination of the packets available
at the transmitting node. For example, suppose that X
contains three files A,B,C and node n requires file A, i.e.,
Xn = A. Then, in the response phase, node n can send
a combination of the next packet from B and the next
packet from C (the combination can be a linear operation
underlying finite field). The use of the network coding
technique will increase the number of nodes that benefit
from each transmission, but can also lead to more free

riders.

C. Price of Anarchy
Under our protocol, each node’s strategy consists of

two parts: choosing a distribution to generate its back-
off timer in the initiation phase, τn, and choosing a
distribution to generate its back-off timer in the response
phase, τ̂n. We say that the strategies of all nodes in the
system form a Nash Equilibrium if, for each node n, its
strategy minimizes its average cost, given the strategies
of all other nodes.

In this paper, we analyze the performance of our proto-
col under Nash Equilibrium. We consider the performance
from both nodes’ perspectives and the system’s perspec-
tive. A node’s performance is based on its average cost. On
the other hand, the system’s performance is characterized
by the average download rate of all nodes. We also define
the price of anarchy on node cost and price of anarchy
on per-node download rate by comparing the average cost
and download rate under the Nash Equilibrium with the
average code and download rate that can be achieved
under a cooperative scenario. In the cooperative scenario,
we assume that there are two nodes, n and m, that choose
τn = 0 and τ̂m = 0, respectively, in each round. Therefore,
all other nodes do not transmit, and the length of each
round is two time units. The prices of anarchy are defined
as follows:

Definition 2: The price of anarchy on node cost for node
n under a Nash Equilibrium is the ratio of the average
total cost of n under the Nash Equilibrium and that under
a cooperative scenario where n never transmits.

Definition 3: The price of anarchy on per-node download
rate under a Nash Equilibrium is defined as the ratio of
per-node download rate under a cooperative scenario and
per-node download rate under the Nash Equilibrium.

III. NASH EQUILIBRIA FOR BILATERAL FILE EXCHANGES

In this section, we analyze the performance of our
protocol. We will focus on the special case in which there
are only two files, A and B in the system. We can divide
nodes into two groups, nodes in one group, indexed by
a1, a2, . . . , aI , have the file B and need the file A, i.e.,
Xai = A, while nodes in the other group, indexed by
b1, b2, . . . , bJ have Xbj = B. In this setting, network
coding is not employed.

We will show that there is a series of Nash Equilibria
where each node n chooses each of its back-off timers in
the initiation phase and response phase as an exponential
random variable. We focus on exponential random vari-
ables due to its memoryless property, which makes it easy
to implement.

Let d(k) be the duration of the k-th round. Let un(k)
be the number of transmissions that n makes in the k-th
round. Since there are only two files in the system, every
node downloads one packet in each round. Therefore, in
this setting the average total cost of node n (as defined
by Definition 1) is equal to

lim sup
K→∞

∑K
k=1[un(k)gn + d(k)wn]

K
.



Moreover, since each node uses the same strategy in
each round, we also have

lim sup
K→∞

∑K
i=1[un(i)gn + d(i)wn]

K
= E[un(k)gn + d(k)wn]

which is the expected total cost of n in round k, for each
k. Therefore, in this section, we derive the average total
cost of a node by considering its expected total cost in a
round.

Our analysis consists of two parts: We first derive the
nodes’ strategies and the system behavior in the response
phase. We then derive those in the initiation phase by
taking into account of the system behavior in the response
phase. We apply the following theorem to obtain Nash
Equilibrium:

Theorem 1: [11, Lemma 3.1] The strategies of nodes
in a game form a Nash Equilibrium if, for each node n,
given the strategies of other nodes, the expected cost of
node n is the same regardless of its chosen values of back-
off timers.

