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Abstract—The performance of wireless scheduling algorithms
directly depends on the availability and accuracy of network
state information at the scheduler. As channel state updates
must propagate across the network, they are delayed as they
arrive at the controller. The location of the controller directly
affects the attainable throughput, as its dictates the delays with
which information is obtained to make scheduling decisions. In
this paper, we analyze the optimal controller placement over a
network in which CSI delays are proportional to distance. We
propose a dynamic controller placement framework, in which the
controller is relocated using delayed queue length information at
each node, and scheduling is done using delayed QLI and CSI. We
characterize the throughput region under such policies, and find
a policy which stabilizes the system for all arrival rates within
the throughput region.

I. INTRODUCTION

In order to schedule transmissions to achieve maximum
throughput, a centralized scheduler must opportunistically
make decisions based on the current state of the time-varying
channels [1]. The channel state of a link can be measured by
its adjacent nodes, who forward this channel state information
(CSI) across the network to the scheduler. Due to the transmis-
sion and propagation delays over wireless links, it may take
several time-slots for the scheduler to collect CSI throughout
the network, and in that time the network state may change.

There has been extensive work on wireless scheduling [1]–
[3], in which centralized approaches are used to control the
network. Centralized scheduling, in which a central entity
makes a scheduling decision for the entire network, yields high
theoretical performance, since the central entity uses current
CSI throughout the network to compute a globally optimal
schedule. However, maintaining current CSI is impractical,
due to the latency in acquiring CSI throughout the network.
In practice, the available CSI for centralized scheduling is a
delayed view of the network state. Furthermore, the delay in
CSI is proportional to the distance of each link to the controller,
since CSI updates must traverse the network.

Several works have studied scheduling under delayed CSI.
In [4], the authors consider a system in which CSI and
QLI updates are only reported once every T time-slots, but
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the transmitter makes a scheduling decision every slot, using
delayed information. They show that delays in the CSI reduce
the achievable throughput region, while delays in QLI do
not adversely affect throughput. In [5], Ying and Shakkottai
study throughput optimal scheduling and routing with delayed
CSI and QLI. They show that the throughput optimal policy
activates a max-weight schedule, where the weight on each
link is given by the product of the delayed queue length and
the conditional expected channel state given the delayed CSI.
This work is extended in [6], where the authors account for the
uncertainty in the state of the network topology as well. Lastly,
the work in [7] characterizes the impact of delayed CSI as a
function of the network topology, when delays are proportional
to distance.

In a centralized scheduling scheme, a node is assigned the
role of a controller, and collects CSI from the rest of the
network. Then, the controller uses this CSI to select a subset
of the nodes to transmit in each slot, in order to maximize
throughput while avoiding interference between neighboring
links [7]. However, the controller must use delayed CSI to
schedule transmission, and the CSI delays are proportional
to the distance of the links from the controller. Since delay
directly impacts the throughput performance of the scheduling
algorithm, the placement of the controller affects network
performance.

This paper studies the impact of the controller placement
on network performance. To begin, we analyze the static con-
troller placement problem, in which the controller placement is
computed off-line, and remains fixed over time. For any static
controller placement, links near the controller achieve a high
throughput, while links further away from the controller attain
a lower throughput, due to the increased delay in the CSI.
In order to mitigate this imbalance, we propose a dynamic
controller placement framework, in which the location of the
controller is changed over time. This allows for the controller
to be moved to a region of the network with high backlogs to
increase throughput to this region and provide stability. Since
at any time, each node has a different view of the network state
due to the distance-based CSI delays, the controller placement
algorithm must only depend on information shared by all
nodes, such that no additional communication overhead is re-
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Figure 1: Markov Chain describing the channel state evolution of each
independent channel.

quired. We propose a queue-length based controller placement
algorithm, and show that this algorithm offers an increased
throughput over a static placement. We prove this algorithm is
throughput optimal over all controller placement policies which
do not use CSI.

II. STATIC CONTROLLER PLACEMENT

In this section, we consider an off-line controller placement,
such that the controller remains fixed over time. We show
that the optimal controller placement depends on the network
topology as well as the channel transition probabilities.

