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Abstract—We consider a Gaussian interference channel with

independent direct and cross link channel gains, each of which

is independent and identically distributed across time. Each

transmitter-receiver user pair aims to maximize its long-term

average transmission rate subject to an average power constraint.

We formulate a stochastic game for this system in three different

scenarios. First, we assume that each user knows all direct and

cross link channel gains. Later, we assume that each user knows

channel gains of only the links that are incident on its receiver.

Lastly, we assume that each user knows only its own direct

link channel gain. In all cases, we formulate the problem of

finding the Nash equilibrium as a variational inequality (VI)

problem and present a novel heuristic for solving the VI. We also

present a lower bound on the utility for each user at any Nash

equilibrium in the case of the games with partial information. We

obtain this lower bound using a water-filling like power allocation

that requires only knowledge of the distribution of a user’s own

channel gains and average power constraints of all users.

Keywords—Interference channel, stochastic game, Nash equilib-

rium, distributed algorithms, variational inequality.

I. INTRODUCTION

We consider a wireless channel which is being shared

by multiple users to transmit their data to their respective

receivers. The transmissions of different users may cause

interference to other receivers. This is a typical scenario

in many wireless networks. In particular, this can represent

inter-cell interference on a particular wireless channel in a

cellular network. The different users want to maximize their

transmission rates. This system can be modeled in the game

theoretic framework and has been widely studied [1] - [6].

Parallel Gaussian interference channels are considered in

[1], [3], and [4] when the channel gains are fixed and known

to all users. In [1], this setup is modeled as a strategic form

game and existence and uniqueness of a Nash equilibrium (NE)

is studied. Conditions under which the water-filling function

is a contraction, and thus conditions for uniqueness of NE and

for convergence of iterative water-filling, are provided. These

results are extended to a multi-antenna system in [5], and an

asynchronous version of iterative water-filling is considered in

[6]. In [4], some conditions are described under which parallel

Gaussian interference channels have multiple Nash equilibria.

Using variational inequalities, an algorithm is presented that

converges to a Nash equilibrium which minimizes the overall

weighted interference.

An online algorithm to reach a NE for parallel Gaussian

channels is presented in [2] when the channel gains are fixed

but not known to the users. Its convergence is also proved.

In [7], parallel Gaussian interference channels are consid-

ered, where each user minimizes total power across the parallel

channels subject to a lower bound on signal to interference

plus noise ratio. The channel gains are fixed and known to

all users. This setup is modeled as a strategic form game and

decentralized algorithms are presented based on trial and error

that converge to Nash and satisfaction equilibrium points under

certain sufficient conditions. In [8], under a very similar setup,

sequential and simultaneous iterative water-filling algorithms

are presented to find a NE. Further, sufficient conditions for

convergence of these algorithms and uniqueness of the NE are

studied.

In [9] we consider a Gaussian interference channel with fast

fading channel gains whose distributions are known to all the

users. We consider power allocation in a non-game-theoretic

framework, and provide other references for such a setup. In

[9], we have proposed a centralized algorithm for finding the

Pareto points that maximize the average sum rate, when the

receivers have knowledge of all the channel gains and decode

the messages from strong and very strong interferers instead

of treating them as noise.

In the present paper, we consider a stochastic game over

Gaussian interference channels, where users want to maximize

their long term average rates and have long term average

power constraints (potential advantages of this over one shot

optimization are discussed in [10], [11]). For this system, we

obtain existence of a NE and develop algorithms to obtain a

NE via variational inequalities. In [12], we had considered a

power allocation game with complete channel knowledge at

all transmitters and presented an algorithm that converges to

a Nash equilibrium under certain conditions on the channel

gains. In this paper also, we first consider the complete

information game of [12]. We provide a heuristic algorithm

to find a NE under general channel conditions. A NE is a

fixed point of a given mapping defined later in the paper. We

write the problem of finding a fixed point of the mapping as

an optimization problem whose global optimal solution is a

fixed point. The existing distributed optimization algorithms

are known to converge only to local optima, whereas our

heuristic algorithm aims to find a global optimum. For this,

the heuristic algorithm is split into two phases. In Phase 1, a

Picard iteration is applied on the mapping for a fixed number of

iterations. In Phase 2, a steepest descent algorithm initialized

with the power allocation resulting from Phase 1 is applied to

solve for a global optimal solution of the optimization problem.
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Later, in Section VI, we illustrate the advantage that Phase 1

provides in solving for the global optimum. We also note that,

in some cases, Phase 1 itself can provide a close approximation

of the global optimum.

Furthermore, we also consider the much more realistic

situation when a user knows only its own channel gains,

whereas the above mentioned literature considers the problem

when each user knows all the channel gains in the system.

We consider two different partial information games. In the

first partial information game, each transmitter is assumed to

have knowledge of the channel gains of the links that are

incident on its corresponding receiver from all the transmitters.

Later, in the other game, we assume that each transmitter has

knowledge of its direct link channel gain only. For both the

partial information games, we find a NE using the heuristic

algorithm.