A. Analysis for the Response Phase

We first consider the nodes’ strategies on choosing the
back-off timers in the response phase, t̂n. Without loss of
generality, we assume that node b1 has sent the control
packet in the initiation phase. Each node ai secretly and
randomly chooses a back-off timer t̂ai . Assume that the
timer chosen by node ai∗ is the smallest among all back-
off timers, that is, t̂ai∗ = min{t̂a1 , t̂a2 , . . . }. Node ai∗ will
transmit after time t̂ai∗ , and the additional waiting time,
which is the length of the response phase, for each node
ai to download a packet is t̂ai∗ . In the expression of
the additional waiting time, we exclude the time needed
waiting for b1 to transmit its control packet and the time
needed for transmitting data packets, as these times are
not influenced by the values of t̂ai . In the following, we
also exclude the waiting cost incurred by the time waiting
for b1 to transmit its control packet and the time needed
for transmitting data packets when discussing additional
waiting cost and additional total cost.

We show that there is a Nash Equilibrium where
each node ai chooses its back-off timer as an exponen-
tial random variable. In particular, we assume that t̂ai
is exponentially distributed with expectation λai , i.e.,
t̂ai ∼ EXP (λai), where the value of λai will be deter-
mined in the sequel.

We now apply Theorem 1 to determine the values of
λai . Suppose that node ai∗ chooses t̂ai∗ = t. If t is smaller
than all t̂ai , i 6= i∗, that is, t < mini6=i∗ t̂ai , node ai∗ needs
to transmit a packet after waiting for t units of time, and
thus the additional total cost for node ai∗ on this packet
is gai∗ + wai∗ t. On the other hand, if t > mini 6=i∗ t̂ai ,
a node other than ai∗ transmits the packet, and node
ai∗ becomes the free rider. In this case, the additional
total cost of node ai∗ on this packet is wai∗ (mini6=i∗{t̂ai}).
Note that we have mini6=i∗{t̂ai} ∼ EXP (

∑
i6=i∗ λai). Let

λ−i∗ :=
∑
i6=i∗ λai . The expected additional total cost of

node i∗ can be written as:

∫ t

s=0

wai∗ sλ−i∗e
−λ−i∗sds

+

∫ ∞
s=t

(gai∗ + wai∗ t)λ−i∗e
−λ−i∗sds

=
wai∗
λ−i∗

+ e−λ−i∗ t(gai∗ −
wai∗
λ−i∗

). (1)

Thus, if gai =
wai

λ−i
, for all i, the strategies form a Nash

Equilibrium. This can be done by choosing

λai =
1

I − 1

∑
l

wal
gal
− wai
gai

, (2)

where I is the number of nodes in group {a1, a2, . . . }. We
can also conclude that the expected value of mini{t̂ai},
which is the expected duration of the response phase,
given that a node in the group {b1, b2, . . . } transmits the
control packet, is

T̂A :=
1∑
i λai

=
I − 1∑
i wai/gai

, (3)

and that the expected additional total cost of node ai is
gai .

Similarly, if a node ai transmits a control packet, each
node bj selects t̂bj ∼ EXP (λbj ), where

λbj =
1

J − 1

∑
l

wbl
gbl
−
wbj
gbj

, (4)

where J is the number of nodes in group {b1, b2, . . . }. The
expected duration of the response phase is

T̂B :=
1∑
j λbj

=
J − 1∑
j wbj/gbj

, (5)

and the expected additional total cost of node bj is gbj .

B. Analysis for the Initiation Phase
Next, we consider the choice of back-off timer in the

initiation phase, that is, the choice of tn for a node n. We
will show that there is a Nash Equilibrium where each
node ai selects tai ∼ EXP (γai) and each node bj selects
tbj ∼ EXP (γbj ).

