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Abstract—In this paper, we study the problem of cooperative

spectrum sharing among a primary user (PU) and multiple

secondary users (SUs) under quality of service (QoS) constraints.

The SUs network is controlled by the PU through a relay which

gets a revenue for amplifying and forwarding the SUs’ signals

to their respective destinations. The relay charges each SU a

different price depending on its received signal-to-interference-

and-noise ratio (SINR). The primary relay controls the SUs

network and maximize any desired PU utility function. The PU

utility function represents its QoS, which is affected by the SUs

access, and its gained revenue to allow the access of the SUs.

The problem of maximizing the primary utility is formulated as a

Stackelberg game and solved through three different approaches,

namely, the optimal, the heuristic and the suboptimal algorithms.

Index Terms—Differentiated pricing, spectrum sharing, Stack-

elberg game.

I. INTRODUCTION

Cognitive radio (CR) is a promising technology which
can enhance the spectrum utilization efficiency by allowing
the secondary usage of the under-utilized licensed spectrum
held by primary users (PUs) [1], [2]. To utilize the spectrum
holes, cooperative spectrum sharing allows the secondary users
(SUs) to make use of the PU licensed spectrum as long as
their interference to the PUs does not exceed a predefined
threshold set by the PU. In return, the PUs would earn some
money or use the SU as a cooperative relay to improve their
transmission, so a win-win situation can be achieved.

Game theory is a powerful tool which can be used to study
and analyze the competition between the users willing to
access the spectrum [3], [4]. In [5], a cooperative spectrum
sharing approach was proposed in which the PU selects a set
of SUs as the cooperative relays for its transmission. In return,
the PU leases portion of channel access time to the selected
SUs for their own transmission. The access time of each SU
is proportional to its contribution in the PU transmission. The
SUs game is investigated as a non-cooperative game.

In [6], a Stackelberg game [3] was considered, in which the
PU plays the role of the leader and SUs are the followers. The
primary transmitter (PT) may select a secondary transmitter
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(ST) as a cooperative relay or not depending on the PT desired
rate. The PU allows the access of the SUs to its spectrum part
of the time in a random access manner. A ST should make a
payment to the PU depending on the probability with which it
attempts to access the channel. The ST which is selected as a
cooperative relay pays less than the other SUs. Thus a win-win
situation can be achieved. In [7], a cognitive radio network of
one PU, a relay and one SU was considered. A relay assisted
spectrum sharing scheme based on the mixed sharing strategy
was proposed, in which the ST adapts its power according to
the sensing results of the PU spectrum. If the PT is sensed to be
OFF, the ST transmits with a higher power which maximizes
its rate. If the PU is sensed to be ON, the ST transmits with a
power below the interference threshold of the PU to the relay
then the relay decodes and forwards the the ST signal to the
SD.

In [8], a cognitive radio network with multiple SUs and
one PU is considered. The SUs power control problem is
formulated as a sum-rate maximization problem under PU
and SU quality of service (QoS). A convex approximation
approach is introduced through an iterative algorithm which
approximates this non-convex rate maximization problem as
a geometric program. In this model the PU always transmits
its data with a fixed power and the SUs are assumed to be
non-selfish, so they transmit their data according to the power
allocation vector which maximizes the overall sum-rate.

In [9], a traditional (non-cognitive) wireless relay network
consisting of one relay node and multiple source-destination
pairs was considered. Each user acts as a self-interested player,
which aims at maximizing its own benefit by choosing the
optimal transmit power. The competition among the users is
modelled as a non-cooperative game. The relay can set prices
to maximize either its revenue or any desirable system utility,
and the payment of each user to the relay depends on the
received signal-to-interference-and-noise ratio (SINR). In this
model, the relay does not ensure a certain QoS to any of the
users and the relay is mainly concerned about its revenue.

In this paper, we consider relay-assisted cognitive radio
with one PU, one primary relay, and a network of N selfish
SUs. The transmission of the SUs is established through the
primary relay which adopts the Amplify and Forward (AF)
[10] relaying technique. The PU adapts its transmit power,
the relay power and control the SUs power allocation through
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Fig. 1: System Model

the relay to maximize its utility function. Specifically, the relay
adopts the differentiated pricing technique proposed in [9] to
enforce all SUs to transmit with some desired power levels that
maximize the PU utility. The PU utility function is defined
such that it captures the interest of the PU to maximize its
QoS and the gained revenue from allowing the SUs to access
its spectrum.