Finally, in each partial information game, we present a

lower bound on the average rate of each user at any Nash

equilibrium. This lower bound can be obtained by a user using

a water-filling like, easy to find power allocation, that can be

evaluated with the knowledge of the distribution of its own

channel gains and of the average power constraints of all

the users. The distributed heuristic algorithm requires power

variables to be communicated among the users during the

computation of the Nash equilibrium. If suppose, a transmitter

fails to receive power variables from the other transmitters, it

can still attain at least the lower bound rate with its water-

filling like power allocation.

The paper is organized as follows. In Section II, we present

the system model and the three stochastic game formulations.

Section III reformulates the complete information stochastic

game as an affine variational inequality problem. In Section

IV, we propose the heuristic algorithm to solve the formulated

variational inequality under general conditions. In Section

V we use this algorithm to obtain NE when users have

only partial information about the channel gains. We present

numerical examples in Section VI. Section VII concludes the

paper.

II. SYSTEM MODEL AND STOCHASTIC GAME

FORMULATIONS

We consider a Gaussian wireless channel being shared

by N transmitter-receiver pairs. The time axis is slotted and

all users’ slots are synchronized. The channel gains of each

transmit-receive pair are constant during a slot and change

independently from slot to slot. These assumptions are usually

made for this system [1], [11]. Although not addressed in

this paper, our results extend to positive recurrent ergodic

Markovian channel state processes.

Let Hij(k) be the random variable that represents channel

gain from transmitter j to receiver i (for transmitter i, receiver

i is the intended receiver) in slot k. The direct channel power

gains |Hii(k)|
2 ∈ Hd = {g

(d)
1 , g

(d)
2 , . . . , g

(d)
n1 } and the cross

channel power gains |Hij(k)|
2 ∈ Hc = {g

(c)
1 , g

(c)
2 , . . . , g

(c)
n2 }

where n1, and n2 are arbitrary positive integers. Let πd and

πc be the probability distributions on Hd and Hc respectively.

We assume that, {Hij(k), k ≥ 0} is an i.i.d sequence with

distribution πij where πij = πd if i = j and πij = πc if

i 6= j. We also assume that these sequences are independent

of each other.

We denote (Hij(k), i, j = 1, . . . , N) by H(k) and its

realization vector by h(k) which takes values in H, the set of

all possible channel states. The distribution of H(k) is denoted

by π. We call the channel gains (Hij(k), j = 1, . . . , N) from

all the transmitters to the receiver i an incident gain of user i

and denote by Hi(k) and its realization vector by hi(k) which

takes values in I, the set of all possible incident channel gains.

The distribution of Hi(k) is denoted by πI .

Each user aims to operate at a power allocation that

maximizes its long term average rate under an average power

constraint. Since their transmissions interfere with each other,

affecting their transmission rates, we model this scenario as a

stochastic game.

We first assume complete channel knowledge at all trans-

mitters and receivers. If user i uses power Pi(H(k)) in slot k,

it gets rate log (1 + Γi (P (H(k)))), where

Γi(P (H(k))) =
αi|Hii(k)|

2Pi(H(k))

1 +
∑

j 6=i |Hij(k)|2Pj(H(k))
, (1)

P (H(k)) = (P1(H(k)), . . . , PN (H(k))) and αi is a constant

that depends on the modulation and coding used by transmitter

i and we assume αi = 1 for all i. The aim of each user i is to

choose a power policy to maximize its long term average rate

ri(Pi,P−i) , lim sup
n→∞

1

n

n
∑

k=1

E[log (1 + Γi (P (H(k))))],

(2)

subject to average power constraint

lim sup
n→∞

1

n

n
∑

k=1

E[Pi(H(k))] ≤ P i, for each i, (3)

where P−i denotes the power policies of all users except i.

We denote this game by GA.

We next assume that the ith transmitter-receiver pair has

knowledge of its incident gains Hi only. Then the rate of user

i is

ri(Pi,P−i) , lim sup
n→∞

1

n

n
∑

k=1

EHi(k)

[

EH−i(k)[log (1 + Γi(P (Hi(k),H−i(k))))]
]

, (4)

where Pi(H(k)) depends only on Hi(k) and EX denotes

expectation with respect to the distribution of X . Each user

maximizes its rate subject to (3), we denote this game by GI .

We also consider a game assuming that each transmitter-

receiver pair knows only its direct link gain Hii. This is the

most realistic assumption since each receiver i can estimate

Hii and feed it back to transmitter i. In this case, the rate of

user i is given by

ri(Pi,P−i) , lim sup
n→∞

1

n

n
∑

k=1

EHii(k)

[

EH−ii(k)

[log (1 + Γi(P (Hii(k), H−ii(k))))]] , (5)
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where Pi(H(k)) is a function of Hii(k) only. Here, H−ii

denotes the channel gains of all other links in the interference

channel except Hii. In this game, each user maximizes its rate

(5) under the average power constraint (3). We denote this

game by GD.

