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Abstract— We consider distributed optimization over orthogo-
nal collision channels in spatial multi-channel ALOHA networks.
Users are spatially distributed and each user is in the interference
range of a few other users. Each user is allowed to transmit over a
subset of the shared channels with a certain attempt probability.
We study both the non-cooperative and cooperative settings. In
the former, the goal of each user is to maximize its own rate
irrespective of the utilities of other users. In the latter, the goal
is to achieve proportionally fair rates among users. We develop
simple distributed learning algorithms to solve these problems.
The efficiencies of the proposed algorithms are demonstrated via
both theoretical analysis and simulation results.

I. INTRODUCTION

The spectrum scarcity along with the increasing demand
for wireless communication have triggered the development
of efficient spectrum access schemes for wireless networks.
In this paper we focus on Medium Access Control (MAC)
schemes in multi-channel wireless networks, in which users
transmit over orthogonal channels using Orthogonal Frequency
Division Multiple Access (OFDMA).

Consider a spatial wireless network with N users sharing
K collision channels. Each user is in the interference range
of a few (but not necessarily all) other users, referred to as
neighbors (e.g., when the distance between users is small
they cause mutual interference). In the beginning of each
time slot, each user is allowed to transmit over M channels
(1 ≤M ≤ K) with a certain attempt probability (i.e., using the
slotted-ALOHA protocol). If two or more neighbors transmit
simultaneously over the same channel, a collision occurs. In
multi-channel systems, exploiting the channel diversity plays
an important role in designing effective channel allocation
protocols. The channel conditions are a function of both the
inherent quality of each channel due to fading, shadowing,
etc., as well as the interference caused by the users that
use the channel. Thus, it is intuitive that users can improve
performance by adaptively choosing channels with a higher
probability of being idle as well as higher capacity when idle.
We are interested in finding a channel allocation and attempt
probabilities in a distributed manner so as to optimize certain
objectives in the network.

A. Main Results

Spectrum access protocols can be broadly classified into two
classes: (i) protocols in which users do not share information
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with each other, due to security or overhead considerations,
and (ii) protocols in which information is shared to achieve a
common goal, such as in networks which are controlled by a
single provider. Achieving an effective channel allocation for
the spectrum access problem in a distributed manner requires
users to adaptively adjust their actions (i.e., select channels
and attempt probabilities) based on local information about
the current state of the system. Thus, the first question of
interest is whether the system keeps oscillating due to frequent
channel switching, or whether the system converges to a stable
operating point. When users do not share information, a stable
channel allocation may not be a system-wide optimal solution
(though it reduces the undesirable effects of frequent channel
switching and also demonstrated good performance in some
network models and typical scenarios, as in [1]–[3]). Thus,
the second question of interest is whether small amounts of
information sharing can lead to a globally-optimal operating
point.

We first examine the case where users do not share informa-
tion with each other. The achievable rate of each user increases
with its own attempt probability, when other attempt proba-
bilities are fixed. Thus, a natural approach to achieve a good
operating point is to allow every user to maximize its own rate
under a constraint on the allowed attempt probability1 (where
different attempt probability constraints are used to prioritize
different users in the network), referred to as distributed rate
maximization. Previous work [3] has studied the distributed
rate maximization problem in a fully connected network (i.e.,
all users are in the same interference range) and M = 1 (i.e.,
every user is allowed to transmit over a single channel). It was
shown in [3] that any improvement path (not necessarily best-
response) across users, in which at each iteration the rate of
a user increases when it updates its channel-selection strategy
given the current system state, reaches an equilibrium in the
sense that no user can increase its rate by unilaterally changing
its strategy. In this paper, however, we consider a more general
case where each user interferes only with its neighbors, and
M ≥ 1. Interestingly, we show that cycles may occur under
some improvement paths in this general model. To solve this
problem, we use the theory of best-response (BR) potential
games, introduced by Voorneveld in 2000 [7]. In BR potential

1Similar approaches were applied in [3]–[5] for fully-connected ALOHA
networks, all resulting with an individual rate and attempt probability for every
user. Another example is the rate-adaptive problem in OFDM systems, where
every user maximizes its own rate under an individual power constraint [1],
[6].
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games, cycles may occur under some improvement paths,
though no cycles occur under a BR dynamics. We prove that
the system dynamics can be formulated as a BR potential game
and propose a distributed BR learning algorithm that solves
the distributed rate maximization problem and converges to
an equilibrium in finite time.