Assume that a node, say, node ai∗ , selects tai∗ = t. If t is
the smallest timer among all timers, that is, t < mini6=i∗ tai
and t < minj tbj , node ai∗ transmits the control packet
after time t. After which time, it needs to wait one of the
nodes in {b1, b2, . . . } to respond with a data packet, and
then ai∗ needs to transmit a data packet. By the analysis
above, we know that the expected time that ai∗ waits for
one of the nodes in {b1, b2, . . . } to respond is T̂B . Thus,
the expected total cost for node ai∗ is gai∗+wai∗ (t+T̂B)+
2wai∗ , where the last term, 2wai∗ , accounts for the waiting
cost caused by transmission delays, as it takes two units
time to transmit two data packets.

Next, consider the case that t >
min{mini 6=i∗ tai ,minj tbj}. We have that mini 6=i∗ tai ∼
EXP (

∑
i 6=i∗ γai) and minj tbj ∼ EXP (

∑
j γbj ). By the

memoryless property of exponential functions, we have
that

PA\{i∗}<B :=

Prob{min
i 6=i∗

tai < min
j
tbj |t > min{min

i 6=i∗
tai ,min

j
tbj}}

=

∑
i 6=i∗ γai∑

i6=i∗ γai +
∑
j γbj

.



That is, with probability PA\{i∗}<B , one of the nodes in
{a1, a2, . . . } other than ai∗ transmits the control packet,
and, with probability 1− PA\{i∗}<B , one of the nodes in
{b1, b2, . . . } transmits the control packet. If it is the former
case, node ai∗ does not need to transmit any packets,
and its expected cost is wai∗ (min{mini 6=i∗ tai ,minj tbj}+

T̂B + 2). If it is the later case, the expected cost is
wai∗ (min{mini 6=i∗ tai ,minj tbj}+ 2) + gai∗ , since we have
shown that the expected additional total cost of ai∗ is
gai∗ . Hence, given that t > min{mini 6=i∗ tai ,minj tbj},
the expected cost is wai∗ (min{mini6=i∗ tai ,minj tbj}+2)+

PA\{i∗}<Bwai∗ T̂B + (1− PA\{i∗}<B)gai∗ .
As we have min{mini6=i∗ tai ,minj tbj} ∼

EXP (
∑
i 6=i∗ γai +

∑
j γbj ), by letting γ−i∗ :=∑

i 6=i∗ γai +
∑
j γbj , the expected cost of ai∗ can be

computed as:∫ t

s=0

[wai∗ (s+ 2) + PA\{i∗}<Bwai∗ T̂B ]γ−i∗e
−γ−i∗sds

+

∫ t

s=0

[(1− PA\{i∗}<B)gai∗ ]γ−i∗e
−γ−i∗sds

+

∫ ∞
s=t

(gai∗ + wai∗ (t+ T̂B) + 2wai∗ )γ−i∗e
−γ−i∗sds

=
wai∗
γ−i∗

+

∑
i 6=i∗ γai

γ−i∗
wai∗ T̂B +

∑
j γbj

γ−i∗
gai∗ + 2wai∗

+e−γ−i∗ t(

∑
j γbj

γ−i∗
wai∗ T̂B +

∑
i 6=i∗ γai

γ−i∗
gai∗ −

wai∗
γ−i∗

). (6)

We wish to find {γa1 , γa2 , . . . , γb1 , γb2 , . . . } so that the
expected cost of ai∗ is the same for all t. Hence, we require
that

(1− PA\{i∗}<B)wai∗ T̂B + PA\{i∗}<Bgai∗ =
wai∗
γ−i∗

(7)

⇔ (
∑
j

γbj )T̂Bwai∗ + (
∑
i 6=i∗

γai)gai∗ = wai∗ (8)

⇔ wai∗
gai∗

=

∑
i 6=i∗ γai

1− (
∑
j γbj )T̂B

, (9)

for all ai∗ . Similarly, by studying the expected cost of a
node bj∗ , we also require that

wbj∗

gbj∗
=

∑
j 6=j∗ γbj

1− (
∑
i γai)T̂A

, (10)

for all bj∗ .
Summing the (9) over all ai∗ and we have∑

i

wai
gai

=
(I − 1)

∑
i γai

1− (
∑
j γbj )T̂B

(11)

⇔(
∑
i

γaj )T̂A + (
∑
j

γbj )T̂B = 1. (12)

Assume that (
∑
i γaj )T̂A = α and (

∑
j γbj )T̂B = 1− α,

for some α ∈ (0, 1). Using (9) and (11), we obtain

γai∗ =
∑
i

γai −
∑
i6=i∗

γai = α

(∑
i wai/gai
I − 1

− wai∗
gai∗

)
.