We address these problems as stochastic games with the

set of feasible power policies of user i denoted by Ai and its

utility by ri. Let A = ΠN
i=1Ai.

We limit ourselves to stationary policies, i.e., the power

policy for every user in slot k depends only on the chan-

nel state H(k) and not on k. In fact now we can rewrite

the optimization problem in G to find policy P (H) such

that ri = EH[log (1 + Γi (P (H)))] is maximized subject to

EH [Pi(H)] ≤ P i for all i. Similarly, we can rewrite the

optimization problems in games GI and GD. We express power

policy of user i by Pi = (Pi(h), h ∈ H), where transmitter i

transmits in channel state h with power Pi(h). We denote the

power profile of all users by P = (P1, . . . ,PN ).
In the rest of the paper, we prove existence of a Nash

equilibrium for each of these games and provide a heuristic

algorithm to compute it.

III. VARIATIONAL INEQUALITY FORMULATION

The theory of variational inequalities offers various algo-

rithms to find NE of a given game [16]. A variational inequality

problem denoted by V I(K,F ) is defined as follows.

Definition 1. Let K ⊂ R
n be a closed and convex set, and

F : K → K. The variational inequality problem V I(K,F ) is

defined as the problem of finding x ∈ K such that

F (x)T (y − x) ≥ 0 for all y ∈ K.

We reformulate the Nash equilibrium problem at hand

to an affine variational inequality problem. We denote our

game by GA =
(

(Ai)
N
i=1, (ri)

N
i=1

)

, where ri(Pi,P−i) =
EH[log (1 + Γi (P (H)))] and Ai = {Pi ∈ R

N :
EH [Pi(H)] ≤ P i, Pi(h) ≥ 0 for all h ∈ H}.

Definition 2. A point P∗ is a Nash Equilibrium (NE) of game

GA =
(

(Ai)
N
i=1, (ri)

N
i=1

)

if for each user i

ri(P
∗
i ,P

∗
−i) ≥ ri(Pi,P

∗
−i) for all Pi ∈ Ai.

We now state a theorem on the existence of a pure strategy

NE for a non-cooperative game known as Debreu-Glicksberg-

Fan theorem ([13], page no. 69).

Theorem 1. Given a non-cooperative game, if every strategy

set Ai is compact and convex, ri(ai, a−i) is a continuous

function in the profile of strategies a = (ai, a−i) ∈ A and

quasi-concave in ai, then the game has atleast one pure-

strategy Nash equilibrium.

Existence of a pure NE for the strategic games GA,GI and

GD follows from Theorem 1, since in our game ri(Pi,P−i)
is a continuous function in the profile of strategies P =
(Pi,P−i) ∈ A and concave in Pi for GA,GI and GD.

Definition 3. The best-response of user i is a function BRi :
A−i → Ai such that BRi(P−i) maximizes ri(Pi,P−i),

subject to Pi ∈ Ai.

We see that the Nash equilibrium is a fixed point of the best-

response function. In the following we provide algorithms to

obtain this fixed point for GA. In Section V we will consider

GI and GD. Given other users’ power profile P−i, we use

Lagrange method to evaluate the best response of user i. The

Lagrangian function is defined by

Li(Pi,P−i) = ri(Pi,P−i) + µi(P i − EH [Pi(H)]).

To maximize Li(Pi,P−i), we solve for Pi such that ∂Li

∂Pi(h)
=

0 for each h ∈ H. Thus, the component of the best response

of user i, BRi(P−i) corresponding to channel state h is given

by

BRi(P−i;h) =

max

{

0, λi(P−i)−
(1 +

∑

j 6=i |hij |
2Pj(h))

|hii|2

}

, (6)

where λi(P−i) = 1
µi(P−i)

is chosen such that the average

power constraint is satisfied.

It is easy to observe that the best-response of user i to

a given strategy of other users is water-filling on fi(P−i) =
(fi(P−i;h), h ∈ H) where

fi(P−i;h) =
(1 +

∑

j 6=i |hij |
2Pj(h))

|hii|2
. (7)

For this reason, we represent the best-response of user i by

WFi(P−i). The notation used for the overall best-response

WF(P) = (WF(P (h)), h ∈ H), where WF(P (h)) =
(WF1(P−1;h), . . . ,WFN (P−N ;h)) and WFi(P−i;h) is as

defined in (6). We use WFi(P−i) = (WFi(P−i;h), h ∈ H).
It is observed in [1] that the best-response WFi(P−i) is

also the solution of the optimization problem

minimize ‖Pi + fi(P−i)‖
2
,

subject to Pi ∈ Ai. (8)

As a result we can interpret the best-response as the projection

of (−fi,1(P−i), . . . ,−fi,N (P−i)) on to Ai. We denote the

projection of x on to Ai by ΠAi
(x). We consider (8), as

a game in which every user minimizes its cost function

‖Pi + fi(P−i)‖
2

with strategy set of user i being Ai. We

denote this game by G′
A. This game has the same set of NEs

as GA because the best responses of these two games are

equal. We now formulate the variational inequality problem

corresponding to the game G′
A.