A. System Model

Consider a network G(N ,L) consisting of a set of nodes
N and links L. Each link is associated with an independent,
time-varying channel. Let Sl(t) ∈ {OFF,ON} be the channel
state of the channel at link l at time t. Assume the channel state
evolves over time according to the Markov chain in Figure 1.
One of the nodes is assigned to be the controller off-line, and
in each time slot, activates a subset of links for transmission.
Assume a primary interference constraint in which a link
activation is feasible if the activation is a matching, i.e. no
two neighboring links are activated. If link l is activated, and
Sl(t) = ON, then a packet is successfully transmitted at that
time slot1. On the other hand, if the channel at link l is OFF,
then the transmission fails. The objective of the controller is to
activate the set of links resulting in maximum expected sum-
rate throughput.

In order to determine the correct subset of links to activate,
the controller obtains CSI from each link in the network,
and uses the CSI to compute a feasible link activation with
maximum expected throughput. Due to the physical distance
between network nodes, and the propagation delay across each
link, the CSI updates received at the controller are delayed
relative to the distance between each link and the controller.
In particular, let let di(l) be the distance in hops between node
i and link l2. At time t, each node i has delayed CSI pertaining
to link l from time-slot t − dj(l). In other words, node i has
state information Si(t− di(l)) for link l.

B. Controller Placement Example

To begin, consider the example topology in Figure 2, and
compare the expected throughput attainable by placing the

1In this section, assume that each node has an infinite backlog of packets
to transmit.

2By convention, node i is a distance of 0 hops from its adjacent links.

A B C

Figure 2: Barbell Network

controller at node A, node B, or node C. Placing the controller
at node A yields the same expected throughput as placing the
controller at node C, due to the symmetry of the network.
Consider a generalization of the network in Figure 2, where A
and C have degree k + 1. For simplicity, assume a symmetric
Markov state in Figure 1, i.e. p = q. Let γ = ( 1

2 )k, the
probability that k links are OFF. Placing the controller at node
B results in an expected throughput of

thptB =
1

4
2
(
(1− γ)p111 + γp101

)
+

1

2

(
1 + (1− γ)p111 + γp101

)
+

1

4

(
1 + (1− γ2)p111 + γ2p101

)
. (1)

The above expression follows from conditioning on the state
of the two adjacent links to B. The first term corresponds to
the expected throughput when both links are OFF, the second
corresponds to the case when one is ON and the other is OFF,
and the last term corresponds to both links being ON. Similarly,
the expected throughput from a controller at node A is derived
by conditioning on the state of the k+1 links adjacent to node
A.

thptA = (1− γ)

[
1 +

1

2
p111 +
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(
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)]
+ γ

[
1
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(
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)
+

1

2

(1

2
p111

+
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2

(
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))]
(2)

Consider the throughput obtained from a controller at A and
B in the limit as k grows to infinity, in which case γ = 0.

lim
k→∞

thptA = 1 + 1
2 (1− p) + 1

2p
2
11 (3)

lim
k→∞

thptB = 3
4 + 5

4 (1− p). (4)

For p ≤ 1
4 , it is optimal to place the controller at node

B, and for p ≥ 1
4 it is optimal to place the controller at

either node A or C. This example highlights some important
properties of the controller placement problem. In particular,
it is clear the optimal placement depends on the channel
transition probabilities. When p is small, it is advantageous
to place the controller to minimize the CSI delay throughout
the network. On the other hand, when p is close to 1

2 the CSI
is no longer useful, and it is better to maximize the amount of
local CSI at the controller.

C. Optimal Controller Placement

From the previous example, it is clear that the throughput-
maximizing controller placement is a function of the channel
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Figure 3: Wireless Downlink

state transition probabilities p and q, as well as the network
topology. Let M be the set of matchings in the network,
i.e., ∀M ∈ M, M is a set of links which can be scheduled
simultaneously without interfering with one another. Under a
throughput maximization objective, the controller schedules
the matching that maximizes expected sum-rate throughput
with respect to the CSI delays at that node. Consequently, the
controller placement can be optimized as follows.

c = arg max
r

ES
[

max
M∈M

∑
l∈M

E
[
Sl(t)

∣∣Sl(t− dr(l)) = Sl
]]

(5)

= arg max
r

ES
[

max
M∈M

∑
l∈M

p
dr(i)
Sl,1

]
(6)

where pki,j is the k-step transition probability of the Markov
chain in Figure 1. Equation (6) follows since the channel state
satisfies Sl(t) ∈ {0, 1}. Computing a maximum matching
requires solving an integer linear program (ILP) and it is
known to be solvable in O(|L|3)-time [8]. However, computing
the optimal controller position in (6) requires computing the
expectation of the maximum matching, which involves solving
the ILP for every state sequence S(t) ∈ {0, 1}|L|.

