
Scalable and Distributed Submodular Maximization
with Matroid Constraints

Andrew Clark, Basel Alomair, Linda Bushnell, and Radha Poovendran

Abstract—Submodular maximization enables efficient approxi-
mation of machine learning, networking, and language processing
problems. Typically, these problems have been shown to have
matroid constraints, which generalize matching and partition
conditions. Developing scalable, distributed submodular opti-
mization algorithms that guarantee the same performance as
centralized techniques has been an active area of research. In
this paper, we address the problem of developing scalable dis-
tributed algorithms for submodular maximization with a matroid
constraint. Our key step is to construct an auxiliary function
from the submodular objective function, and develop distributed
exchange-based algorithms for optimizing the auxiliary function.
We first introduce a distributed algorithm for maximizing a
submodular function with a matroid constraint. We then develop
an algorithm for maximizing time-varying submodular functions
under partition matroid constraints, which arises in sensor
placement and data caching. We prove that both algorithms
provide (1-1/e) optimality bounds, and hence achieve the same
guarantees as the best centralized algorithms.

I. INTRODUCTION

Submodularity is a diminishing returns property of set
functions, analogous to concavity of continuous functions. A
variety of problems in machine learning [1], language pro-
cessing, social networking [2], image processing, and robotics
can be modeled as selecting a subset of nodes to maximize
a submodular objective function. While subset selection is
known to be NP-hard in general, the submodularity property
enables efficient algorithms for optimization under a variety
of constraints [3], [4].

Matroid constraints generalize cardinality, matching, and
linear constraints, and arise naturally in wireless networking
applications including sensor scheduling [5], data caching [6],
welfare maximization [7], and camera placement. Central-
ized algorithms with provable optimality guarantees, based
on greedy [3], [8] and local exchange [9] techniques, have
been developed for maximizing submodular functions with
a matroid constraint. The additional structure of a partition
matroid constraint, which occurs in the sensor placement, data
caching, and welfare maximization problems, has been shown
to enable more efficient centralized algorithms with the same
optimality properties [3], [7].

A. Clark is with the Department of Electrical and Computer En-
gineering, Worcester Polytechnic Institute, Worcester, WA 01609 USA.
aclark@wpi.edu

B. Alomair is with the National Center for Cybersecurity Technology,
King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
alomair@kacst.edu.sa

L. Bushnell and R. Poovendran are with the Department of Elec-
trical Engineering, University of Washington, Seattle, WA 98195 USA.
lb2@uw.edu, rp3@uw.edu

Centralized algorithms for submodular maximization re-
quire an entity with global knowledge of the objective function
and matroid constraint. In application domains including net-
working, sensing, and robotics, however, a set of distributed
nodes with only local information must decide whether to join
or leave the subset using minimal computation, storage, and
communication. These constraints have made development of
scalable and distributed submodular maximization algorithms
an active area of research.

In [5], a distributed greedy algorithm was proposed for
cardinality-constrained submodular maximization. This ap-
proach requires global time synchronization among the nodes,
and also requires each node to periodically broadcast to the
rest of the network. Furthermore, while the greedy algo-
rithm achieves the best optimality bound under cardinality
constraints, it does not provide optimal performance under
general matroid constraints [8]. A distributed submodular
optimization algorithm that relies on local exchanges and does
not require time synchronization or broadcast was introduced
in [10]. This approach, however, does not provide the same
optimality guarantees as centralized submodular maximization
algorithms. Currently, developing scalable distributed submod-
ular maximization algorithms that achieve these optimality
guarantees is an open problem.

In this paper, we address the problem of developing scalable
and distributed algorithms for submodular maximization that
achieve the same optimality guarantees as the best possible
centralized algorithms. In addressing this problem, we make
two contributions.

First, we propose a distributed algorithm for maximizing a
monotone submodular function subject to an arbitrary matroid
constraint. Our approach leverages the fact that optimizing
an auxiliary function, instead of the objective function itself,
improves the optimality bound [9]. We develop scalable dis-
tributed algorithms for computing the auxiliary function, and
propose an exchange-based algorithm for optimizing the auxil-
iary function. We prove that our approach achieves a (1−1/e)
optimality bound in polynomial time. We then show how our
approach can be applied to commonly occurring classes of
matroids, including uniform, partition, linear, transversal, and
graphic matroids. Our algorithms rely on local computation
and communication between the network nodes, in order to
be feasible in resource-constrained wireless networks.

As our second main contribution, we propose distributed
online algorithms for maximizing a time-varying monotone
submodular function subject to partition matroid constraints.
Under our online approach, each node uses an experts algo-

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-3-9018-8273-9/15/ ©2015 IFIP 435

rithm to learn whether to remain in the set, or leave the set
and allow a randomly chosen node to join, resulting in a time-
varying subset that changes based on the learned objective
function. We prove that this online exchange algorithm returns
a time-varying set that achieves a (1-1/e) optimality bound
compared to the best fixed set.