We note that (8) is a convex optimization problem. Necessary

and sufficient optimality conditions for a convex optimization

problem ([14], page 210) can be stated as

Theorem 2. Consider the convex optimization problem,

minimize g(x),

subject to x ∈ X,

where g(x) is a convex function and X is a convex set. The

necessary and sufficient conditions for x∗ to be a solution of
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the optimization problem are

∇g(x∗)(y − x∗) ≥ 0 for all y ∈ X.

Given P−i, a necessary and sufficient condition for P∗
i to

be a solution of the convex optimization problem of user i is

given by
∑

h∈H

(P ∗
i (h) + fi(P−i;h)) (xi(h)− P ∗

i (h)) ≥ 0, (9)

for all xi ∈ Ai. Thus, P∗ is a NE of the game G′
A if (9) holds

for each user i. We can rewrite the N inequalities in (9) in

compact form as

(

P∗ + ĥ+ ĤP∗
)T

(x−P∗) ≥ 0 for all x ∈ A, (10)

where ĥ is a N1-length block vector with N1 = |H|, the

cardinality of H, each block ĥ(h), h ∈ H, is of length N

and is defined by ĥ(h) =
(

1
|h11|2

, . . . , 1
|hNN |2

)

and Ĥ is the

block diagonal matrix Ĥ = diag
{

Ĥ(h), h ∈ H
}

with each

block Ĥ(h) defined by

[Ĥ(h)]ij =

{

0 if i = j,
|hij |

2

|hii|2
, else.

The characterization of Nash equilibrium in (10) corre-

sponds to solving for P in the affine variational inequality

problem V I(A, F ),

F (P)T (x−P) ≥ 0 for all x ∈ A, (11)

where F (P) = (I + Ĥ)P+ ĥ.

IV. ALGORITHM TO SOLVE VARIATIONAL INEQUALITY

In [12], we proved that if H̃ = (I + Ĥ) is positive

semidefinite, then the fixed point iteration

P(n) = ΠA(P
(n−1) − τFǫ(P

(n−1))), (12)

converges to a solution of V I(A, Fǫ) for sufficiently small

values of τ ([16]), where Fǫ = (I + Ĥ)P + ĥ + ǫP. As ǫ

converges to zero the solution of V I(A, Fǫ) converges to a

NE. This condition is much weaker than one would obtain by

using the methods in [1]. In the current paper we aim to find a

NE even if H̃ is not positive semidefinite. For this, we present

a heuristic to solve the V I(A, F ) in general.

We base our heuristic algorithm on the fact that a power

allocation P∗ is a solution of V I(A, F ) if and only if

P∗ = ΠA (P∗ − τF (P∗)) , (13)

for any τ > 0. We prove this fact using a property of projection

on a convex set that can be stated as follows ([16]):

Lemma 3. Let X ⊂ R
n be a convex set. The projection of y ∈

R
n, Π(y) is the unique element in X such that the following

holds.

(Π(y)− y)T (x−Π(y)) ≥ 0, for all x ∈ X. (14)

Let P∗ satisfy (13) for some τ > 0. By the property of

projection (14), we have

(ΠA (P∗ − τF (P∗))− (P∗ − τF (P∗)))
T

(Q−ΠA (P∗ − τF (P∗))) ≥ 0 (15)

for all Q ∈ A. Using (13) in (15), we have

(P∗ − (P∗ − τF (P∗)))
T
(Q−P∗) ≥ 0,

i.e., (τF (P∗))
T
(Q−P∗) ≥ 0.

Since τ > 0, we have

F (P∗)T (Q−P∗) ≥ 0, for all Q ∈ A. (16)

Thus P∗ solves the V I(A, F ). Conversely, let P∗ be a solution

of the V I(A, F ). Then we have relation (16), which can be

rewritten as

(P∗ − (P∗ − τF (P∗))
T
(Q−P∗) ≥ 0, for all Q ∈ A,

for any τ > 0. Comparing with (14), from Lemma 3 we have

that (13) holds. Thus, P∗ is a fixed point of the mapping

T (P) = ΠA (P− τF (P)) for any τ > 0.

We can interpret the mapping T (P) as a better response

mapping for the optimization (8). Consider a fixed point P∗

of the better response T (P). Then P∗ is a solution of the

variational inequality (11). This implies that, given P∗
−i, P

∗
i

is a local optimum of (8) for all i. Since the optimization (8)

is convex, P∗
i is also a global optimum. Thus given P∗

−i, P
∗
i

is best response for all i, and hence a fixed point of the better

response function T (P) is also a NE.