Second, we focus on a cooperative setting, in which the
goal is to achieve the optimal channel allocation and attempt
probabilities that attain proportionally fair rates in the network.
A number of studies exist in the literature addressing the
proportional fairness problem over collision channels under
various spatial ALOHA models, all assuming the single-
channel case, i.e., K = 1 (see Section I-B for a discussion
on related work). When K = 1, users have no freedom
to choose among different channels, and the action of each
user degenerates to setting the optimal attempt probability for
transmission over the single channel. In this paper, however,
we address this question for multi-channel networks (i.e.,
K ≥ 1) where every user is allowed to choose a single channel
for transmission (i.e., M = 1) among the K channels and to
set the optimal attempt probability for transmission over the
channel2. Direct computation of the optimal channel allocation
and attempt probabilities that attain proportionally fair rates
for the multi-channel ALOHA network considered in this
paper is a combinatorial optimization problem over a graph
which is mathematically intractable. Furthermore, it requires
a centralized solution that uses global information which is
impractical in large-scale networks. Therefore, we develop a
novel cooperative distributed algorithm based on noisy BR
dynamics to solve these problems. Specifically, using message
exchanges between neighbors only, users take actions with
respect to a cooperative utility that balances between their own
utilities and the interference level they cause to their neighbors.
In noisy BR dynamics, users play the BR that maximizes their
cooperative utilities with high probability, while suboptimal
responses are taken with small probabilities to escape local
maxima. We prove that the proposed cooperative algorithm
converges to the global proportional fairness solution with high
probability as time increases. Furthermore, we show that every
Nash equilibrium attained by the algorithm can be reached in
a finite time by playing BR and it is a good operating point
in the sense that proportionally fair rates are attained locally
among all users sharing the same channel.

B. Related Work

Since distributed algorithms are generally preferred over
centralized solutions in large-scale systems, game theoretic
models have been widely used to analyze system dynamics
in wireless networks. Related work on networking games can
be found in [3]–[5], [8]–[23]. Non-cooperative Random access
games were studied in [3]–[5], [8], [16], [20]. Cooperative
game theoretic optimization has been studied under frequency
flat interference channels in the SISO [12], [14], MISO
[17], [18] and MIMO cases [15]. The frequency selective

2Accessing a single-channels is often assumed due to hardware constraints
or when it is desired to limit the congestion level over the channels in high-
loaded systems. It has been widely assumed in cognitive radio applications,
WiFi, sensor networks, etc. It should be noted, however, that developing a
tractable optimal solution for the proportional fairness problem under the case
where users are allowed to access two or more channels at a time remains an
open question.

interference channels case has been studied in [10], [19].
The collision channels case has been studied under a fully-
connected network and without information sharing between
users in [23], where the global optimum was attained under the
asymptotic regime (i.e., as the number of users N approaches
infinity) and the i.i.d assumption on the channel quality. In
this paper, however, we study distributed optimization of the
user rates under the cooperative setting for spatial networks
where information sharing between neighbors is allowed. We
show that proportionally fair rates are attained for any number
N ≥ 1 of users without any assumption on the network
topology or channel distribution.

ALOHA-based protocols have been widely used in wireless
communication primarily because of their ease of implemen-
tation and their random nature. Related work on ALOHA-
based protocols can be found in [3]–[5], [8], [23]–[28] for fully
connected networks and in [29]–[33] for spatial networks. Sta-
bility of multi-channel ALOHA systems was studied in [24],
[25]. In [31], [32], spatial single-channel ALOHA networks
have been studied under interference channels using stochastic
geometry. Opportunistic ALOHA schemes that use cross layer
MAC/PHY techniques, in which the design of Medium Access
Control (MAC) is integrated with physical layer channel
information to improve the spectral efficiency, have been
studied under both the single-channel [4], [27], [32] and multi-
channel [3], [23], [27], [28] cases. A cross-layer MAC/PHY
methodology is used in this paper to design efficient distributed
algorithms for the problems under study. Achieving propor-
tionally fair rates in spatial ALOHA networks has been studied
in [29], [30], [33] under the case of a single collision channel.
In this paper we examine a variation of the model considered
in [29] under multiple collision channels. It should be noted
that achieving proportional fairness under the single-channel
case requires information sharing between neighbors. Thus,
the implementation complexity of the distributed algorithm
developed in this paper for the multi-channel case in terms
of the required information sharing does not go significantly
beyond existing solutions developed for the single-channel
case.