We demonstrate our approach in a simulation study on data
femtocaching in wireless networks. The data caching problem
is to select a set of files to store on a collection of data
caches in order to maximize the utility of a set of users.
This problem was shown to be a submodular maximization
problem with a partition matroid constraint in [6], where a
centralized greedy algorithm was proposed. Our distributed
algorithm converges to the same objective function value as
the centralized approach.

The paper is organized as follows. Section II presents related
work. Section III describes the system model and assumptions,
and gives background on matroids, submodularity, and experts
algorithms. Section IV presents distributed algorithms for
verifying independence under common classes of matroids.
Section V introduces our offline distributed algorithm for
submodular maximization with an arbitrary matroid constraint.
Section VI presents algorithms for distributed submodular
maximization under partition matroid constraints. Section VII
contains our simulation results. Section VIII concludes the
paper and discusses directions for future work.

II. RELATED WORK

Submodular optimization has been extensively studied in
the offline centralized case [3], [8], [11]. In [8], it was
shown that a greedy algorithm achieves a (1−1/e) optimality
bound for cardinality-constrained monotone submodular max-
imization and a 1/2 optimality bound for matroid-constrained
monotone submodular maximization. The optimality bound for
matroid-constrained submodular maximization was improved
to (1−1/e) in [3], where the authors introduced a centralized
continuous greedy algorithm.

A purely combinatorial approach to submodular maximiza-
tion was proposed in [9]. Subsequent works considered sub-
modular maximization under multiple matroid and knapsack
constraints, as well as maximization of non-monotone sub-
modular functions [4]. Our approach is based on exchange-
based optimization of an auxiliary function as in [9], but does
not require value oracle access to the submodular function,
which can only be achieved by a centralized entity.

A centralized online algorithm for submodular maximiza-
tion under a matroid constraint was presented in [12], under
the assumption that the algorithm has full oracle access to the
objective functions from all previous time periods, which we
do not assume.

Distributed submodular maximization was first considered
for specific applications including sensor scheduling [5] and
data caching [6]. In [5], a distributed online algorithm for sub-
modular maximization was proposed that requires each node
to periodically broadcast to all other nodes in the network,
limiting the scalability of the approach. In [10], a distributed

online submodular maximization algorithm that relies on local
exchanges instead of network-wide broadcasts was introduced.
This algorithm, however, guarantees an optimality bound of
1/2, less than the best achievable guarantee of (1 − 1/e) in
the centralized case.

III. BACKGROUND AND SYSTEM MODEL

In this section, we present our system model, and then give
background on matroids and experts algorithms.

A. System Model

We consider a set of n nodes indexed in the set V =
{1, . . . , n}. Each node is assumed to be locally time-
synchronized with its neighbors, and to have an internal
Poisson clock with unit rate (a Poisson clock is a clock that
ticks at a set of times T1, T2, . . . , where the Ti’s are a Poisson
process).

The objective function f(S) is assumed to be monotone
and submodular, and normalized so that f(S) ∈ [0, 1]. The
nodes are assumed to have a distributed algorithm to compute
f(S). Each node can join or leave the set S at any time t,
resulting in a time-varying set indexed St. In Section IV, we
describe distributed algorithms for the nodes to check whether
the matroid constraint S ∈ I holds for different classes of
matroid. The amount of local information exchange required
by each node to compute f(S) and I depends on the definition
of f(S) and I.

B. Matroids and Submodular Functions

A matroid is defined as follows.
Definition 1: A matroid M is defined by M = (V, I),

where V is a finite set and I is a set of subsets of V , satisfying
(i) ∅ ∈ I, (ii) B ∈ I and A ⊆ B implies that A ∈ I, and (iii)
A, B ∈ I and |A| < |B| implies that there exists v ∈ B \ A
such that (A ∪ {v}) ∈ I.

If a set A satisfies A ∈ I, then A is said to be independent.
We use the notation A ∈ I and A ∈ M interchangeably
to denote independence in matroid M = (V, I). A maximal
independent set is a basis. All bases of a matroid will have
the same cardinality [13]; the cardinality of a basis is denoted
as the rank of the matroid.

Lemma 1 ([13]): Let V be a finite set, and define
P1, . . . , Pm to be a partition of V . Consider a set I of subsets
of V such that A ∈ I iff |A ∩ Pr| ≤ d for all r = 1, . . . ,m
and some integer d. Then (V, I) is a matroid, and is denoted
as a partition matroid.

Other classes of matroids that can be incorporated as
constraints in our algorithm are presented in Section IV. The
following lemma is needed for our optimality proof, and will
be generalized in Section VI.

Lemma 2 ([13]): Let M = (V, I) be a matroid, and let
B1 and B2 be bases of M. Then there exists a bijection π :
B1 → B2 such that, for each b ∈ B1, (B1 − b + π(b)) ∈ I,
and π(b) = b for all b ∈ B1 ∩B2.

For any finite set V , a set function f : 2V → R is monotone
if for any A and B with A ⊆ B, f(A) ≤ f(B). The set

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

436

function f(S) is submodular if for any A and B with A ⊆ B,
and any v /∈ B,

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B).