To find a fixed point of T (P), we reformulate the variational

inequality problem as a non-convex optimization problem

minimize ‖P−ΠA (P− τF (P)) ‖2,

subject to P ∈ A. (17)

The feasible region A of P, can be written as a Cartesian

product of Ai, for each i, as the constraints of each user are

decoupled in power variables. As a result, we can split the

projection ΠA(.) into multiple projections ΠAi
(.) for each i,

i.e., ΠA(x) = (ΠA1
(x1), . . . ,ΠAN

(xN )). For each user i, the

projection operation ΠAi
(xi) takes the form

ΠAi
(xi) = (max (0, xi (h)− λi) , h ∈ H) , (18)

where λi is chosen such that the average power constraint is

satisfied. Using (18), we rewrite the objective function in (17)

with τ = 1 as

‖P−ΠA (P− F (P)) ‖2 =
∑

h∈H,i

(Pi (h)− max {0,−fi(P−i;h)− λi})
2

=
∑

h∈H,i

(

min

{

Pi(h),
1 +

∑

j |hij |
2Pj(h)

|hii|2
+ λi

})2

=
∑

h∈H,i

(min {Pi(h), Pi(h) + fi(P−i;h) + λi})
2
. (19)
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At a NE, the left side of equation (19) is zero and hence each

minimum term on the right side of the equation must be zero

as well. This happens, only if

Pi(h) =







0, if
1+

∑
j 6=i

|hij |
2Pj(h)

|hii|2
+ λi > 0,

−
1+

∑
j 6=i

|hij |
2Pj(h)

|hii|2
− λi, otherwise.

Here, the Lagrange multiplier λi can be negative, as the

projection satisfies the average power constraint with equality.

At a NE user i will not transmit if the ratio of total interference

plus noise to the direct link gain is more than some threshold.

We now propose a heuristic algorithm to find an optimizer of

(17). This algorithm consists of two phases. Phase 1 attempts

to find a better power allocation, using Picard iterations with

the mapping T (P), that is close to a NE. For GA this is

algorithm (12) with ǫ = 0. We use Phase 1 in Algorithm 1

to get a good initial point for the steepest descent algorithm

of Phase 2. We will show in Section VI that it indeed provides

a good initial point for Phase 2. In Phase 2, using the estimate

obtained from Phase 1 as the initial point, the algorithm runs

the steepest descent method to find a NE. It is possible that

the steepest descent algorithm may stop at a local minimum

which is not a NE. This is because of the non-convex nature

of the optimization problem. If the steepest descent method in

Phase 2 terminates at a local minimum which is not a NE, we

again invoke Phase 1 with this local minimum as the initial

point and then go over to Phase 2. We present the complete

algorithm below as Algorithm 1.

In Section VI we first present an example where H̃ is

positive semidefinite. Next we provide examples where H̃ is

not positive semidefinite, and the algorithm in [12] does not

converge, whereas Algorithm 1 converges to the NEs in just a

few iterations of Phase 1 and Phase 2.

V. PARTIAL INFORMATION GAMES

In the partial information games, we can not write the

problem of finding a NE as an affine variational inequality,

because the best response is not water-filling and should be

evaluated numerically. In this section, we show that we can

use Algorithm 1 to find a NE even for these games.

A. Game GI

We first consider the game GI and find its NE using

Algorithm 1. We follow on similar lines as in Sections III

and IV. We write the variational inequality formulation of the

NE problem. For user i, the optimization at hand is

maximize r
(I)
i ,

subject to Pi ∈ Ai, (20)

where r
(I)
i =

∑

hi∈I π(hi)E
[

log
(

1 + |hii|
2Pi(hi)

1+
∑

j 6=i
|hij |2Pj(Hj)

)]

.

The necessary and sufficient optimality conditions for the

convex optimization problem (20) are

(xi −P∗
i )

T (−▽ir
(I)
i (P∗

i ,P−i)) ≥ 0, for all xi ∈ Ai, (21)

where ▽ir
(I)
i (P∗

i ,P−i) is the gradient of r
(I)
i with respect to

power variables of user i. Then P∗ is a NE if and only if

Algorithm 1 Heuristic algorithm to find a Nash equilibrium

Fix ǫ > 0, δ > 0 and a positive integer MAX
Phase 1 : Initialization phase

Initialize P
(0)
i for all i = 1, . . . , N .

for n = 1 → MAX do
P(n) = T (P(n−1))

end for
go to Phase 2.

Phase 2 : Optimization phase

Initialize t = 1,P(t) = P(MAX),
loop

For each i, P
(t+1)
i = Steepest Descent(P̃

(t)
i , i)

where P̃
(t)
i = (P

(t+1)
1 , . . . ,P

(t+1)
i−1 ,P

(t)
i , . . . ,P

(t)
N ),

P(t+1) = (P
(t+1)
1 , . . . ,P

(t+1)
N ),

Till ‖P(t+1) − T (P(t+1))‖ < ǫ
if ‖P(t) −P(t+1)‖ < δ and ‖P(t+1) − T (P(t+1))‖ > ǫ

then
Go to Phase 1 with P(0) = P(t+1)

end if
t = t+ 1.

end loop
function STEEPEST DESCENT(P(t), i)