III. DYNAMIC CONTROLLER PLACEMENT

For a fixed controller, the links physically close to the
controller see a higher throughput than those far from the
controller due to the delay in CSI. By relocating the controller,
the throughput in different regions of the network can be im-
proved. In this section, we consider policies which recompute
the controller location dynamically in order to balance the
throughput throughout the network.

A. System Model

Consider a system of M nodes operating under an interfer-
ence constraint such that only one node can transmit at any
time, as in Figure 3. Packets arrive externally to each node i
according to an i.i.d. Bernoulli arrival process Ai(t) of rate λi,
and are stored in a queue at that node to await transmission. Let
Qi(t) be the packet backlog of node i at time t. Each node has
access to an independent time-varying ON/OFF channel as in
Figure 1. If a node is scheduled for transmission, has a packet

to transmit, and has an ON channel, then a packet departs the
system from node i.

The above network model applies directly to a wireless
downlink or uplink; however, it can easily be extended to
a network setting as follows. First, instead of the controller
selecting one node to transmit, a set of non-interfering nodes
is scheduled to transmit. The results of this section are ex-
tended by changing the scheduling optimization to be over
all matchings in the network, rather than all individual nodes.
Second, in a network, packets are required to traverse multiple
hops on route to their destinations. This extension requires a
modification to the throughput optimal policy of Theorem 2,
analogous to the approach taken in [2].

In addition to each node i having delayed CSI pertaining
to node j from the dj(i) time-slots in the past, it has delayed
queue length information (QLI) as well. In other words, node i
has delayed CSI Si(t− di(j)) and delayed QLI, Qi(t− di(j))
for each other node j. Let S(t − dr) represent the vector of
delayed CSI pertaining to controller r, i.e. S(t−dr) = {Si(t−
dr(i))}i. Let dmax = maxi,j dj(i), i.e. dmax is the network
diameter.

As described previously, one node is assigned the role of the
controller. Every N time-slots, the location of the controller
is recomputed. In order to do this computation, each node
must be able to compute the controller at the current slot
without communicating with the other nodes. Therefore, the
controller selection algorithm must only depend on globally
available information. In particular, we consider algorithms that
are based only on delayed QLI, and do not consider CSI on
deciding where to place the controller, since it is known that
delayed QLI does not affect the throughput performance of
the system [4]. After the controller is selected, the controller
chooses a node to schedule for transmission based on the
delayed CSI and QLI at the controller.

The primary objective of this work is to determine a joint
controller placement and scheduling policy to stabilize the
system of queues.

Definition A queue with backlog Qi(t) is stable under policy
P if

lim sup
n→∞

1

n

n−1∑
t=0

E[Qi(t)] <∞ (7)

The complete network is stable if all queues are stable.

Definition The throughput region Λ is the closure of the set of
all rate vectors λ that can be stably supported over the network
by a policy P ∈ Π.

Definition A policy is said to be throughput optimal if it
stabilizes the system for any arrival rate λ ∈ Λ.

In this work, we characterize the throughput region of
the controller placement and scheduling problem above, and
propose a throughput optimal joint controller placement and
scheduling policy based on the information available at each
node.
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B. Two-Node Example

c1 c2

Controller Selection

λ1 λ2

Figure 4: Example 2-node system model.

To illustrate the effect of dynamic controller relocation,
consider a two-node system, as in Figure 4. Each node has
instantaneous CSI pertaining to its channel at the current time,
and 1-step delayed CSI of the other channel. Let Λ1 be the
throughput region when the controller is fixed at node 1, and
let Λ2 be the throughput region when the controller is fixed at
node 2. The throughput regions Λr are characterized for each
r by the following linear program (LP).

Maximize:
ε

Subject To:

λi + ε ≤
∑

(s1,s2)∈S

P(S(t− dr) = (s1, s2))

· αi(s1, s2)E[Si(t)|Si(t− dr(i)) = si] ∀i ∈ {1, 2}
M∑
i=1

αi(s1, s2) ≤ 1 ∀s ∈ S

αi(s1, s2) ≥ 0 ∀s ∈ S, i ∈ 1, 2
(8)

In the above LP, αi(s1, s2) represents the fraction of time
link i is scheduled when delayed CSI at the controller is
(s1, s2). To maintain stable queue lengths, the arrival rate to
each queue must be less than the service rate at that queue,
which is determined by the fraction of time the node transmits,
and the expected throughput obtained over that link. For the
case when the controller is at node r, Λr is the set of arrival
rate pairs λ = (λ1, λ2) such that there exists a solution to (8)
satisfying ε > 0. The proof that Λr is in fact the stability region
of the system is found in [5].