The main contributions of this work are summarized as
follows:

• We formulate the cooperative spectrum sharing power
control problem as a Stackelberg game between the PU
and the SUs.

• We propose a combinatorial optimal power control solu-
tion for the problem of maximizing the PU utility under
a minimum SUs QoS requirements.

• We also propose a simple heuristic real-time algorithm,
which allows the access of a maximum of one SU.

• Finally, we propose a low complexity suboptimal scheme
which may allow more than one SU to access the spec-
trum.

The rest of this paper is organized as follows. In Section II,
we present the system model. In Section III, we formulate
the problem of maximizing the PU utility function as a
Stackelberg game. Simulation results are presented in Section
IV. Finally, concluding remarks are drawn in Section V.

II. SYSTEM MODEL

We consider a primary network composed of a PT, its
intended destination (PD) and a relay (R). In addition, we
consider a secondary network with N source-destination pairs
(ST, SD). Fig.1 depicts the system under consideration. Trans-
mission is divided into two slots (one frame). The first slot is
used by all STs to transmit their signals to the relay. The i-
th ST, denoted by STi, transmits with a power pi, while in
the second slot, the relay amplifies and forwards the received
signals from all STs with a power pR to their destinations. The

PU transmits with power p0 in the first slot and with power
p0max

in the second slot in which its transmission is subjected
to the relay interference1.

We assume a Rayleigh flat-fading channels, which means
that the channel gain of a link remains constant during one
frame (two time slots). Specifically, we denote the coefficients
for PT-PD channel by gp, PT-R and the R-PD channels by
g0 and h0, the STi-R and the R-SDi channels by gi and
hi, respectively. The direct links between STi-SDi, STi-PD
and PT-SDi are neglected due to shadowing and the too large
separation [9], [11].

We assume that each SUi has a maximum power of pimax
.

We also assume that the relay has a variable power pR and a
maximum power of pRmax

, unlike the assumption in [9] which
assumes that the relay always transmits with a fixed power
level. We also assume that the relay has complete information
about the network, i.e., channel gains and maximum power
constraints. The received signal at the relay can be expressed
as

yR = g0
p
p0xp

1

+

N
X

j=1

gj
p
pjxj + nR, (1)

where xp
1

is the unit-power transmit signal from PT to PD
in the first slot, xj is the unit-power transmit signal from STj

to SDj and nR is zero-mean additive white Gaussian noise
(AWGN) with variance N�. The received signal at the i-th
SU’s destination (SDi) can be expressed as

yi = ↵hiyR + ni i = 1, · · · , N (2)

where ni is zero-mean AWGN with variance N� and ↵ is the
amplification factor and is given by

↵ =

s

pR
PN

j=0 |gj |2pj +No

. (3)

We can express the received SINR at the i-th SU destination,
�i(p), as

�i(p) =

|gi|2|hi|2pRpi

|gi|2Nopi + (|hi|2pR +No) ·
⇣

PN
j=0,j 6=i |gj |2pj +No

⌘

,

(4)

where p is the power allocation vector, which is defined as

p = [p0, p1, · · · , pN , pR]
T
.

The rate at which the i-th SU transmits is given by

Ri =
1

2
log(1 + �i) nats/sec (5)

where the scaling factor 1/2 is due to the fact that each SU
transmits its data to the relay and remains silent in the next
slot while the relay forwarding its data to the corresponding

1In the second time slot, the PU must transmit using its maximum power
to maximize its rate.

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

227



destination. We can also define the SUs’s sum rate R⌃ as
follows

R⌃ =

N
X

i=1

Ri nats/sec. (6)

The received signal at the PD in the first time slot can be
expressed as

yp
1

= gp
p
p0xp

1

+ n0,

where n0 is zero-mean AWGN with variance N�. The SINR
at the PD in the first slot, �p

1

, is then given by

�p
1

=
p0|gp|2

No
. (7)

The received signal at the PD in the second time slot can be
expressed as

yp
2

= gp
p
p0max

xp
2

+ ↵h0yR + n0, (8)

where xp
2

is the unit-power transmit signal from PT to PD in
the second slot. Similarly, the SINR at the PD in the second
slot, �p

2

, is given by

�p
2

=
p0max |gp|2

No + pR|h0|2
. (9)

The PU rate can be averaged as follows.