▽f(P(t)) = ( ∂f(P)
∂Pi(h)

|P=P(t) , h ∈ H)

where f(P) = ‖P− T (P)‖2

for h ∈ H do
evaluate

∂f(P)
∂Pi(h)

|P=P(t) using derivative approxima-

tion
end for
P

(t+1)
i = ΠAi

(P
(t)
i − γt▽f(P

(t)))

return P
(t+1)
i

end function

(21) is satisfied for all i = 1, . . . , N . We can write the N

inequalities in (21) as

(x−P∗)TF (P∗) ≥ 0, for all x ∈ A, (22)

where F (P) = (−▽1r
(I)
1 (P), . . . ,−▽Nr

(I)
N (P))T . Equation

(22) is the required variational inequality characterization. A

solution of the variational inequality is a fixed point of the

mapping TI(P) = ΠA(P − τF (P)), for any τ > 0. We use

Algorithm 1, to find a fixed point of TI(P) by replacing T (P)
in Algorithm 1 with TI(P).

B. Better response iteration

In this subsection, we interpret TI(P) as a better response

for each user. For this, consider the optimization problem (20).

For this, using the gradient projection method, the update rule

for power variables of user i is

P
(n+1)
i = ΠAi

(P
(n)
i + τ▽ir

(I)
i (P(n))). (23)

The gradient projection method ensures that for a given P
(n)
−i ,

r
(I)
i (P

(n+1)
i ,P

(n)
−i ) ≥ r

(I)
i (P

(n)
i ,P

(n)
−i ). Therefore, we can
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interpret P
(n+1)
i as a better response to P

(n)
−i than P

(n)
i . As

the feasible space A = ΠN
i=1Ai, we can combine the update

rules of all users and write

P(n+1) = ΠA(P
(n) − τF (P(n))) = TI(P

(n)).

Thus, the Phase 1 of Algorithm 1 is the iterated better response

algorithm.

Consider a fixed point P∗ of the better response TI(P).
Then P∗ is a solution of the variational inequality 22. This

implies that, given P∗
−i, P

∗
i is a local optimum of (20) for all

i. Since the optimization (20) is convex, P∗
i is also a global

optimum. Thus given P∗
−i, P

∗
i is best response for all i, and

hence a fixed point of the better response function is also a

NE. This gives further justification for Phase 1 of Algorithm

1. Indeed we will show in the next section that in such a case

Phase 1 often provides a NE for GI and GD (for which also

Phase 1 provides a better response dynamics; see Section V-C

below).

C. Game GD

We now consider the game GD where each user i has

knowledge of only the corresponding direct link gain Hii.

In this case also we can formulate the variational inequality

characterization. The variational inequality becomes

(x−P∗)TFD(P∗) ≥ 0, for all x ∈ A, (24)

where FD(P) = (−▽1r
(D)
1 (P), . . . ,−▽Nr

(D)
N (P))T ,

r
(D)
i =

∑

hii

π(hii)E

[

log

(

1 +
|hii|

2Pi(hii)

1 +
∑

j 6=i |Hij |2Pj(Hj)

)]

.

We use Algorithm 1 to solve the variational inequality (24)

by finding fixed points of TD(P) = ΠA(P− τFD(P)). Also,

one can show that as for TI , TD provides a better response

strategy.

D. Lower bound

In this subsection, we derive a lower bound on the average

rate of each user at any NE. This lower bound can be achieved

at a water-filling like power allocation that can be computed

with knowledge of only its own channel gain distribution and

average power constraint of all the users.

To compute a NE using Algorithm 1, each user needs to

communicate its power variables to the other users in every

iteration and should have knowledge of the distribution of the

channel gains of all the users. If any transmitter fails to receive

power variables from other users, it can operate at the water-

filling like power allocation that attains at least the lower bound

derived in this section. Other users can compute the NE of

the game that is obtained by removing the user that failed to

receive the power variables, but treating the interference from

this user as a constant, fixed by its water-filling like power

allocation. We now derive the lower bound.

1) For GI : In the computation of NE, each user i is required

to know the power profile P−i of all other users. We now give

a lower bound on the utility r
(I)
i of user i that does not depend

on other users’ power profiles.

We can easily prove that the function inside the expectation

in r
(I)
i is a convex function of Pj(hj) for fixed Pi(hi) using

the fact that ([18]) a function f : K ⊆ R
n → R is convex if

and only if
d2f(x+ ty)

dt2
≥ 0,

for all x,y ∈ K and t ∈ R is such that x+ ty ∈ K. Then by

Jensen’s inequality to the inner expectation in r
(I)
i ,

r
(I)
i =

∑

hi∈I

π(hi)E

[

log

(

1 +
|hii|

2Pi(hi)

1 +
∑

j 6=i |hij |2Pj(Hj)

)]

≥
∑

hi∈I

π(hi)log

(

1 +
|hii|

2Pi(hi)

1 +
∑

j 6=i |hij |2E[Pj(Hj)]

)

=
∑

hi∈I

π(hi)log

(

1 +
|hii|

2Pi(hi)

1 +
∑

j 6=i |hij |2Pj

)

. (25)

The above lower bound r
(I)
i,LB(Pi) of r

(I)
i (Pi,P−i) does

not depend on the power profile of users other than i. We

can choose a power allocation Pi of user i that maximizes

r
(I)
i,LB(Pi). It is the water-filling solution given by

Pi(hi) = max

{

0, λi −
1 +

∑

j 6=i |hij |
2Pj

|hii|2

}

.