II. NETWORK MODEL

We consider a wireless network containing sets N =
{1, 2, ..., N} of users and K = {1, 2, ...,K} of shared channels
(where typically N > K). We focus on a spatial wireless
network, where each user is in the interference range of a few
(but not necessarily all) other users. We assume symmetric
interference ranges for all users in the sense that user n is
in user r’s interference range only if user r is in user n’s
interference range for all n, r ∈ N . We refer to users in the
same interference range as neighbors, and define In ⊆ (N \n)
as the set of user n’s neighbors. We assume that users are
backlogged, i.e., all N users always have packets to transmit.
In the beginning of each time slot, each user (say n) is allowed
to transmit over M channels (1 ≤ M ≤ K) with a certain
attempt probability (i.e., using the slotted-ALOHA protocol).
Let KM be the set of all M -element subsets of K (i.e., KM

is the set of all channel-selection strategies that a user can
choose). Let σn = (kn, pn) be the strategy of user n, where

kn = {kn,i}
M
i=1 ∈ KM denotes the set of chosen channels

and 0 ≤ pn ≤ 1 denotes the attempt probability of user n.
Thus, when user n decides to transmit (which occurs with
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probability pn) it uses all the channels in kn for transmission.
We define σ as the strategy profile for all users, and σ−n as
the strategy profile for all users except user n.

The topology of the interference model can be represented
by an undirected graph G = (N , E), where the set of
users are represented by the vertices and the interference
relationships between users are represented by the set of edges
E. An edge (n, r) ∈ E means that users n and r are in
the same interference range. The set of user n’s neighbors
In is represented by vertices directly connected to vertex n
excluding vertex n itself. An illustration is given in Fig. 1 in
Section V.

We consider transmissions over orthogonal collision chan-
nels. Thus, transmission by user n over channel kn,i is
successful only if no user r ∈ In transmits over channel kn,i
in the same time-slot. However, if user n and at least one
more user in In transmit simultaneously over channel kn,i in
the same time slot, a collision occurs. The achievable rate of
user n over channel k given that a transmission is successful,
referred to as collision-free utility, is denoted by un(k) ≥ 0.
We consider long-term rates where un(k) remain fixed across
time slots during the running-time of the algorithms (e.g.,
mean-rate, or slow-fading effect).

Define the success probability of user n on channel k given
the strategy profile of other users, as follows:

vn(k, σ−n) ,
∏

i∈In

(1− pi)
1i(k) , (1)

where 1i(k) = 1 if k ∈ ki or 1i(k) = 0 otherwise. Hence,
the expected rate of user n over channel kn,i is given by:

rn (kn,i, pn, σ−n) = pnun(kn,i)vn(kn,i, σ−n) . (2)

Note that the log-rate of user n over channel kn,i is given by

log rn (kn,i, pn, σ−n) = log (un(kn,i)pn)− In(kn,i, σ−n),
(3)

where In(k, σ−n) is referred to as the log-interference function
and is given by:

In(k, σ−n) , − log vn(k, σ−n) =
∑

i∈In

log

(

1

1− pi

)

1i(k) .

(4)
Note that In(k, σ−n) can be viewed as the log-interference that
user n experiences over channel k caused by its neighbors that
transmit over the same channel. Finally, the expected rate of
user n is given by:

Rn (σ) ,
M
∑

i=1

rn (kn,i, pn, σ−n) . (5)

Throughout the paper, we will develop distributed algo-
rithms to optimize certain objectives in the network. Achieving
the desired operating points requires that the algorithms are
implemented in a sequential manner, in which only a subset
of the users can update their strategies at each iteration as
described below. For simplicity, it is assumed that users hold
a global clock and may update their strategies only at times
t1, t2, ..., referred to as updating times. At each updating
time, every user draws a backoff time from a continuous
uniform distribution over the range [0, B] for some B > 0.
A user whose backoff time expires broadcasts a pilot signal

to its neighbors, indicating that its strategy has been updated
(or even starts transmitting its data and neighbors can sense
activity). Then, all its neighbors keep their strategies fixed
until the next updating time. At each updating time, we refer
to users that update their strategies as active users. The set
of active users is denoted by Na (which is time-varying
across updating times). In Tables I, II (Step 3) we refer to
this mechanism as a selection of active users. It should be
noted, however, that convergence of the algorithm discussed
in Section III-B can be shown even without this coordination
mechanism.