C. Background on Experts Algorithms

The goal of an experts algorithm is to select a sequence
of actions s(1), . . . , s(T) from a fixed set of actions S =
{s1, . . . , sL}. After choosing each action s(j), the algorithm
receives a benefit u(j)(s(j)); the goal is to select actions
that maximize the total benefit

∑T
j=1 u

(j)(s(j)). The experts
algorithms will be used in Section VI for online submodular
maximization in the case where the objective function changes
over time.

An important class of experts algorithms maintain time-
varying weights for each action, which are updated at each
time step. The exponential weighted updated algorithm, pre-
sented as Algorithm 1 below, has been shown to provide both
theoretical guarantees and empirical performance [14].

Algorithm 1 Experts algorithm with exponential update.
1: procedure EXPWEIGHTEDUPDATE(A)
2: Input: Set of actions S, with L = |S|
3: //wi is weight of node i
4: Initialization: wi ← 1, pi ← 1

L for all i ∈ S
5: Choose parameters α, ζ ∈ [0, 1]
6: for Each round j do
7: Select action s(j) ∈ S from distribution p, receive

benefit u(j)(s(j))
8: for i = 1, . . . , L do
9: if s(j) = si then

10: `′i ← (u(j)(s(j)) + α)/pi
11: else
12: `′i ← α/pi
13: end if
14: wi ← wi exp (ζ`

′
i)

15: end for
16: p← (1Tw)−1w
17: end for
18: end procedure

The following theorem describes the worst-case optimality
guarantees of Algorithm 1.

Theorem 1: The sequence of actions s(1), . . . , s(T) chosen
by Algorithm 1 satisfy

E

 T∑
j=1

u(j)(s(j))

+O
(√

(L lnL)T
)

≥ max
si∈S

E

 T∑
j=1

u(j)(si)

. (1)

Theorem 1 implies that the EWU algorithm provides a better
overall utility than selecting any fixed action at each time step.

IV. TESTING MATROID INDEPENDENCE

Our distributed submodular maximization algorithm re-
quires a distributed approach to testing independence in a
matroid. In the worst case, determining whether S ∈ M for
a set S and matroid M would require each node to know the
value of S and have an independence oracle for the matroid,
which in turn would require each node to broadcast to the rest
of the network when joining or leaving S. For many common
matroids, however, more efficient distributed algorithms are
possible. Efficient distributed algorithms for common classes
of matroids are described as follows.

A. Uniform and Partition Matroids

For uniform matroids, it suffices to show that |S| = k,
which can be verified by any algorithm that computes |S|.
Furthermore, the exchange-based algorithm of Section V-C
preserves the cardinality at each iteration. For a partition
matroid, if each node v knows which partition Ai satisfies
v ∈ Ai, then the condition S − u + v ∈ M is satisfied iff u
and v belong to the same partition and can be verified by u
and v alone.

B. Linear and Transversal Matroids

In a more general linear matroid, each node v has a corre-
sponding vector rv . The set S is independent if the matrix with
columns {rv : v ∈ S} has full rank. In the exchange-based
algorithm, by inductive hypothesis S is linearly independent,
and hence S − u is linearly independent. It therefore suffices
to show that v is not in the span of S − u.

One approach to checking whether v is in the span of S−u
is by solving the least-squares problem min {||Ax− rv||2},
where A is the matrix with columns indexed in S − u.
Distributed least-squares algorithms are readily available in
the literature [15]. If the minimum value is sufficiently large,
then the vectors are evaluated to be linearly independent.

An important sub-class of linear matroids are transversal
matroids. A transversal matroid is defined by a set system
A1, . . . , Am, in which each node v belongs to one or more of
the Ai’s. A set of nodes S is independent if there is a bipartite
matching between S and the sets represented by S. A linear
representation can be constructed by each node generating a
random vector in Rm, with a nonzero i-th entry if v ∈ Ai and
a zero entry otherwise. A set of nodes S is independent if the
corresponding set of columns in the matrix is independent.

C. Graphic Matroids

A matroid is graphic if it can be represented by the
collection of forests of a graph, i.e., the set of subsets of
edges that do not contain a cycle. Independence in a graphic
matroid can be verified by each node determining if it belongs
to any cycle, which can be performed in polynomial-time. In
particular, if S is a basis, then S − {u}+ v is independent if
and only if u and v belong to the same connected component.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

437

V. OFFLINE MAXIMIZATION WITH MATROID CONSTRAINT

In this section, we give a distributed algorithm for selecting
a set S to solve the problem max {f(S) : S ∈M}, whereM
is a matroid and f(S) is a monotone submodular function.
We let k denote the rank of M. We first define an auxiliary
objective function that will be used in the optimization algo-
rithm. We then provide a distributed algorithm for computing
the auxiliary function followed by our proposed submodular
maximization algorithm. Finally, we analyze the runtime and
worst-case optimality bound of our approach.

A. Definition of Auxiliary Function

The auxiliary function g(S) that we employ is the potential
function of [9]. The main idea of the auxiliary function is
to choose a probability p from a given distribution, and then
define a set A that samples each element of S independently
with probability p. Intuitively, a set S will have a high value
of g(S) if it is “robust”, i.e., if it has a high value of f(·) even
when some elements of S are removed.