The throughput regions Λ1 and Λ2 are plotted in Figure 5
for the case when p = q = 0.1. The throughput region is larger
in the dimension of the controller, as a higher throughput is
obtained at the node for which current CSI is available. The
other node cannot attain the same throughput due to the CSI
delay. Now consider a time-sharing policy, alternating between
placing the controller at node 1 and node 2. The resulting
throughput region Λ is given by the convex hull of Λ1 and
Λ2, which is shown as the dotted black line in Figure 5.
Time-sharing between controller placements allows for higher
throughputs than if the controller is fixed at either node. For
example, the point (λ1, λ2) = ( 3

8 − ε,
3
8 − ε), for ε small, is

not attainable by any fixed controller placement; however, this

0 0.1 0.2 0.3 0.4 0.50
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0.2

0.3

0.4

0.5

Throughput region for different controllers: p = 0.1, q = 0.1

h1

h 2

 

 

Perfect CSI
Controller at 2
Controller at 1

Figure 5: Throughput regions for different controller scenarios. As-
sume the channel state model satisfies p = 0.1, q = 0.1, and
d1(2) = d2(1) = 1.

throughput point is achieved by an equal time-sharing between
controller locations.

The correct time sharing between controller placements
depends on the arrival rate. This information is usually un-
available to the controller, and the control policy must stabilize
the system even if the arrival rates change. Thus, we propose
a dynamic controller placement and scheduling policy which
achieves the full throughput region Λ using only delayed
QLI for controller placement, and delayed CSI and QLI for
scheduling, with no information pertaining to the arrival rates.

C. Queue Length-based Dynamic Controller Placement

Next, we consider controller placement policies that depend
on delayed QLI, but not on delayed CSI3. Let Π be the set
of policies which make a controller-placement decision based
on QLI and not CSI, and make a scheduling decision based
on the delayed CSI and QLI at the controller. In this section,
we characterize the throughput region under such policies,
and propose the dynamic controller placement and scheduling
(DCPS) policy, which is proven to stabilize the system for all
arrival rates within the throughput region.

Theorem 1 shows that the throughput region is characterized
by the following LP.

Max.
ε

S.t.:

λi + ε ≤
∑
s∈S

PS(s)

M∑
r=1

βrα
r
i (s)E

[
Si(t)

∣∣Si(t− dr(i))]
∀i ∈ {1, . . . ,M}

M∑
i=1

αri (s) ≤ 1,

M∑
r=1

βr ≤ 1 ∀s ∈ S

αri (s) ≥ 0, βr ≥ 0 ∀s ∈ S, i, r ∈ 1, . . . ,M
(9)

3For networks with a large diameter, the common CSI may be too stale
to be used in controller placement; thus, we restrict our attention to policies
which utilize QLI to make controller placement decisions, but not CSI.
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This LP is an extension of the LP given in (8) to M nodes,
with the addition of a time-sharing between controller loca-
tions. The optimization variables βr and αri (s) correspond to
controller placement and link scheduling policies respectively.
The variables βr represent the fraction of the time that node
r is elected to be a controller, and αri (s) is the fraction of
time that controller r schedules node i when the controller
observes a delayed CSI of S(t− dr) = s. Note that PS(s) is
the stationary probability of the Markov chain in Figure 1. The
throughput region Λ, is the set of all non-negative arrival rate
vectors λ such that there exists a feasible solution to (9) for
which ε ≥ 0. This implies that there exists a stationary policy
such that the effective service rate at each queue is greater than
the arrival rate to that queue.

Theorem 1 (Throughput Region). For any non-negative ar-
rival rate vector λ, the system can be stabilized by some policy
P ∈ Π if and only if λ ∈ Λ.

Necessity is shown in Lemma 1, and sufficiency is shown in
Theorem 2 by proposing a throughput optimal joint scheduling
and controller placement algorithm, and proving that for all
λ ∈ Λ, that policy stabilizes the system.