Rp =
1

2
(log(1 + �p

1

) + log(1 + �p
2

))

=
1

2
log((1 + �p

1

)(1 + �p
2

))

=
1

2
log(1 + �pe

) nats/sec,

(10)

where �pe
is the PU effective SINR and is given by

�pe
= �p

1

+ �p
2

+ �p
1

�p
2

. (11)

The maximum SINR of the PU, �pmax , is defined as

�pmax =
p0max

|gp|2

N�
. (12)

Thus, we can also define the PU rate when all SUs are inactive,
which is an upper bound for Rp as

Rpmax
= log

✓

1 +
p0max

|gp|2

N�

◆

nats/sec. (13)

III. STACKELBERG GAME ANALYSIS

The problem of maximizing the PU cost function can be
addressed as a Stackelberg game. The PU, which owns the
licensed spectrum, plays the role of the leader and the SUs
are the followers of this game. The PU selects the value of
a weight parameter (wp), p0, pR and the prices vector (⇡),
which contains the price that each SUi will charge to access
the spectrum, then each SUi selects its transmit power pi

accordingly in a non-cooperative game. Our objective is to get
the Nash Equilibrium (NE) for this Stackelberg game, where
neither the PU nor any of the SUs have incentive to deviate
unilaterally from this NE point (Stackelberg Equilibria).

The PU may be concerned with its QoS rather than its
gained revenue from the secondary network or vice versa.
Hence, the PU utility function, Up, can be defined as

Up = wp(1 + �p
1

)(1 + �p
2

) +Rv, (14)

where wp is a weight parameter that converts the term (1 +
�p

1

)(1+�p
2

) into currency. The term (1+�p
1

)(1+�p
2

) can be
interpreted as e2Rp or as (1+�pe) .The parameter wp controls
the PU trade-off between its QoS and its gained revenue, and
it ranges from zero, where the PU only cares about the revenue
it gets from the secondary network, to infinity, where the PU
only cares about its QoS. The SUs payment is a reimbursement
of the PU SINR or QoS degradation caused by the SUs.

The term Rv is the PU revenue gained from the secondary
network and can be expressed as

Rv =

N
X

i=1

⇡i�i, (15)

where ⇡i is the price for SUi set by the PU.
The non-cooperative SUs level game, GSUs is defined as

GSUs
=
�

⌦, {Pi}i2⌦, {Usi}i2⌦

 

, (16)

where ⌦ is the set of all SUs and Pi is the allow-
able power strategies of the SUi which is defined as
Pi = {pi : 0  pi  pimax

}.
The term Usi is the SUi cost function which is defined as

Usi = wsRi � ⇡i�i, (17)

where ws is a factor that converts the rate units to currency.
For simplicity, it is assumed that ws = 1 in the following
analysis. The term ⇡i�i represents the secondary payment to
the PU for allowing this SUi to access the spectrum, which is
a function of the received SINR, �i. In [9], it is proved that the
relay can set its prices according to equation (18), to enforce
the NE [4] of GSUs

to any desired NE, i.e, obligate all SUs
to send according to any desired power allocation vector p̄.

⇡i =
1

2(1 + �i(p̄))
i = 1, · · · , N, (18)

where p̄ = [p̄0, p̄1, · · · , p̄i, · · · , p̄N , p̄R]T . In our analysis, we
select p̄ as the solution of the primary utility maximization
problem, i.e; p̄0 is the PU power level that maximizes Up, p̄i
is the power of the SUi that maximizes Up and finally p̄R is
the primary relay power level which maximizes Up.