Formally, g(S) is defined as follows. Let p ∈ [0, 1] be
chosen with probability density function ν(x) = ex

e−1 . The
function g(S) is equal to the expected value of f(A), where A
is generated by sampling each element from S with probability
p. To arrive at a closed-form expression for g(S), define
coefficients ma,b by

ma,b = E(pb(1− p)a−b) =
∫ 1

0

ep

e− 1
pb(1− p)a−b dp.

The function g(S) is then equal to

g(S) =
∑
A⊆S

m|S|−1,|A|−1f(A). (2)

B. Computation of Auxiliary Function

A centralized algorithm for computing g(S) was proposed
in [9]. A distributed algorithm based directly on [9], however,
would require all nodes to agree on a value of p at each
iteration. While agreement on p could be provided through
broadcast or gossip algorithms, this would increase the com-
munication overhead of the algorithm. We present an alterna-
tive, distributed approach to computing g(S). The approach
requires each node to store the coefficients {mk,b : b =
0, . . . , k}, where k is the rank of the matroid. Since changes
to the set S occur on a longer timescale than computation of
g(S) (through selection of the parameter γ in Section V-C),
in what follows we make the simplifying assumption that S
is constant during estimation of g(S).

The distributed algorithm maintains a time-varying set A ⊆
S. At each tick of its Poisson clock, node v ∈ S checks
whether v ∈ A. If v ∈ A, then v leaves the set A with
probability 1/2, and remains in A otherwise. If v /∈ A, then v
joins A with probability 1/2, and remains in S \A otherwise.

In order to analyze the time required to estimate g(S), we
develop a discrete-time Markov chain model of the set A, in
which the discrete time steps occur each time a node’s Poisson
clock ticks. The states of the Markov chain, denoted X[m],

are in the set {0, 1}|S|. Letting v denote the index of the node
whose clock ticks at time m, the v-th bit of X[m] is flipped
with probability 1/2 and remains the same with probability
1/2. Note that |S| ≤ k, where k is the rank of the matroid,
since the set S is assumed to be independent. The following
lemma describes the characteristics of this Markov chain.

Lemma 3: The Markov chain X[m] defined above has a
stationary distribution in which all states in {0, 1}|S| have
equal weight. This distribution is reached within O(k log k)
ticks. The probability that X[m] and X[m+M] are statistically
independent, denoted ρM , is bounded by ρM ≥ 1− k−

M
k log k .

Proof: Transitions can occur between states x and y with
x 6= y when the Hamming distance between x and y is equal
to 1. Suppose xi = 1 and yi = 0. Then a transition from x to
y occurs if i’s Poisson clock ticks and i leaves the set A, while
a transition from y to x occurs if i’s Poisson clock ticks and
i joins the set A. Since both events have probability 1

2k , the
detailed balance equations hold and the stationary distribution
assigns equal weight to all states.

In order to bound the mixing time of the Markov chain, we
use the coupling method, with one walk X ′[m] starting from
an arbitrary distribution and one walk X ′′[m] starting from
the stationary distribution. The mixing time is bounded above
by the time until X ′[m] = X ′′[m]. We will have X ′[m] =
X ′′[m], in the worst case, after all of the nodes in S have had
Poisson clock ticks. This is equivalent to the classical coupon
collector’s problem with |S| coupons, which has expected time
of |S| log |S|. Since S ∈M and k is the rank of M, |S| ≤ k
and hence the expected time is bounded by k log k.

To prove the second part of the lemma, we observe that
for each i ∈ S, Xi[m] and Xi[m +M] will be statistically
independent if node i’s clock ticks during the interval {m,m+
1, . . . ,m +M}, and will be equal otherwise. Hence, X[m]
and X[m+M] will be statistically independent if and only if
all k nodes have had Poisson clock ticks during the M total
ticks of that interval. Since each node is equally likely to have
a clock tick at each time step m′ ∈ {m, . . . ,m + M}, the
probability of this event is equal to the probability that, in the
coupon collector problem, all coupons are collected within M
samples. This is bounded below by

(
1− k−

M
k log k

)
.

The procedure for approximating g(S) is as follows. The
set A varies over time as described above. The nodes use
the distributed algorithm for computing f(·) to evaluate f(A),
and compute |A| using a gossip algorithm, which can run in
O(n log n) time to update |A|. After every M clock ticks,
each node in V (including nodes not in S) records the current
value of f(A) and the value of |A|, creating a set of samples
f(A1), . . . , f(AN). After N time samples have been recorded,
after a total of MN clock ticks, node v computes g̃(S) =
1
N

∑N
i=1mk,|Ai|f(Ai).

Theorem 2: Let ε > 0, δ > 0. Define N by

N =
1

2

(
e

e− 1

Hk

ε

)
log

1

δ
,

where Hk is the k-th harmonic number, and define M as M =
k log k log N

ε . Then Pr(|g̃(S)− g(S)| > ε) < δ.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

438

Proof: From [9], N independent samples are needed to
ensure that Pr(|g̃(S) − g(S)| > ε) < δ. Hence, M must be
selected to ensure that N independent samples are generated
with sufficiently high probability. Let Ei denote the event
that the i-th sample is independent of the remaining (N − 1)
samples. Then we have

Pr(E1 ∩ · · · ∩ EN) = 1− Pr(Ec1 ∪ · · · ∪ EcN)

≥ 1−NPr(Ec1) (3)

≥ 1−Nk−
M

k log k (4)

where (3) is a union bound and (4) follows from Lemma 3.
Substituting the value of M yields the desired result.