III. DISTRIBUTED RATE MAXIMIZATION:

A NON-COOPERATIVE SETTING

In this section we consider the case where every user (say n)
maximizes its own rate given the current system state under a
constraint Pn on its allowed attempt probability, i.e., pn ≤ Pn

where Pn < 1 (see Section I-A for motivation of this problem).
Since maximizing the rate given the current system state
results in a transmission with the maximal allowed attempt
probability Pn, the strategy for user n degenerates to choosing
the subset of channels kn that maximizes its own rate under a
fixed attempt probability Pn. As a result, the strategy played
by user n given a fixed strategy profile of other users σ−n is

given by σn = (k∗n, Pn), where k∗n =
{

k∗n,i
}M

i=1
solves the

following distributed rate maximization problem3:

k∗n = arg max
kn∈KM

Rn (σ) s.t. pn = Pn . (6)

Since Rn (σ) = pn
∑M

i=1 un(kn,i)vn(kn,i, σ−n) and pn = Pn

in (6) is a constant independent of kn, it suffices to solve:

k∗n = arg max
kn∈KM

M
∑

i=1

un(kn,i)vn(kn,i, σ−n) . (7)

For every user n let
{

k∗n,1, k
∗
n,2, ..., k

∗
n,K

}

be a permutation

of {1, ...,K} such that:

un(k
∗
n,1)vn(k

∗
n,1, σ−n) ≥ un(k

∗
n,2)vn(k

∗
n,2, σ−n)

≥ · · · ≥ un(k
∗
n,K)vn(k

∗
n,K , σ−n) .

(8)
Following (7), the channel-selection strategy that solves (6) at
each given updating time is given by:

k∗n =
{

k∗n,1, k
∗
n,2, ..., k

∗
n,M

}

. (9)

Note that in practical systems, user n holds an estimate
of un(k) (from pilot signals for instance). On the other
hand, complete information about other user strategies is not
required. Monitoring the channels to obtain vn(k, σ−n) for
all k is sufficient to make a decision4. Hence, for purposes
of analysis in this section we assume that every user n
estimates vn(k, σ−n) perfectly (i.e., monitors the channels

3For the ease of presentation, we assume continuous random rates un(k)
to guarantee a uniqueness of the maximizer. Otherwise, channels with the
same rate can be ordered arbitrarily.

4Note that the number of idle time slots and busy time slots can be used
to estimate the success probability. Monitoring the channels can be done by
the receiver (which can sense the spectrum and send this information to the
transmitter). Another way is to monitor the null period by the transmitter as
in cognitive radio systems. Any attempt to access channel k by one user or
more results in identifying channel k as busy.
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for a sufficient time). Simulation results demonstrate strong
performance of the proposed algorithm in practical systems
under estimation errors. Next, we examine a distributed algo-
rithm that uses un(k), vn(k, σ−n) to solve the distributed rate
maximization problem.

A. Best-Response Potential Game Formulation

The system dynamics can be viewed as a non-cooperative
game, in which every user sequentially updates its strategy
to increase its rate given the current system state irrespective
of other users’ rates, referred to as the Distributed Rate
Maximization (DRM) game. The strategy k∗n that solves (6)
represents a best-response (BR) strategy since a user chooses
k∗n that maximizes its rate given the current system state. On
the other hand, switching from strategy kn to k′n to increase
the rate (but not maximizing it) such that Rn(k

′
n, Pn, σ−n) >

Rn(kn, Pn, σ−n) is called a better-response. A system is in
an equilibrium when users cannot increase their rates by
unilaterally changing their strategy.

Definition 1: A Nash Equilibrium Point (NEP) for the
DRM game is a strategy profile σ∗ = (σ∗

n, σ
∗
−n), where

k∗n′ ∈ KM , p∗n′ = Pn′ for all n′ ∈ N , such that

Rn

(

σ∗
n, σ

∗
−n

)

≥ Rn(σ̃n, σ
∗
−n)

∀n , ∀σ̃n = (k̃n, Pn) , k̃n ∈ KM .
(10)

A game has the finite improvement property (FIP) if every
improvement path, in which a sequence of better-responses
are executed by users sequentially, is finite. Clearly, a game
with FIP converges to a NEP in a finite time under any
better-response dynamics. In what follows we use the theory
of potential games to analyze the convergence of the BR
dynamics to a NEP under the DRM game. In potential games,
the incentive of users to switch strategies can be expressed by
a global potential function. A NEP for the game is reached at
any local maximum of the potential function. Next, we define
a class of related potential games to the DRM game at hand.

Definition 2 ( [7]): The DRM game is referred to as a best-
response potential game if there is a best-response potential
function φ : σ → R such that for every user n and for every
σ−n = {ki, pi}i 6=n, where ki ∈ KM , pi = Pi, the following
holds:

arg max
kn∈KM

Rn(kn, Pn, σ−n) = arg max
kn∈KM

φ(kn, Pn, σ−n) .