Based on the above definitions, the primary utility can be
written as

Up = wp(1 + �p
1

)(1 + �p
2

) +

N
X

i=1

�i(p)

2(1 + �i(p))

= wp(1 +
|gp|2p0
N�

)(1 +
|gp|2p0max

N� + |h0|2pR
)

+

N
X

i=1

|gi|2|hi|2pipR
2(N� + |hi|2pR)(N� +

PN
j=0 |gj |2pj)

(19)
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and the problem of maximizing the PU utility function can be
formulated as follows.

max
p

Up

subject to pi  pimax , i = 0, . . . , N

�i � �ith , i = 1, . . . , N

pR  pRmax .

(20)

This problem can be rewritten as

min
p

1/Up

subject to pi/pimax
 1, i = 0, . . . , N

�ith/�i  1, i = 1, . . . , N

pR/pRmax
 1.

(21)

After some simplifications, we can write the objective function
as a posynomial over posynomial. We can approximate the
posynomial in the denominator into a product of monomials,
hence, the problem can be converted in to a geometric program
[12], [13]. We will perform this convergence using the iterative
algorithm proposed in [8]. If the problem is infeasible, the
primary relay can ban all SUs from accessing the PU spectrum.
In this case, the PU will transmit with a fixed power p0max

depending on the assumption made in [8] which is not always
optimal for the PU utility function to be maximized as will be
explained later. To ban SUj from accessing the spectrum, the
relay can simply set its price to ⇡j � 1

2 , so the best response
of SUj is to send with a zero power level as has been proved
in [9].

Next, we propose three different approaches, namely, the
optimal, the heuristic and the suboptimal algorithms to maxi-
mize the primary user’s cost function.

A. The Optimal Scheme:
Instead of banning all SUs from accessing the spectrum,

we can allow a subset of them to access the spectrum. This
subset is selected so as to maximize the PU utility function.
We should note that it may not be possible to find a subset of
SUs to allow their access such that all constraints are satisfied,
i.e., empty set case and in this case no SU will access the
spectrum. The new optimization problem can be written as

max
s 2 S

min
p

1/Up

subject to pi/pimax
 1, i 2 {0 [ s}

�ith/�i  1, i 2 s

pR/pRmax
 1,

(22)

where S is the set of all subsets of SUs, including the empty
set {�}, which means that the PU will access in the absence
of any SU transmission.

Each SU has a QoS constraint and if it cannot be satisfied
the primary relay will ban this SU from accessing the channel.
Moreover if the access of the i-th SU contradicts with max-
imizing the primary user utility, the relay will also ban this
SU by setting a high price ⇡i � 1

2 for this SU. Hence, this

SUi best response in this case is to not access the channel,
i.e, pi = 0.

Optimization over s can be accomplished combinatorially.
Each user is represented by a binary value which indicates its
state, i.e., active or inactive. Active SU will be indicated by 1
and inactive SU will be indicated by zero. The possible states
are the combination of N binary values with a maximum of
2N possibilities.

Optimization over p is done using the same technique used
in problem (21). It is clear that the optimal scheme complexity
grows exponentially as N increases. The solution of this
problem is the desired power allocation vector p̄ and then the
optimal prices can be calculated through equation (18). We
denote the maximum value of Up calculated through problem
(22) as up, which is the maximum utility that can be achieved
by any scheme.

B. The Heuristic Scheme:

The optimal scheme, which we have discussed above,
becomes more complicated as N increases. Here, we present
a simple heuristic scheme which is suitable for real time
implementation. In this scheme, the relay chooses only the
best SU to access the PU spectrum and bans all other SUs.
The best SU is defined as the SU with the maximum harmonic
mean (µH ) 2 of the instantaneous channel gains |gi|2 and |hi|2
which can be defined as [14]:

µHi
=

2|gi|2|hi|2

|gi|2 + |hi|2
.

(23)

The PU utility when all the SUs are inactive, dented by uP
0

,
can be expressed as follows.

up
0

= wp(1 + �pmax)
2
. (24)

The PU maximum utility in case that the best SU j is the only
SU that accesses the channel (up

1

) can calculated through the
following optimization problem.

max
p

Up

subject to p0  p0max

pj  pjmax

�j � �jth

pR  pRmax
.