Theorem 2 implies that the procedure for estimating g(S)
can be performed in a distributed manner in O(M) samples.

C. Description of Algorithm

Our proposed algorithm is described as follows. After every
γM ticks of its Poisson clock, where M is defined as in
Theorem 2 and γ > 1, each node u takes action depending
on whether u ∈ St. If u ∈ St, then u selects a random
node v /∈ St. If (St − u + v) ∈ I, then node u waits
for M clock ticks for g̃(St − u + v) to be computed. If
g̃(St − u + v) > (1 + ε)g̃(St) for a fixed parameter ε > 0,
then the set St is updated to (St − u+ v). Otherwise, node v
leaves St and the set is unchanged. The algorithm terminates
at node u after a fixed number of iterations L have occurred
with (1 + ε)g̃(St) ≥ g̃(St − u+ v) at each iteration.

If node u /∈ St, then node u selects a random node v ∈ St
and verifies that (St − v + u) ∈ I. If so, then nodes u and v
wait for g̃(St−v+u) to be computed, and determine whether
g̃(St−v+u) > (1+ε)g̃(St). The set St is updated to St−v+u
if g̃(St − v + u) > (1 + ε)g̃(St) and is unchanged otherwise.

This algorithm is an exchanged-based approach, in which
random nodes in St are periodically swapped with random
nodes in V \ St. The algorithm terminates at each node
if a sufficient number of iterations have elapsed with the
membership of St unchanged, which occurs when the g̃
reaches a local minimum. The optimality bounds and runtime
of this approach are analyzed in the following section.

D. Optimality and Runtime Analysis

The worst-case optimality bounds of our approach are
characterized in the following theorem.

Theorem 3: Upon termination, the set St returned by the
algorithm of Section V-C satisfies f(St) ≥ (1 − 1/e)f(S∗),
where S∗ = argmax {f(S) : S ∈ I}, with probability 1 −(
k−1
k

)L (n−k−1
n−k

)L
.

Proof: We first show that, with probability 1 −(
k−1
k

)L (n−k−1
n−k

)L
, the set St returned by the algorithm

satisfies g(St) > (1 + ε)g(St − u + v) for all u ∈ S and
v ∈ V \S with (St−u+v) ∈ I. Suppose such nodes u and v
exist and are not found by the algorithm. Since the algorithm
terminates at nodes u and v after L iterations in which St is
unchanged, this event occurs if and only if L iterations pass

in which u does not select v for a swap and vice versa. The

probability that this event occurs is
(
k−1
k

)L (n−k−1
n−k

)L
.

Based on the above discussion, with probability 1 −(
k−1
k

)L (n−k−1
n−k

)L
, the set S returned by the algorithm satis-

fies g(S) > (1− ε)g(S − u+ v) for all u ∈ S and v ∈ V \S.
Hence by [9], the set S satisfies f(S) > (1− 1/e) f(S∗).

The following theorem characterizes the complexity of our
approach.

Theorem 4: Let g∗ = max {g(S) : S ∈ I} and g0 = g(S0).

Then the algorithm terminates after O
(
nL

log g∗

g0

log (1+ε)

)
itera-

tions, where L is the number of iterations with (1+ε)g̃(St) ≥

g̃(St − u+ v), for total runtime of O
(
γMnL

log g∗

g0

log (1+ε)

)
.

Proof: At each iteration, the set St changes if and only
if the function g̃ improves by a factor of (1 + ε). Hence the
maximum number of iterations is equal to r satisfying g(S∗) =

(1 + ε)rg(S0), which is equal to
log g∗

g0

log (1+ε) . In the worst case,
each node executes L random exchanges before finding a node
that improves g̃, and hence the overall worst-case number of

iterations is nL
log g∗

g0

log (1+ε) . Since each iteration takes γM clock

ticks, the total run time is O
(
γMnL

log g∗

g0

log (1+ε)

)
.

We note that the algorithm complexity is a function of g
∗

g0 . In
order to obtain a bound that is independent of g, a distributed
algorithm (e.g., the exchange-based approach of [10]) can be
used as a first stage to obtain a set S0 such that g0 is within
a provable O(1) bound of g∗ (e.g., a factor of 1/2 in [10]).
An analogous approach is taken in the centralized algorithm
of [9], where the greedy algorithm is used as a first stage to
obtain a (1− 1/e) gap between g∗ and g0.

VI. ONLINE MAXIMIZATION WITH PARTITION MATROID
CONSTRAINT

We now study the problem of selecting a time-varying set
St to solve the problem

maximize
∫ T
0
ft(St) dt

s.t. St ∈M ∀t ∈ [0, T]

where {ft : t ∈ [0, T]} is a collection of monotone submodular
functions and M is a partition matroid. We first describe the
algorithm, and then analyze its optimality guarantees.