(11)
Differing from other classes of potential games (e.g., exact,
ordinal) which have the FIP, cycles may occur in BR potential
games under some improvement paths. Nevertheless, no cycle
occurs when playing BR dynamics since the potential function
increases at any BR. In the DRM game, some improvement
paths may result in cycles when M > 1 (see [34] for
examples). Nevertheless, the following theorem shows that the
DRM game is a best-response potential game.

Theorem 1: The DRM game is a best-response potential
game, with the following best-response potential function:

φ(σ) =
N
∑

n=1

log

(

1

1− Pn

)

×

M
∑

i=1

(

log un(kn,i)−
In(kn,i, σ−n)

2

)

.

(12)

The proof is given in the extended version of this paper [34].

TABLE I
BR-DRM ALGORITHM

1) Initialize:

each user (say n) estimates un(k) for all k, and

selects the M channels with the highest un(k)

2) repeat (at each updating time):

3) select a set of active users Na

4) for any active user n ∈ Na do:

5) estimate vn(k, σ−n) for all k
6) k∗n ← solution of (9)

7) (kn, pn)← (k∗n, Pn)
8) end for

10) until convergence

B. Best-Response Algorithm for Distributed Rate Maximiza-

tion

Following Theorem 1, we propose a non-cooperative BR
algorithm to solve the constrained distributed rate maximiza-
tion problem in the spatial multi-channel ALOHA networks,
dubbed BR for Distributed Rate Maximization (BR-DRM)
algorithm. We initialize the algorithm by a simple solution
where every user picks the M channels with the highest
collision-free utility un(k). In the learning process step, each
user monitors the load on the channels to obtain vn(k, σ−n) for
all k (see the beginning of Section III for more details on the
monitoring process). Then, at each updating time the selected
active users (selected according to the mechanism described
in Section II) update their strategies by selecting the channels
according to (9). When users cannot increase their rates by
unilaterally changing their strategy, an equilibrium is obtained.
The BR-DRM Algorithm is given in Table I. Users may repeat
updating strategies for a predetermined number of iterations.
During the running time of the algorithm the loads on the
channels are changed dynamically and affect user decisions
across time. Convergence is guaranteed following Theorem 1,
since the best response potential function is upper bounded

(by φ(σ) ≤M
∑N

n=1 log
(

1
1−Pn

)

maxk log (un(k))) and any

local maxima is a NEP for the game (since no user can increase
its rate by unilaterally changing its strategy). It should be noted
that convergence in a finite time of BR dynamics in the DRM
game is preserved as long as all active users are not neighbors
(since the log-interference that user n experiences In(k, σ−n)
is affected only by users in In) as designed by the mechanism
that selects the active users described in Section II (for more
details see [34]).

Corollary 1: Assume that users update their strategy ac-
cording to the mechanism described in Section II. Then, the
BR-DRM algorithm, given in Table I, converges to a NEP in
finite time.

IV. ACHIEVING GLOBAL PROPORTIONAL FAIRNESS:

A COOPERATIVE SETTING

In the previous section we have shown that the distributed
rate maximization can be solved without sharing any infor-
mation between users. In this section, however, we show
that much better performance from a system-wide fairness
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perspective can be expected using information sharing between
neighbors only. Specifically, instead of solving a distributed
rate maximization as done in the preceding section, here we
are interested in developing a distributed algorithm that attains
proportionally fair rates in the network. Cooperation in this
section refers to a social behavior (by designing a social utility
function for each user) that can lead to a globally-optimal
operating point. Nevertheless, the model is still cast as a non-
cooperative game in the sense that users act with respect to
their own social utility.

We consider the case where M = 1. Thus, kn ∈ K is
a natural number denoting a single channel chosen by user
n. Formally, the problem is to find a strategy profile that
maximizes the sum-log rate in the network:

σ∗ = arg max
{kn∈K,0≤pn≤1}N

n=1

N
∑

n=1

logRn (σ) . (13)

The above optimization problem (13) was formulated in [29]
under a variation of the model considered in this paper for
single-channel systems (i.e., K = 1) and equal rates for all
links. A simple optimal algorithm was developed that uses
message exchanges between neighbors only. In this section
we address this problem under the multi-channel case.

A. Exact Potential Game Formulation

In Section III we have shown that any NEP of the DRM
game is a local maximum of its potential function (12). In
this section, however, we are interested in finding a global
maximum of (13) since it attains a global proportional fairness
in the network.