(13)
Similarly, we also obtain

γbj∗ = (1− α)

(∑
j wbj/gbj

J − 1
−
wbj∗

gbj∗

)
. (14)

It is easy to check that, for every α ∈ (0, 1), setting
γai and γbj according to (13) and (14) satisfies (9) and
(10) for all nodes, and the expected cost of each node is
the same regardless the actual back-off timer it chooses.
Hence, (13) and (14) form a Nash Equilibrium. Further,
as α can be any number in (0, 1), this game has infinitely
many Nash Equilibria.

We summarize our results for systems with only two
files in the following theorem.

Theorem 2: For any α ∈ (0, 1), if each node ai∗ chooses
tai∗ ∼ EXP (γai∗ ) and t̂ai∗ ∼ EXP (λai∗ ), and each node
bj∗ chooses tbj∗ ∼ EXP (γbj∗ ) and t̂bj∗ ∼ EXP (λbj∗ ),
where γai∗ , λai∗ , γbj∗ , and λbj∗ are chosen by (13), (2),
(14), and (4), then these strategies form a Nash Equilib-
rium.

IV. PRICE OF ANARCHY FOR BILATERAL FILE EXCHANGES

We have found Nash Equilibria for our protocol when
there are only two files in the system. We now discuss the
performances of these Nash Equilibria.

Suppose all nodes choose their back-off timers accord-
ing to Theorem 2, for some α ∈ (0, 1). The duration of
the initiation phase is min{ta1 , ta2 , . . . , tb1 , tb2 , . . . }, which
is an exponential random variable with mean

TA,B :=
1∑

i γai +
∑
j γbj

. (15)

Also, the probability that one of the nodes in group
{a1, a2, . . . } transmits the control packet is

Prob{min
i
tai < min

j
tbj} =

∑
i γai∑

i γai +
∑
j γbj

. (16)

Using (3) and (5), we can express the expected amount
of time for the two groups of nodes to exchange two
packets as

TA,B +

∑
i γai∑

i γai +
∑
j γbj

T̂B +

∑
j γbj∑

i γai +
∑
j γbj

T̂A + 2

= T̂A + T̂B + 2, (17)

where the last term in the equation accounts for the
time needed for transmitting two packets. Since every
node downloads a packet in each round, the per-node
download rate of our protocol is then 1/(T̂A + T̂B + 2)
packets per unit time under the described Nash Equilibria.
On the other hand, the download rate of a node is
0.5 packet per unit time under a cooperative scenario.
Therefore, the price of anarchy on per-node download
rate is (T̂A + T̂B + 2)/2. To better understand the price
of anarchy on per-node download rate, we consider the
special case where all nodes have the same parameters for
waiting cost and for transmission cost, that is, wn ≡ w and
gn ≡ g for all n. In this case, we have T̂A = (I−1)(g/w)

I

and T̂B = (J−1)(g/w)
J , and the price of anarchy on system

throughput is ( (I−1)(g/w)
I + (J−1)(g/w)

J + 2)/2 ≤ 1 + g
w .

We now compute the average total costs of nodes. The
probability that a node ai∗ transmits a packet in a round



can be expressed as
Prob{min

i
tai < min

j
tbj}Prob{tai∗ < tai ,∀i 6= i∗}

+ Prob{min
i
tai > min

j
tbj}Prob{t̂ai∗ < t̂ai ,∀i 6= i∗}

=(

∑
i wai/gai
I − 1

− wai∗
gai∗

)/(

∑
i wai/gai
I − 1

).