A. Description of Algorithm

Under our approach, each node maintains a separate imple-
mentation of an experts algorithm with two actions, denoted
s0 and s1. After γM ticks of its Poisson clock, where γM is
chosen as in Section V-C, each node v first checks whether it
is in the set St. If v ∈ St, then v does not take further action.
If v /∈ St, then v sends an exchange request to a randomly
selected node u ∈ St.

The node u first checks whether St−u+v is independent in
the matroid. If St−u+ v is independent, then node u queries
its experts algorithm implementation. If the output is s0, then

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

439

no action is taken and St is unchanged. If the output is s1,
then St is updated to St − u+ v. After the decision is made,
node u updates the weight according to Algorithm 1 using the
benefit

∫ T ′u
Tu

gt(St) dt, where Tu is the current time and T ′u is
the next time at which u receives a request.

Intuitively, the algorithm makes exchanges between nodes
not in the set St and randomly chosen nodes in the set St. If the
auxiliary objective function gt is increased by the exchange,
then the node that exited the set St will be more likely to
leave the set St in the future. The independence check enforces
the condition that the set is feasible (i.e., obeys the matroid
constraint) at each iteration.

Algorithm 2 Procedure followed by each node v for dis-
tributed online submodular maximization with partition ma-
troid constraint.

1: procedure MATROIDOPT
2: for Each clock tick at time Tv do
3: if v /∈ St then
4: Send join request to a random node u ∈ St
5: end if
6: end for
7: if v ∈ St and receive join request from u /∈ St at time
Tv then

8: if (St − v + u) ∈M then
9: Query experts algorithm

10: if Experts algorithm returns s1 then
11: St ← (St − v + u)
12: end if
13: Feed back

∫ T ′v
Tv

gt(St) dt to experts
14: end if
15: end if
16: end procedure

B. Optimality Analysis

We now analyze the optimality guarantees provided by our
approach. As a preliminary step, we give a version of Lemma
2 for a time-varying basis of a partition matroid.

Lemma 4: Let M be a partition matroid, and let {St : t ∈
[0, T]} be a collection of bases ofM. Suppose that there exist
a set of times T1, . . . , Tl such that STm

= STm+ − u+ v for
some u and v, and St = St′ for t, t′ ∈ [Tm−1, Tm]. Let B
be a basis of M. Then there exists a family of bijections
{πt : St → B} such that, if St′ = St − u+ v for some u and
v, then πt(u) = πt′(v), and St − u+ πt(u) ∈ I for all t and
u ∈ St.

Proof: LetM be a partition matroid, and let B be a basis.
Define Bi = B ∩ Pi, where Pi is one of the partitions of the
ground set V , so that |Bi| = r for some integer r. Index the
elements of Bi as Bi,1, . . . , Bi,r.

Now, let St be another basis, and define Sti = St ∩Pi. Sti
and Bi have the same cardinality, and any two elements of
Sti and Bi can be exchanged while preserving independence
in M. Hence, let S0,i = {s0,i,1, . . . , s0,i,r} be any arbitrary
indexing of the elements in S0, and define π0(s0,i,j) = bi,j .

To construct πt, suppose that STm
= STm+ − u+ v. Since

STm and STm+ are both bases, u and v must belong to the
same partition. Hence we define πTm+(u) = πTm(v), creating
a partition that satisfies the conditions of the lemma.

Now, define set B by

B = argmax

{
1

T

∫ T

0

gt(C) dt : C ∈M

}
.

By Lemma 4, for each t, there is a bijection πt : St → B
such that, for each a ∈ St, (St − a + πt(a)) is independent.
From these definitions, we state a local optimality result.

Lemma 5: For each b ∈ B,

1

T

∫ T

0

gt(St) dt ≥
1

T

∫ T

0

gt(St − π−1t (b) + b) dt−O
(

1√
T

)
.

(5)
Proof: Suppose that all nodes v 6= b follow the algorithm

of Section VI-A. For these nodes, both the payoffs and inde-
pendence algorithm are the same as if all nodes (including b)
followed the algorithm of Section VI-A. Instead of following
the algorithm, node b always chooses s0.

After some time Tb with finite expectation, node b will join
St. Now, suppose that at time t > Tb, node v 6= b sends
a join request. Node v selects a random index in {1, . . . , k}
and sends a message to the node in St with this index. If the
chosen node is not equal to b, then the remaining nodes follow
the distributed algorithm, and hence St = Ŝt + b− π−1t (b).

If the join request is sent to b, then node b always chooses
s0, and hence the request of node v is refused and St is
unchanged. Hence, any node that would have occupied index
π−1t (b) is excluded from St.

By the preceding discussion, the payoff to node b from
choosing the fixed action s0 is

1

T

∫ T

0

gt(St − π−1t (b) + b) dt,

while the payoff from following the experts algorithm is
1
T

∫ T
0
gt(St) dt. Hence Theorem 1 implies that (5) holds.

Lemma 5 implies that, if each node follows the algorithm of
Section VI-A, then the value of the auxiliary function gt(St)
is greater than if any fixed node b ∈ B is added and the
corresponding node π−1t (b) removed. We now leverage this
local optimality to prove a global optimality result for our
approach.