Let In(k) be the set of user n’s neighbors that transmit over
channel k, and let

Fn(kn, pn, σ−n)

, log (un(kn)pn)− In(kn, σ−n)− log

(

1

1− pn

)

|In(kn)| ,

(14)
be the cooperative utility (or fair utility) for user n. Note
that the cooperative utility balances between individual and
social utilities. The term log (un(kn)pn) − In(kn, σ−n) is

the individual utility for user n, where log
(

1
1−pn

)

|In(k)|

represents the aggregated log-interference that user n causes to
its neighbors. Throughout this section it is assumed that user n
can compute its cooperative utility when making decisions (see
a discussion on a practical implementation in section IV-C).
We refer to this game as the fairness game.

Next, we show that the fairness game is an exact potential
game where

∑

n logRn (σ) is a potential function of the game.
Definition 3 ( [35]): The fairness game is called an exact

potential game if there is an exact potential function φ : σ → R

such that for every user n and for every σ−n = {ki, pi}i 6=n,
where ki ∈ K, 0 ≤ pi ≤ 1, the following holds:

Fn(σ
(2)
n , σ−n)− Fn(σ

(1)
n , σ−n)

= φ(σ(2)
n , σ−n)− φ(σ(1)

n , σ−n) ,

∀σ
(1)
n = (k

(1)
n , p

(1)
n ), σ

(2)
n = (k

(2)
n , p

(2)
n ) ,

k
(1)
n , k

(2)
n ∈ K , 0 ≤ p

(1)
n , p

(2)
n ≤ 1 .

(15)

Theorem 2: The fairness game is an exact potential game,
with the following exact potential function:

φ(σ) =
N
∑

n=1

logRn (σ) . (16)

The proof is given in the extended version of this paper [34].

B. Nash Equilibrium of the fairness game

Since the fairness game is an exact potential game
with an upper bounded potential function (by φ(σ) <
∑N

n=1 maxk log (un(k))), any BR dynamics converges to a
NEP in the sense that users cannot increase their cooperative
utility by unilaterally changing their strategies. However, any
local maximum of the potential function (16) is a NEP of the
game. Thus, here we first characterize the NEPs’ structure of
the fairness game. In Section IV-C we will use this result to
develop an algorithm that achieves the best NEP in the sense
that the global maximum of (16) is attained.

Definition 4: A Nash Equilibrium Point (NEP) for the fair-
ness game is a strategy profile σ∗ = (σ∗

n, σ
∗
−n), where k∗i ∈ K,

0 ≤ p∗i ≤ 1 for all i ∈ N , such that

Fn

(

σ∗
n, σ

∗
−n

)

≥ Fn(σ̃n, σ
∗
−n)

∀n , ∀σ̃n = (k̃n, p̃n) , k̃n ∈ K , 0 ≤ p̃n ≤ 1 .
(17)

Theorem 3: A strategy profile σ∗ = {k∗n, p
∗
n}

N
n=1 is a NEP

for the fairness game if k∗n ∈ K, p∗n =
1

|In(k∗n)|+ 1
for all

n ∈ N .

The proof is given in the extended version of this paper [34].

Corollary 2: A local maximum of (16) is attained only
if every user n is associated with an attempt probability

pn =
1

|In(kn)|+ 1
. In particular, the strategy profile that

attains proportionally fair rates (i.e., the solution to (13)) must

satisfy pn =
1

|In(kn)|+ 1
for all n.

Theorem 4: Let {k∗n}
N
n=1 be a given channel allocation for

all users. A strategy profile

σ∗ =

{

k∗n, p
∗
n =

1

|In(k∗n)|+ 1

}N

n=1

(18)

is the unique solution to the following optimization problem:

{p∗n}
N
n=1 = arg max

{0≤pn≤1}N

n=1

∑

n∈N :k∗

n
=k

logRn

(

{k∗n, pn}
N
n=1

)

∀k ∈ K .
(19)

The proof is given in the extended version of this paper [34].

Combining Theorems 3 and 4 yields:

Corollary 3: A strategy profile σ∗ = {k∗n, p
∗
n}

N
n=1 is a NEP

for the fairness game if {p∗n}
N
n=1 solves (19).

Corollary 2 follows directly from the NEPs’ structure char-
acterized in Theorem 3. We will use the fact that attaining the

global maximum of (16) implies pn =
1

|In(kn)|+ 1
for all

n to design a distributed learning algorithm that converges to
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the solution of (13). Corollary 3 sheds a light on the operating
points of the system. Learning algorithms used to converge to
a global optimum may spend some time at local maxima of
the objective function (i.e., a NEP). Corollary 3 shows that
the local maxima of the potential function may not be so bad.
Specifically, every NEP of the fairness game can be viewed as
a local proportional fairness in the sense that proportionally
fair rates are attained among all users that share channel k for
all k ∈ K.