Let P∗ = (P∗
i ,P

∗
−i) be a NE, and let P

†
i be the maxi-

mizer for the lower bound r
(I)
i,LB(Pi). Then, r

(I)
i (P∗

i ,P
∗
−i) ≥

r
(I)
i (Pi,P

∗
−i) for all Pi ∈ Ai, in particular for Pi = P

†
i .

Thus, r
(I)
i (P∗

i ,P
∗
−i) ≥ r

(I)
i (P†

i ,P
∗
−i). But, r

(I)
i (P†

i ,P
∗
−i) ≥

r
(I)
i,LB(P

†
i ). Therefore, r

(I)
i (P∗

i ,P
∗
−i) ≥ r

(I)
i,LB(P

†
i ). But, in

general it may not hold that r
(I)
i (P∗

i ,P
∗
−i) ≥ r

(I)
i (P†

i ,P
†
−i).

2) For GD: We can also derive a lower bound on r
(D)
i using

convexity and Jensen’s inequality as in (25). In the case of GD,

we have

r
(D)
i ≥

∑

hii

π(hii)log

(

1 +
|hii|

2Pi(hii)

1 +
∑

j 6=i E[|Hij |2]Pj

)

.

The optimal solution for maximizing the lower bound is the

water-filling solution

Pi(hii) = max

{

0, λi −
1 +

∑

j 6=i E[|Hij |
2]Pj

|hii|2

}

.

VI. NUMERICAL EXAMPLES

In this section we compare the sum rate achieved at a NE

under the different assumptions on channel gain knowledge,

obtained using the algorithms provided above. In all the

numerical examples, we have chosen τ = 0.1 with the step

size in the steepest descent method γt = 0.5 for t = 1 and

updated after 10 iterations as γt+10 = γt

1+γt
. We choose a

3-user interference channel for Examples 1 and 2 below.

For Example 1, we take Hd = {0.3, 1} and Hc = {0.2, 0.1}.

We assume that all elements of Hd,Hc occur with equal
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Fig. 1. Sum rate comparison at Nash equilibrium points for Example 1.
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Fig. 2. Sum rate comparison at Nash equilibrium points for Example 2.

probability, i.e., with probability 0.5. Now, the H̃ matrix is

positive definite and there exists a unique NE. Thus, the

fixed point iteration (12) converges to the unique NE for GA.

Algorithm 1 also converges to a NE not only for GA but also

for GI and GD.

We compare the sum rates for the NE under different

assumptions in Figure 1. We have also computed Q = P†

that maximizes the corresponding lower bounds (25), evaluated

the sum rate s(Q) and compared to the sum rate at a NE. The

sum rates at Nash equilibria for GI and GD are close. This is

because the values of the cross link channel gains are close and

hence knowing the cross link channel gains has less impact.

We now present two examples in which H̃ is not positive

semidefinite but Algorithm 1 converges to a NE for GA, GI

and GD.

In Example 2, we take Hd = {0.3, 1} and Hc = {0.1, 0.5}.

We assume that all elements of Hd,Hc occur with equal

probability. We compare the sum rates for the NE obtained by

Algorithm 1 in Figure 2. Now we see significant differences

in the sum rates.

We consider a 2-user interference channel in Example 3.

We take Hd = {0.1, 0.5, 1} and Hc = {0.25, 0.5, 0.75}.

We assume that all elements of Hd,Hc occur with equal

probability for user 1, and that the distributions of direct and

cross link channel gains are identical for user 2 and are given

by {0.1, 0.4, 0.5}. In this example also, we use Algorithm 1

to find NE for the different cases, and also obtain the lower

bound for the partial information cases. We compare the sum

rates for the NE in Figure 3.
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Fig. 3. Sum rate comparison at Nash equilibrium points for Example 3.

We further elaborate on the usefulness of Phase 1 in

Algorithm 1. We quantify the closeness of P to a NE by

g(P) = ‖P − T (P)‖. If P is a NE then g(P) = 0, and

for two different power allocations P and Q we say that P is

closer to a NE than Q if g(P) < g(Q). We now verify that the

fixed point iterations in Phase 1 of Algorithm 1 take us closer

to a NE starting from any randomly chosen feasible power

allocation. For this, we have randomly generated 100 feasible

initial power allocations and run Phase 1 for MAX = 100
iterations for each randomly chosen initial power allocation,

and compared the values of g(P). In the following, we

compare the mean, over the 100 initial points chosen, of

the values of g(P) immediately after random generation of

feasible power allocations, to those after running Phase 1.