The average total cost of node ai∗ is then
wai∗ (T̂A + T̂B + 2)

+ gai∗ (

∑
i wai/gai
I − 1

− wai∗
gai∗

)/(

∑
i wai/gai
I − 1

)

=gai∗ +
(J − 1)wai∗∑

j wbj/gbj
+ 2wai∗ . (18)

On the other hand, under our protocol, the download
rate of node ai∗ is at most one packet per 2 unit times.
Hence, the average total cost of node ai∗ is at least 2wai∗ .
We then have that the price of anarchy on node cost of
ai∗ is at most (

gai∗
wai∗

+ (J−1)∑
j wbj

/gbj
+ 2)/2. In the special

case where wn ≡ w and gn ≡ g, for all nodes, the price
of anarchy on node cost of ai∗ is at most

(
g

w
+

(J − 1)(g/w)

J
+ 2)/2 ≤ 1 +

g

w
.

We note that both the price of anarchy on system
throughput and the price of anarchy on node cost increase
with g

w . Intuitively, when g is small compared to w, nodes
focus more on improving their download rates than on
reducing transmission costs. Hence, nodes tend to choose
small back-off timers, which makes the prices of anarchy
small. On the other hand, when g is much larger than w,
transmission costs become an important factor of nodes’
costs. Hence, each node tends to choose large back-off
timers to increase its chance of becoming a free rider,
which results in large prices of anarchy.

As a final remark, we note that both the system
throughput and total average costs of nodes remain the
same for all α ∈ (0, 1). Therefore, the performance of the
system is the same for all Nash Equilibria described by
Theorem 2.

V. IMPLEMENTATION ISSUES AND CONVERGENCE

Section III has described a Nash Equilibrium for a
system with two files. However, for a node n to derive
its strategies, that is, to compute the values of γn and
λn, node n needs to know information of the whole
network, including the private values of wm and gm for all
other nodes m. In this section, we propose a distributed
mechanism for each node to update its values of γn and
λn only based on its values of wn and gn and the history
of the system. We show that this mechanism is compatible
to the node’s incentive, in the sense that the updated γn
and λn achieve smaller average total cost for the node.
Moreover, we also show that the system converges to a
Nash Equilibrium when all nodes apply this mechanism.

We order the two files by lexicographical order. If file A
has higher order than B, we impose that γai = 0, for all i,
and λbj = 0, for all j. This corresponds to the case where
α = 0 in Section III. Therefore, in every round, a node

in {b1, b2, . . . } transmits a control packet in the initiation
phase and a node in {a1, a2, . . . } transmits a data packet
in the response phase. On the other hand, if file B has
higher order than A, we impose that λai = 0, for all i, and
γbj = 0, for all j, which corresponds to the case where
α = 1. Without loss of generality, we assume that file A
has higher order than B.

Using (2), (3), (14) , we have that T̂A = 1∑
i λai

=
I−1∑
i

wai
gai

, λai∗ = 1
T̂A
− wai∗

gai∗
, T̂B = J−1∑

j

wbj
gbj

, and γbj∗ =

1
T̂B
−
wbj∗

gbj∗
at the Nash Equilibrium, where I and J are the

number of nodes in groups {a1, a2, . . . } and {b1, b2, . . . },
respectively. As we set α = 0, T̂A is the average back-off
time in the response phase, and T̂B is that in the initiation
phase.