(25)

Hence, we can use Algorithm. 1 to calculate the maximum
PU utility, (upH

), for the proposed heuristic approach. Define
the relative PU utility achieved by the heuristic scheme with
respect to the optimal scheme, which indicates how near is the
heuristic scheme from the optimal scheme as follows.

rH =
upH

up
. (27)

2The subscript H is used throughout this paper to indicate the heuristic
scheme.
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Algorithm 1:

1 Calculate up
0

using (24).
2 Calculate µHi for each SUi using (23).
3 Find the SU with the maximum harmonic mean, j.
4 Calculate up

1

through (25).
5 Calculate upH

as follows

upH
= max(up

1

, upo
). (26)

C. The Suboptimal Scheme:
Here, we present a simple suboptimal algorithm. The com-

plexity of this suboptimal scheme is a linear function of N , un-
like the optimal scheme which has an exponential complexity.
Moreover, the performance of the proposed suboptimal scheme
lies between that of the optimal and the heuristic schemes as
will be shown in Section IV.

Unlike the heuristic scheme, the suboptimal scheme may
allow more than one SU to access the spectrum. The subop-
timal scheme can be described as an incremental admission
policy, in which the PU gradually adds the SUs one after one
according to a certain list provided that adding more SUs will
cause an increase in the primary utility.

The problem of maximizing Up can be reformulated as
follows.

max
p,A

wp(1 + �p
1

)(1 + �p
2

) +

N
X

i=1

�i(Ap)

2(1 + �i(Ap))

subject to pi/pimax  1, i = 0, . . . , N

ai(�ith/�i(p))  1, i = 1, . . . , N

ai(ai � 1) = 0, i = 1, . . . , N

pR/pRmax  1,
(28)

where p = [p0, p1, p2, · · · , pN , pR]
T is the power allocation

vector, ai is a binary variable and the matrix A is a diagonal
matrix with diag(A) =[1, a1, · · · , ai, · · · , 1]. The binary
variable ai controls the SUi QoS constraint; if ai = 1 this
means that SUi will access the spectrum and its QoS is
guaranteed, otherwise it will not access.

Unfortunately, the binary constraint is a non-convex con-
straint. This problem can be relaxed into the following pro-
gram which can also be solved using the algorithm proposed
in [8]:

max
p,Â

wp(1 + �p
1

)(1 + �p
2

) +

N
X

i=1

�i(Âp)

2(1 + �i(Âp))

subject to pi/pimax
 1, i = 0, . . . , N

âi(�ith/�i(p))  1, i = 1, . . . , N

âi  1 i = 1, . . . , N

pR/pRmax
 1,

(29)
where Â is the approximate value of A calculated after the
relaxation (29). Define the set Ŝ as the SUs selected set by

the PU to access the spectrum, also define the vector â as
follows

â = [â1, â2, · · · , âN ].

Without loss of generality, we assume that the vector â is
sorted in descending order, i.e, â1 � â2 � · · · � âN . After
finding the vector â using (29), we can use Algorithm. 2 to
find the suboptimal maximum value of the PU utility, upS

.
3:

Algorithm 2:

1 Initialize Ŝ0 = {;}.
2 Calculate up

0

using (24).
for k=1, .., N do

Solve (30) for S =
n

Ŝk�1 [ k

o

and find upk
which is the

maximum value of the objective function.
if upk

< upk�1

then

upS
= upk�1

break;
end if

Ŝk = S

upS
= upk

end for

max
p

Up

subject to pi  pimax
, i 2 {0 [ S}

�i(p) � �ith , i 2 S

pR  pRmax
.

(30)

Similarly, we define the relative utility of the suboptimal
scheme with respect to the optimal scheme, which indicates
how near is the suboptimal scheme from the optimal scheme,
as follows

rS =
upS

up
(31)

IV. SIMULATION RESULTS

In this section, we present some numerical simulation
results related to the performance of the proposed schemes.
Simulations are done using the GGPLAB simulator [15]. We
assume a secondary network of three users (i.e., N = 3),
p0max

= 2 Watt, pRmax
= 10 Watt, pimax

= 1 Watt, N� = 1
Watt, E[|gp|2] = 0.8, E[|gi|2] = E[|hi|2] = 0.8 8i = 1, · · · , N
and E[|g0|2] = E[|h0|2] = cE[|gp|2], where c is a parameter
that indicates the relation between the distance between the
PT and the relay and the distance between the PT and the PD.
The minimum SU QoS requirement �th = �10 dB for all
SUs. We investigate the following interference scenarios

1) Weak Interference Case (c = 0.1)
This means that the distance between the PT and the
relay is 3 times the distance between the PT and the
PD.