We summarize the comparison of mean value of g(P)
before and after Phase 1 of Algorithm 1, in Tables I, II and

III for Examples 1, 2 and 3 respectively. The first column

of the table indicates the constrained average transmit SNR

in dB. The second and the third columns correspond to the

power allocation game with complete channel knowledge, GA.

The fourth and the fifth columns correspond to the power

allocation game with knowledge of the incident channel gains,

GI . The sixth and the seventh columns correspond to the power

allocation game with direct link channel knowledge, GD. The

second, fourth and sixth columns indicate the mean of g(P)
before running Phase 1, where P is a randomly generated

feasible power allocation. The mean value is evaluated over

100 samples of different random feasible power allocations.

The third, fifth and seventh columns indicate the mean value

of g(P) after running Phase 1 in Algorithm 1 for the same

random feasible power allocations.

It can be seen from the tables that running Phase 1 prior

to Phase 2 reduces the value of g(P) when compared with a

randomly generated feasible power allocation. Thus, the power

allocation after running Phase 1 will be a good choice of power

allocation to start the steepest descent in Phase 2. It can also

be seen that for all the three examples, for GI and GD, Phase

1 itself converges to the NE, whereas for GA Phase 1 may not

converge.

At SNR of 20dB, for GA, Algorithm 1 converged in one

iteration of Phase 1 and Phase 2 for Examples 1 and 3. For

Example 2, Algorithm 1 converged after Phase 1 in the second

iteration of Phase 1 and Phase 2. Phase 2 converged to a
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local optimum in about 200 iterations in Example 1, about 400

iterations for Example 2 and about 250 iterations in Example

3.

g(P) for GA g(P) for GI g(P) for GD

SNR(dB) Before Ph 1 After Ph 1 Before Ph 1 After Ph 1 Before Ph 1 After Ph 1

0 40.82 8.00 ×10−4 5.01 0.17 ×10−4 2.48 0.59 ×10−14

1 51.39 0.027 6.42 0.0005 3.12 0.13 ×10−13

5 96.5 0.15 11.73 0.0014 5.71 0.54 ×10−3

10 229.9 0.62 25.45 0.005 12.95 0.0023

15 657.3 2.02 60.6 0.0026 21.69 0.0027

20 2010.7 6.51 80.0 0.0029 31.8 0.0028

TABLE I. COMPARISON OF g(P) IN GAMES GA,GI AND GD BEFORE

PHASE 1 AND AFTER PHASE 1 FOR EXAMPLE 1.

g(P) for GA g(P) for GI g(P) for GD

SNR(dB) Before Ph 1 After Ph 1 Before Ph 1 After Ph 1 Before Ph 1 After Ph 1

0 41.68 0.12 5.14 0.35 ×10−4 2.47 0.4 ×10−15

1 51.43 0.48 6.40 0.13 ×10−3 3.17 0.18 ×10−14

5 107.9 2.52 13.4 0.068 ×10−3 7.1 0.28 ×10−3

10 309.65 9.76 37.62 0.89 ×10−3 20.76 0.0016

15 948.37 31.68 98.44 0.0015 29.22 0.0018

20 2974.4 98.85 174.57 0.0027 65.15 0.0033

TABLE II. COMPARISON OF g(P) IN GAMES GA,GI AND GD BEFORE

PHASE 1 AND AFTER PHASE 1 FOR EXAMPLE 2.

g(P) for GA g(P) for GI g(P) for GD

SNR(dB) Before Ph 1 After Ph 1 Before Ph 1 After Ph 1 Before Ph 1 After Ph 1

0 12.30 0.04 4.07 0.95 ×10−5 2.30 0.42 ×10−4

1 14.82 0.05 4.81 0.22 ×10−4 2.80 0.93 ×10−4

5 34.21 0.28 10.90 0.47 ×10−3 5.71 0.89 ×10−3

10 104.74 0.89 32.34 0.0014 16.82 0.0007

15 325.75 2.43 103.72 0.0016 44.72 0.001

20 1010.10 9.27 271.46 0.0017 107.96 0.002

TABLE III. COMPARISON OF g(P) IN GAMES GA,GI AND GD BEFORE

PHASE 1 AND AFTER PHASE 1 FOR EXAMPLE 3.

We have run Algorithm 1 on many more examples and found

that it computed the NE, and that for GI and GD Phase 1 itself

converged to the NE.

VII. CONCLUSIONS

We have considered a channel shared by multiple

transmitter-receiver pairs causing interference to one another.

We formulated stochastic games for this system in which

transmitter-receiver pairs may or may not have information

about other pairs’ channel gains. Exploiting variational in-

equalities, we presented a heuristic algorithm that obtains a

NE in the various examples studied, quite efficiently.

In the games with partial information, we presented a lower

bound on the utility of each user at any NE. A utility of at

least this lower bound can be attained by a user using a water-

filling like power allocation, that can be computed with the

knowledge of the distribution of its own channel gains and

of the average power constraints of all the users. This power

allocation is especially useful when any transmitter fails to

receive the power variables from the other transmitters that

are required for it to compute its NE power allocation.
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