We now introduce our mechanism for a node ai∗ . Node
ai∗ first guesses that the average amount of back-off
time in the response phase is T̂ai∗ ,0, and sets λai∗ =

1
T̂ai∗ ,0

−wai∗
gai∗

. Node ai∗ then observes the system behaviors

and updates its value of λai∗ every M rounds. When ai∗
updates λai∗ the k-th time, it computes the average back-
off time in the response phase since it last updates its
values, denoted by T̂A,k−1. Node ai∗ then sets T̂ai∗ ,k so
that

1

T̂ai∗ ,k
=

1

T̂ai∗ ,k−1
− δk(

1

T̂A,k−1
− 1

T̂ai∗ ,k−1
),

and λai∗ = 1
T̂ai∗ ,k

−wai∗
gai∗

, where the values of δk are chosen

so that
∑∞
k=1 δk = ∞ and

∑∞
k=1 δ

2
k < ∞. For example,

one can choose δk = ε
k , where ε is a small constant. The

mechanism for a node bj∗ can be derived similarly. The
only difference is that node bj∗ updates its value of γbj∗
based on the average back-off time in the initiation phase.

As described in the following theorems, this mechanism
has two important features. First, this mechanism is com-
patible to the node’s incentive. Second, this mechanism
converges to a Nash Equilibrium.

Theorem 3: Fix the values of γn and λn, for all n 6=
ai∗ , such that γai = 0, for all i, and λbj = 0, for all j.
The average total cost of node ai∗ is smaller when it sets
λai∗ = 1

T̂ai∗ ,k+1
− wai∗

gai∗
, than when it sets λai∗ = 1

T̂ai∗ ,k
−

wai∗
gai∗

, for all k.
Proof: Since we impose γai∗ = 0, node ai∗ has no con-

trol on the amount of back-off time in the initiation phase.
Hence, it suffices to show that setting λai∗ = 1

T̂ai∗ ,k+1
−

wai∗
gai∗

achieves smaller average additional total cost in the

response phase than setting λai∗ = 1
T̂ai∗ ,k

− wai∗
gai∗

.

We have
T̂A,k =

1∑
i 6=i∗ λai∗ + ( 1

T̂ai∗ ,k
− wai∗

gai∗
)
,

and
gai∗ −

wai∗∑
i6=i∗ λai∗

=
gai∗∑
i 6=i∗ λai∗

(
1

T̂A,k
− 1

T̂ai∗ ,k
).

By (1), if gai∗ −
wai∗∑

i6=i∗ λai∗
> 0, the expected additional

cost of ai∗ strictly decreases with the back-off timer of ai∗ ,



t. Moreover, if gai∗ −
wai∗∑

i6=i∗ λai∗
> 0, we have T̂ai∗ ,k >

T̂A,k and T̂ai∗ ,k < T̂ai∗ ,k+1. For every positive constant
C, Prob(t < C) is smaller when λai∗ = 1

T̂ai∗ ,k+1
− wai∗

gai∗

than when λai∗ = 1
T̂ai∗ ,k

− wai∗
gai∗

. Therefore, the average

additional total cost is smaller when λai∗ = 1
T̂ai∗ ,k+1

−wai∗
gai∗

than when λai∗ = 1
T̂ai∗ ,k

− wai∗
gai∗

.

On the other hand, if gai∗−
wai∗∑

i6=i∗ λai∗
< 0, the expected

additional cost of ai∗ strictly increases with the back-
off timer of ai∗ , t. Moreover, if gai∗ −

wai∗∑
i6=i∗ λai∗

>

0, we have T̂ai∗ ,k < T̂ai∗ ,k+1, and, for every posi-
tive constant C, Prob(t < C) is larger when λai∗ =

1
T̂ai∗ ,k+1

− wai∗
gai∗

than when λai∗ = 1
T̂ai∗ ,k

− wai∗
gai∗

. Therefore,

the average additional total cost is also smaller when
λai∗ = 1

T̂ai∗ ,k+1
− wai∗

gai∗
than when λai∗ = 1

T̂ai∗ ,k
− wai∗

gai∗
.

Theorem 4: Fix the values of γn and λn, for all n 6= bj∗ ,
such that γai = 0, for all i, and λbj = 0, for all j. The
average total cost of node bj∗ becomes smaller when it
updates its γbj∗ .

Proof: The proof is very similar to that of Theorem
3, and is hence omitted.

Next, we show that our mechanism converges to the
Nash Equilibrium.