C. Distributed Cooperative Learning Algorithm

The optimization problem in (13) is a combinatorial op-
timization problem over a graph which is mathematically
intractable. Furthermore, it requires a centralized solution that
uses global information which is impractical in large-scale
networks. Therefore, we propose a probabilistic approach to
solve the problem in a distributed manner. We develop a
distributed cooperative learning algorithm, dubbed Noisy BR
for Fairness (NBRF) algorithm, with the goal of solving (13)
using limited message exchanges between neighbors only.
NBRF is a cooperative algorithm in the sense that users make
decisions with respect to the cooperative utility that balances
between their own utilities and the interference level they
cause to their neighbors.

Recall that BR dynamics may lead to local maxima of the
potential function. Hence, instead of playing purely BR, in
NBRF users play noisy BR (also known as spatial adaptive
play) when updating their strategies [36], [37]. In NBRF, active
users construct a probability mass function (pmf) over their
actions and draw their actions according to this distribution.
Typically, the BR is played with high probability, while other
strategies are played with a probability that decays exponen-
tially fast with the myopic utility loss in order to escape local
maxima. Specifically, the pmf over the available actions is
given by:

Pr((kn, pn) = (k, p)) =
eβFn(k,p,k−n,p−n)

K
∑

k′=1

|In|+1
∑

r=1

eβFn(k
′,1/r,k−n,p−n)

(20)
for some exploration parameter β > 0. Note that when β = 0
the pmf assigns equal weights on all strategies, while the
probability of playing BR5 approaches one as β → ∞ (a
discussion on the setting of β based on simulated annealing
analysis [38] is provided in the end of this section). The
NBRF Algorithm is given in Table II. In NBRF, active users
must send complete information about their updated strategies
to their neighbors (Step 8) such that all users can compute
their cooperative utility at each given updating time. A similar
mechanism as described in Section II can be applied, where the
pilot signal is now replaced by a packet containing complete
information about the updated strategy. Users may repeat
updating strategies for a predetermined number of iterations
and then stick their BR (see a discussion in the end of this
section)

The following theorem shows that NBRF attains propor-
tional fairness with an arbitrarily high probability as time
increases.

5For the ease of presentation, we assume continuous random rates un(k) to
guarantee a uniqueness of the maximizer. Otherwise BRs are drawn uniformly.

TABLE II
NBRF ALGORITHM

1) Initialize:

based on message exchanges between neighbors

each user (say n) set kn ← arg max
k

{un(k)}

and pn ← 1/ (|In(kn)|+ 1).

2) repeat (at each updating time):

3) select a set of active users Na

4) for any active user n ∈ Na do:

5) compute Fn(k, p, k−n, p−n) for all

k = 1, ...,K,

p = 1, 1/2, ..., 1/(|In|+ 1).
6) construct pmf given in (20) for all

k = 1, ...,K,

p = 1, 1/2, ..., 1/(|In|+ 1).
7) draw (kn, pn) randomly according

to the distribution in Step 6.

8) send a packet containing (kn, pn) to

inform all neighbors In
9) end for

10) until convergence

Theorem 5: Let σNBRF (β)(t), σ∗ be the strategy profile
under NBRF (with a parameter β) at time t and the strategy
profile that solves (13), respectively. For any ǫ > 0 there exists
β > 0 such that

lim
t→∞

Pr
(

σNBRF (β)(t) = σ∗
)

≥ 1− ǫ . (21)

Proof: The proof is based on the results reported in
Section IV-B and the fact that a noisy best response dynamics
following (20) in exact potential games converges to a station-
ary distribution of the Markov chain corresponding to the game
[36]. By Theorem 2, the fairness game with the cooperative
utility Fn is an exact potential game with an exact potential
function φ given in (16). Since NBRF plays noisy BR with
respect to Fn, the stationary distribution of the strategy profile
is given by [36]:

Pr(σNBRF (β) = σ) =
eβφ(σ)

∑

σ̃

eβφ(σ̃)
. (22)

Next, note that the number of user n’s neighbors that transmit
over channel kn, |In(kn)|, is lower bounded by |In| for all n.
Therefore, following Corollary 2, the strategy profile σ∗ that
attains the global maximum of (16) lies inside the action space
played by NBRF. Therefore, for every ǫ > 0 we can choose
β > 0 sufficiently large such that the stationary distribution
puts a sufficiently high weight on the strategy profile that
maximizes (16) (i.e., φ in (22)). Thus, (21) is satisfied as time
approaches infinity.