Lemma 6: Let πt : St → B be the bijection guaranteed by
Lemma 4. Then

e

e− 1

1

T

∫ T

0

ft(St) dt+O

(
k√
T

)
≥ 1

T

∫ T

0

ft(B) dt

+
1

T

∫ T

0

∑
b∈B

(
gt(St)− gt(St − π−1t (b) + b)

)
. (6)

Proof: In [9], it was proved that
e

e− 1
f(S) ≥ f(B) +

∑
b∈B

[
g(A)− g(A− π−1(b) + b)

]

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

440

where f is a submodular function, g is the corresponding
auxiliary function, and B = argmax {f(S) : S ∈M}. In-
tegrating over t ∈ [0, T] and normalizing by T yields (6).

Combining Lemmas 5 and 6 gives the following.
Theorem 5: Let St be the time-varying set chosen when all

nodes follow the algorithm of Section VI-A. Then

1

T

∫ T

0

ft(St) dt ≥ (1− 1/e)
1

T

∫ T

0

ft(B) dt−O
(

k√
T

)
.

Proof: By Lemma 6, we have that

e

e− 1

1

T

∫ T

0

ft(St) dt ≥
1

T

∫ T

0

ft(B) dt

+
1

T

∫ T

0

∑
b∈B

[
gt(St)− gt(St − π−1t (b) + b

]
.

Substituting Lemma 5 implies that

1

T

∫ T

0

ft(St) dt

≥ (1− 1/e)
1

T

∫ T

0

ft(B) dt− (1− 1/e)kO

(
1√
T

)
.

C. Trading Off Complexity and Optimality

The complexity of the algorithm can be reduced by using
ft(St) to compute the benefit for the experts algorithm, in-
stead of the auxiliary function gt(St), since computing gt(St)
requires M evaluations of ft(St). Under this approach, lines
11 and 17 of Algorithm 2 are replaced with

∫ T ′v
Tv

ft(St) dt.
The following lemma describes the local optimality.

Lemma 7: For the simplified distributed optimization algo-
rithm, the set St that is returned satisfies

1

T

∫ T

0

ft(St) dt ≥
1

T

∫ T

0

ft(St − π−1t (b) + b) dt−O
(

1√
T

)
for each b ∈ B, where πt : St → B is the bijection guaranteed
by Lemma 4.

The proof is analogous to the proof of Lemma 5 and
is omitted. The following lemma then describes the global
optimality of the simplified algorithm.

Theorem 6: For the simplified distributed optimization al-
gorithm, the set St that is returned satisfies

1

T

∫ T

0

ft(St) dt ≥
1

2T

∫ T

0

ft(B) dt−O
(

k√
T

)
(7)

The proof is omitted due to space constraints.

VII. SIMULATION STUDY

In this section, we give the results of our simulation
study. We first describe the application, and then present the
simulation results.

A. Simulation Setup

We consider the distributed data caching application in [6].
A set of files F = {f1, . . . , fM} are accessed by a group
of users in a wireless network. The data are stored on a
set of distributed caches C = {c1, . . . , ck}; due to storage
constraints, however, only h files can be kept in each cache.
The set that must be selected is defined by the set of data to
be stored on each cache.

In [6], the problem is mapped to submodular maximization
with a matroid constraint. The ground set V = {αij : i =
1, . . . ,M, j = 1, . . . , k}, where αij ∈ S implies that cache j
stores file i. Each cache’s storage constraint is mapped to a
partition matroid, i.e., |{αij : j = j′}| ≤ h for all j′. LetM =
(V, I) denote this matroid. We have that St−αij+αi′j′ ∈ I iff
j = j′. Hence the only feasible exchanges consist of removing
one file and adding a different file to the same node, and
matroid independence can be verified efficiently.

The time for a user to access the file is equal to the number
of hops between the user and the nearest cache holding the file.
Hence, the objective function is determined by the probability
that a user can access a desired file from a cache within the
user’s local neighborhood. Let Cm denote the set of caches
that are within radio range of user m, and let Fm = {αi :
αij ∈ S for some j ∈ Cm }. Formally, the objective function
f(S) is defined by f(S) =

∑k
m=1

∑
αi∈Fm

Pi where Pi is
the utility of accessing file αi. This function was shown to be
submodular in [6]. The objective function can be computed
by each cache storing the set of users that connect to it.

For the simulation study, we considered a network with 20
users, k = 3 caches, W = 10 files, and the number of files per
cache varied from h = 1 to h = 8. The users and caches were
placed uniformly at random, within a deployment area chosen
such that each user could connect to on average 2 caches. We
compared the centralized greedy algorithm, proposed in [6],
with the distributed exchange-based submodular maximization
algorithm presented in Section V-C.

B. Simulation Results

We first investigated the rate of convergence, as well as the
final objective function value, for the distributed algorithm and
compared with the centralized approach (Figure 1(a)) when
k = 3. We found that after 100 iterations, the distributed
algorithm had reached within 0.05 of the centralized approach.
The objective function value oscillated within a neighborhood
of the centralized value; the oscillation was due to variations
in the potential function g(S), which led to elements with
similar potential function values being exchanged repeatedly.
We observed a similar convergence behavior as the number of
files per cache increased. These oscillations could be reduced
by increasing the number of random samples used to compute
the potential function, but at the cost of additional complexity.