Theorem 5: If all nodes apply the proposed mechanism,
then the value of T̂A,k and T̂B,k after each node updates
k times converge to T̂A = I−1∑

i

wai
gai

and T̂B = J−1∑
j

wbj
gbj

,

respectively, as k →∞.
Proof: We only prove that T̂A,k converges to T̂A.

Under our mechanism, the value of λai after node ai
updates k times is

λai =
1

T̂ai,k
− wai
gai

=(1 + δk)
1

T̂ai,k−1
− δk

1

T̂A,k−1
− wai
gai

=(1 + δk)λai,k−1 − δk(
1

T̂A,k−1
− wai
gai

),

and hence
1

T̂A,k
=
∑
i λai

= (1 + δk)(
∑
i λai,k−1)− δk( I

T̂A,k−1
−
∑
i
wai

gai
)

= 1
T̂A,k−1

+ δk(I − 1)( 1
T̂A
− 1

T̂A,k−1
).

As we have
∑
k δk =∞ and

∑
k δ

2
k <∞, 1

T̂A,k
converges

to 1
T̂A

.

VI. NASH EQUILIBRIA FOR MULTIPLE FILE EXCHANGES
WITH NETWORK CODING

In this section, we derive the Nash Equilibria for sys-
tems that incorporate network coding and have more than
two files. We use IA, IB , IC , . . . to denote the number of
nodes that need A,B,C, . . . , respectively. We will show
that there exists a Nash Equilibrium where each node

n chooses each of its back-off timers in both phases as
exponential random variables. Many of derivations in this
section are similar to those in Section III. Hence, due
to the space constraints, we omit some details and only
report the results.

We first consider the nodes’ strategies in the response
phase. Assume that a node n with Xn = X has sent
the control packet in the initiation phase. Each node m
with Xm 6= X secretly and randomly chooses a back-off
timer t̂m ∼ EXP (λm|X). Note that the value of λm|X
may depend on X. Let m0 be the node that chooses the
smallest value of t̂m. Then, m0 will transmit a data packet
of X after t̂m0

time. After m0 transmits the data packet,
n will transmit a coded packet that contains one packet
from each of the files except X, and every node m with
Xm 6= X can decode one packet from the transmission
from n. Similar to the derivations of (2), we can show
that, at a Nash Equilibrium, we have

λm|X =
1∑

Y :Y 6=X IY − 1

∑
l:Xl 6=X

wl
gl
− wm
gm

, (19)

for all m such that Xm 6= X.
Next, we consider the nodes’ strategies in the initiation

phase. Assume that each node n chooses a back-off timer
tn ∼ EXP (γn). Let ΓX :=

∑
n:Xn=X

γn. Similar to the
derivations of (9), (10), and (12), we have that, at a Nash
Equilibrium:

wn
gn

=
ΓXn − γn

1− (
∑
X:X 6=Xn

ΓX)
∑

X:X 6=Xn
IX−1∑

m:Xm 6=Xn
wm/gm

, (20)

for all n, and
IX − 1∑

n:Xn=X
wn/gn

ΓX +

∑
Y :Y 6=X IY − 1∑

m:Xm 6=X wm/gm

∑
Y :Y 6=X

ΓY = 1,

(21)
for all X. Equation (21) represents a series of linear
equations where both the number of unknowns, {ΓX},
and the number of equations equal to the number of
files. We can use standard techniques for solving linear
equations to obtain a solution of {ΓX} to (21). We can
then use {ΓX} to obtain the values of {γn} through (20).
The derived {γn} and {λn|X} form a Nash Equilibrium.