Following the proof of Theorem 5 we infer that as the
probability of playing BR increases (i.e., β → ∞) the
probability of attaining the global maximum of the potential
function (16) increases with time. However, increasing β too

2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

518



fast may push the algorithm into a local maximum for a
long time (since the probability of not playing BR is too
small). Following simulated annealing analysis [38], a rule
of thumb used to achieve fast convergence is to increase β
as ∼ log(t + 1), t = 0, 1, ... . As a result, users explore
strategy profiles in the beginning of the running time and
will stick their BR as time approaches infinity. In cases where
the optimal operating point is not unique, the algorithm may
converge to one of the optimal operating points. Simulation
results demonstrate fast convergence to the optimal channel
allocation and attempt probabilities under typical scenarios.

V. NUMERICAL EXAMPLES

In this section we provide numerical examples to illustrate
the performance of the algorithms. We simulated the following
network: N users was randomly dispersed (uniformly) in a
circle region with a radius of 10 meters. Each user causes
interference to all users in a radius of 5 meters. Every user
can choose one channel for transmission among K channels.
We assume equal achievable rates un(k) = 100Mbps for all
users on all channels when channels are free (i.e., collision-
free utility). We focus on the cooperative setting, where the
goal is to find a channel allocation and attempt probabilities
in a distributed manner so as to attain proportionally fair
rates among users. We compare the NBRF algorithm, given in
Table II, with the random channel allocation scheme, where
the optimal attempt probabilities were set under any random
channel allocation (i.e., pn = 1/(|In(kn)|+1) for all n). In the
NBRF algorithm, we set β = log t (where t = 1, 2, ... indicates
the iteration number) to construct the pmf in Step 6. We first
examine a small connected network with N = 10 users sharing
K = 2 channels, so as the centralized optimal exhaustive
search solution can be computed and serve as a benchmark for
comparison. An illustration of the small network is depicted in
Fig. 1. In Fig. 2 we present the average log rate to demonstrate
the performance in terms of proportional fairness and also the
average rate to demonstrate the achievable effective rates. It
can be seen that NBRF significantly improves performance as
compared to a random channel allocation (even though the
attempt probabilities are optimal given any random channel
allocation) in terms of both fairness and efficiency. It can be
seen that NBRF approaches the optimal centralized solution as
time increases. This result demonstrates the efficiency of the
proposed distributed learning algorithm in achieving the global
proportional fairness in the network. Next, we considered a
larger network with N = 50 users sharing K = 5 channels
(in this case computing the optimal solution is intractable). It
can be seen in Fig. 3 that NBRF significantly outperforms the
random channel allocation again. Only 100 − 200 iterations
(i.e., a total number of 100− 200 packet broadcasting due to
Step 8 in Table II, which typically takes less than a second
for WiFi packets for instance) are required to achieve more
than 60% − 70% performance gain over a random allocation
in terms of average rate.

VI. CONCLUSION

The distributed optimization problem over multiple collision
channels shared by spatially distributed users was consid-
ered. We examined both the non-cooperative and cooperative
settings. Under the non-cooperative setting, we developed a

Fig. 1. An illustration of a small connected network with 10 users spatially
distributed in a circle area of radius 10 meters. The users share 2 channels.
Each pair of users with distance less than 2 meters (represented by an edge)
cause mutual interference when transmitting simultaneously over the same
channel.
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Fig. 2. Average sum-log rate and average rate as a function of the number
of iterations. A wireless network containing 10 users and 2 channels.
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Fig. 3. Average sum-log rate and average rate as a function of the number
of iterations. A wireless network containing 50 users and 5 channels.
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distributed learning algorithm for the distributed rate maxi-
mization problem, in which each user maximizes its own rate
irrespective of other user utilities. Convergence was proved
using the theory of best-response potential games. Under the
cooperative setting, we developed a distributed cooperative
learning algorithm to achieve the global proportional fairness
in the networks. While direct computation of the optimal
solution is impractical in large-scale networks, we showed
that the proposed distributed algorithm converges to the global
optimum with high probability as time increases. Simulation
results demonstrated strong performance of the algorithms.

Future research directions are convergence time analysis of
the NBRF algorithm, and analyzing the performance of NBRF
under malicious/malfunctioning nodes.
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