We compared the final objective function achieved by the
centralized and distributed algorithms for different cache sizes
(Figure 1(b)). For small cache sizes, the distributed approach
provides the same objective function value, while there is a
gap of less than 5% when as the cache size grows larger. This

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

441

0 100 200 300 400 500 600
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Number of iterations

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

Comparison of distributed and centralized algorithms

Centralized greedy

Distributed exchange

1 2 3 4 5 6 7 8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Storage of each cache

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

Impact of increasing cardinality

Distributed exchange

Centralized greedy

(a) (b)

Fig. 1. Simulation study of distributed submodular maximization in a data caching application, in a network with 20 users, k = 3 caches, M = 10 files, and
a varying number of files per cache. The study compares the centralized greedy algorithm with our distributed exchange-based approach. (a) Convergence of
distributed algorithm to centralized value. The exchange-based algorithm oscillated in a neighborhood of the centralized value, due to the inherent randomness
in computing the potential function g(S). (b) Comparison of distributed and centralized algorithms as the number of files per cache, and hence the cardinality
of S, increases. The distributed approach remains close to the utility achieved by the centralized algorithm as the number of files increases.

gap was reduced by reducing the value of ε in the algorithm
of Section V-C, at the cost of additional iterations.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied distributed submodular maxi-
mization subject to matroid constraints, in which each node
decides whether to join a time-varying optimized set in order
to maximize a submodular objective function. We made two
main contributions toward the problem studied. Our first con-
tribution is an offline distributed algorithm for maximizing a
fixed submodular objective function with an arbitrary matroid
constraint. Under our proposed algorithm, a node in the set
is exchanged with a node not in the set, and the impact
on an auxiliary function is computed by the network nodes.
The auxiliary function of a set is obtained by computing
the objective function at random subsets of the sets, which
determines whether the objective function is robust to nodes
being removed from the set. We show that this auxiliary
function can be computed efficiently, and that the distributed
exchange-based algorithm leads to a (1 − 1/e) optimality
bound, which is equal to the best achievable optimality bound.

We then considered online submodular maximization, in
which the objective function varies over time, under partition
matroid constraints. Partition matroids are a widely-studied
class of matroids that generalize cardinality constraints [13]
and the submodular welfare problem [7], and have direct
applications including data cache placement [6]. In our online
algorithm, each node in the time-varying set estimates the
value of being replaced by a randomly chosen node using an
experts algorithm. We proved that the online algorithm satisfies
a local optimality condition, namely, that the time-varying set
chosen by the algorithm provides a larger objective function
value than a set in which any fixed node is included at each
time step. Based on the local optimality result, we then showed
that the online algorithm achieves a (1−1/e) optimality bound
compared to the best possible fixed set, in the limit as the
number of time steps goes to infinity.

An important direction of our future research is to generalize
the distributed online algorithm from partition matroids to ar-

bitrary matroids. We also plan to research and develop scalable
and distributed algorithms for submodular maximization with
knapsack or multiple matroid constraints.

REFERENCES

[1] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” arXiv preprint arXiv:1207.6083, 2012.

[2] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 137–146, 2003.

[3] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak, “Maximizing a
submodular set function subject to a matroid constraint,” SIAM Journal
on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[4] J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko, “Maximizing non-
monotone submodular functions under matroid or knapsack constraints,”
SIAM Journal on Discrete Mathematics, vol. 23, no. 4, pp. 2053–2078,
2010.

[5] D. Golovin, M. Faulkner, and A. Krause, “Online distributed sensor
selection,” Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, pp. 220–231, 2010.

[6] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” Proceedings of IEEE Infocom, pp. 1107–
1115, 2012.

[7] J. Vondrák, “Optimal approximation for the submodular welfare problem
in the value oracle model,” Proceedings of the fortieth annual ACM
symposium on Theory of computing, pp. 67–74, 2008.

[8] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of ap-
proximations for maximizing submodular set functions–II,” Polyhedral
combinatorics, pp. 73–87, 1978.

[9] Y. Filmus and J. Ward, “Monotone submodular maximization over a
matroid via non-oblivious local search,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 514–542, 2014.

[10] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Distributed
online submodular maximization in resource-constrained networks,”
12th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt), pp. 397–404, 2014.

[11] H. Narayanan, Submodular Functions and Electrical Networks. Else-
vier, 1997, vol. 54.

[12] D. Golovin, A. Krause, and M. Streeter, “Online submodular maximiza-
tion under a matroid constraint with application to learning assignments,”
arXiv preprint arXiv:1407.1082, 2014.

[13] J. Oxley, Matroid Theory. Oxford University Press, 1992.
[14] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.

Cambridge University Press, 2006.
[15] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for peer-

to-peer least-squares estimation,” Proceedings of the 5th international
conference on Information processing in sensor networks, pp. 168–176,
2006.

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

442