VII. NUMERICAL RESULTS

We now present our simulation results. We first consider
a system with two files, A and B, and 20 nodes. We as-
sume that there are 10 nodes that possess file A and need
file B, and the other 10 nodes possess B and need A. We
set gn = 1 for all n, and set wn to be uniformly distributed
in [1, 2]. Each node applies the distributed mechanism
introduced in Section V to determine its strategy. Each
node n sets T̂n,0 = 99

100(wn/gn)
, that is, it guesses that there

are 100 nodes in its group, an overestimate by a factor
of 10, and all nodes in its group have the same values of
wn and gn as itself. Also, each node sets δk = 0.1/k.

Fig. 2 shows the resulting per-node throughput after
each update. It can be shown that, even though the initial
strategies of nodes are far from the Nash Equilibrium,
the per-node throughput under our mechanism converges



Fig. 2: Per-node download rate with two files.

to the Nash Equilibrium very quickly. With just three
updates, the per-node throughput is about 85% of that
under the Nash Equilibrium.

Next, we consider systems that have more than two
files and employ network coding. We assume that, for
each file, there are 10 nodes that need it. Therefore, there
are a total number of 10×{number of files} nodes in the
system. We also set gn = 1 for all nodes, and wn uniformly
distributed in [1, 2]. We use the procedure described in
Section VI to derive the values of γn and λn for all n,
based on which we calculate the per-node throughput
under a Nash Equilibrium.

Fig. 3 shows the per-node throughput under various
numbers of files in the system. We compare the perfor-
mance of our protocol against the maximum possible per-
node throughput when network coding is not employed
and when all nodes are cooperative. Without network
coding, each transmission only contains one packet of one
file. Hence, the maximum possible per-node throughput
is 1/{number of files}. Fig. 3 shows that, when there are
only three files in the system, our protocol has slightly
worse per-node throughput than the case when network
coding is not employed and all nodes are cooperative. This
is because our protocol is designed for selfish nodes which
requires two phases of back-offs, while the compared
scenario assumes all nodes are cooperative and hence
there is no time spent on back-offs. However, as the
number of files increases, the benefits of network coding
outweigh the prices of anarchy. As a result, our protocol
achieves better per-node throughput than the scenario
where network coding is not employed and all nodes are
cooperative.

VIII. CONCLUSIONS

The paper considers the problem of content distribution
in wireless P2P networks and proposes a model that
captures both the broadcast nature of wireless medium
and the incentives of nodes. The paper presents a non-
monetary protocol for content distribution in this model.
The protocol provides incentives for selfish nodes to con-
tribute to the network. We have studied the performance
of our protocol when all nodes are selfish. For systems

Fig. 3: Per-node dowload rate with multiple files and
network coding.

with only two files, we have derived closed-form expres-
sions for Nash Equilibria and prices of anarchy. We have
also proposed a distributed mechanism where each node
updates its strategies based only on its private information
and the history of the system. Our numerical results show
that this mechanism converges to Nash Equilibria very
quickly. For systems with more than two files, we propose
a simple extension of our protocol to incorporate network
coding and present a procedure to compute each node’s
strategy under a Nash Equilibrium. Numerical results
show that our protocol may achieve better performance
than scenarios where nodes are cooperative but do not
employ network coding.
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tivizing peer-assisted services: a fluid shapley value approach,” in
Proc. of ACM SIGMETRICS, 2010.

[7] J. Park and M. van der Schaar, “Pricing and incentives in peer-to-
peer networks,” in Proc. of IEEE INFOCOM, 2010.

[8] Z. Han and H. V. Poor, “Coalition games with cooperative trans-
mission: a cure for the curse of boundary nodes in selfish packet-
forwarding wireless networks,” IEEE Transactions on Communica-
tions, vol. 57, pp. 203–213, Jan 2009.

[9] W. Li, J. Chen, and B. Zhou, “Game theory analysis for graded
punishment mechanism restraining free-riding in p2p networks,”
in Proc. of ISCCS, 2011.

[10] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “De-
terministic algorithm for coded cooperative data exchange,” in
Proceedings of the 7th International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness (QShine
2010), 2010.

[11] Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game
Theory in Wireless and Communication Networks. Cambridge
University Press, 2012.