3The subscript S is used throughout this paper to indicate the suboptimal
scheme.
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Fig. 2: Primary User Rate as a function of wp, (c = 0.25)
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Fig. 3: Primary User Revenue as a function of wp, (c = 0.25)

2) Moderate Interference Case (c = 0.25)
This means that the distance between the PT and the
relay is 2 times the distance between the PT and the
PD.

3) Strong Interference Case (c = 1)
This means that the distance between the PT and the
relay is the same as the distance between the PT and
the PD.

In Fig. 2, we show that the PU rate is an increasing function
of wp. Clearly, as wp increases, the PU utility function sets
more weight to the term (1 + �p

1

)(1 + �p
2

) and hence, the
PU rate will increase. It should be noted that as wp increases
the PU rate converges to the maximum PU rate achieved
when all SUs are inactive, Rp

max

. In Fig. 3, we show the
primary revenue as a function of the parameter wp, which is a
decreasing function of wp. As wp increases the PU becomes
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Fig. 4: SUs sum rate as a function of wp, (c = 0.25)
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Fig. 5: Relative Utility as a function of wp

more concerned with its rate rather than its secondary network
revenue. It is clear that there is a trade-off between the PU
rate and PU revenue and this trade-off can be controlled by
the parameter wp. In Fig. 4, we show that the SU sum rate is
decreasing of wp. As wp increases, the probability of allowing
the SUs access decreases since the PU cares more about its
achieved rate; this will result in a decrease of the SU sum rate
as wp increases.

In Fig. 5, the relative utilities, rH and rS , are shown as
function of wp for different values of the parameter c. From
that figure, it is clear that the suboptimal scheme outperforms
the heuristic scheme because the suboptimal scheme may
allow more than one SU to access the spectrum, unlike the
heuristic scheme, which allows a maximum of one SU to
access the medium. It is also obvious that the closeness of
the suboptimal and heuristic schemes to the optimal scheme
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Fig. 6: The States Histogram as a function of wp, (c = 0.25)
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Fig. 7: The States Histogram, (wp = 1)

is almost not affected by the variation of the parameter c.
In Fig. 6, the occurrence of the different states under the

optimal scheme with different values of wp is shown, where
a “state” is defined by the number of SUs allowed to access
the medium. At low values of wp, the PU permits the access
of more SUs since again in this case the PU cares more about
it secondary network revenue, whereas at high values of wp,
nearly all the SUs are not allowed to access the spectrum most
of the time as the PU cares more about its rate. In Fig. 7, the
occurrence of the different states under the optimal scheme
for different values of c is shown. It is clear that when the
parameter c equals 1 (Strong Interference) the probability that
PU will allow the access of the SUs decreases, as their access
in this case significantly affects the PU’s transmission. The
secondary transmission is also significantly affected by the
primary transmission in this case.

V. DISCUSSION

In this paper, we have studied a cognitive radio system with
one PU, one primary relay and N SUs, in which the PU can
control the secondary network through its relay to maximize
its desired utility function. Each SU has a QoS constraint and
if it cannot be satisfied or it is not beneficial for the PU to allow
the access of this SU, this SU will not access the channel. We
have investigated the PU trade-off between its achieved QoS
and its gained revenue to allow the access of the SUs to its
licensed spectrum. We have proposed an optimal power control
scheme, which has an exponential complexity in terms of the
number of secondary users; therefore, we have also proposed
a simple heuristic scheme and a suboptimal scheme which has
a linear complexity in terms of the number of the secondary
users which achieves a performance that is very close to the
optimal scheme. Finally, we have investigated the performance
of these schemes relative to the optimal scheme under various
interference scenarios, we have concluded that the closeness
of these schemes to the optimal scheme is almost the same
regardless of the interference scenario.
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