Lemma 1. Suppose there exists a policy P ∈ Π that stabilizes
the network for all λ ∈ Λ. Then, there exists a βr and αri (s)
such that (9) has a solution with ε ≥ 0.

Lemma 1 shows that for all λ ∈ Λ, there exists a stationary
policy STAT ∈ Π that stabilizes the system, which places the
controller at r with probability βr, and schedules i to transmit
when the delayed CSI at controller r is s with probability
αri (s).

Due to the ergodicity of the finite state Markov chain
controlling the channel state process, for any δ > 0, there exists
an N such that the probability of the channel state conditioned
on the channel state N slots in the past is within δ of the steady
state probability of the Markov chain.∣∣∣∣P(S(t) = s

∣∣S(t−N)
)
−P

(
S(t) = s

)∣∣∣∣ ≤ δ (10)

Define TSS(ε) is to be a large constant such that when N =
TSS(ε), (10) is satisfied for δ = ε

2|S| , where |S| = 2M . In
other words,∣∣∣∣P(S(t) = s

∣∣S(t− TSS(ε))
)
−P

(
S(t) = s

)∣∣∣∣ ≤ ε

2|S|
(11)

TSS is related to the time it takes the Markov chain to approach
its steady state distribution.

Next, we propose the dynamic controller placement and
scheduling (DCPS) policy, and show that this policy stabilizes
the network whenever the arrival rate vector is interior to
the capacity region Λ. Additionally, this proves the sufficient
condition of Theorem 1. While the problem formulation is
such that the controller is repositioned every N time-slots. In
this section we prove throughput optimality for N = 1. The
extension to general N is straightforward, and is discussed in
Section IV-A.

Theorem 2. Consider the dynamic controller placement and
scheduling (DCPS) policy, which operates in two steps. First,
choose a controller by solving the following optimization as a
function of the delayed queue backlogs Qi(t− τQ).

r∗ = arg max
r

(∑
s∈S

PS(S(t−dr) = s) max
i
Qi(t−τQ)p

dr(i)
si,1

)
(12)

where PS(s) is the steady state probability of the channel-
state process. Then the controller uses its observed CSI S(t−
dr∗(i)) = s, and schedules the following queue to transmit.

i∗ = arg max
i

Qi(t− τQ)p
dr∗ (i)
si,1

(13)

For any arrival rate λ, and ε > 0 satisfying λ + ε1 ∈ Λ, the
DCPS policy stabilizes the system if τQ ≥ dmax + TSS(ε) for
TSS(ε) defined in (11).

Under policy DCPS, the controller is placed at the node
maximizing the expected max weight schedule, over all possi-
ble states. Then, the controller observes the delayed CSI and
schedules the max-weight schedule for transmission as in [2]
and [5]. Moving the controller to nodes with high backlog
increases the throughput at those nodes, keeping the system
stable.

The proof of Theorem 2 is outlined as follows. Consider a
scheduling and controller placement policy P ∈ Π. Let DPi (t)
be the departure process of queue i, such that DPi (t) = 1
if there is a departure from queue i at time t under policy P .
Consider the evolution of the queues over T time slots, subject
to a scheduling policy P .

Qi(t+T ) ≤
(
Qi(t)−

T−1∑
k=0

DPi (t+k)

)+

+

T−1∑
k=0

Ai(t+k) (14)

Equation (14) is an inequality rather than an equality due to
the assumption that the departures are taken from the backlog
at the beginning of the T -slot period, and the arrivals occur
at the end of the T slots. Under this assumption, the packets
that arrive within the T -slot period cannot depart within this
period.

Since the CSI is delayed by different amounts of time
depending on the location of the controller, and the controller
changes locations over time, the relevant system state Y(t) is
defined to include all possible combinations of delayed CSI,
as well as the complete history of QLI.

Y(t) =

{
S(t− dmax) . . .S(t),Q(0) . . .Q(t)

}
(15)

This definition insures the system state is Markovian. Note
that the system state Y(t) is not completely available to the
controller, since each node has delayed CSI. Because dmax is
the largest delay to CSI in the network, values of S(τ) for
τ < t− dmax do not affect the evolution of the system. Define
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Figure 6: Example star network topology where each node measures
its own channel state instantaneously, and has d-step delayed CSI of
each other node.

the following quadratic Lyapunov function:

L(Q(t)) =
1

2

M∑
i=1

Q2
i (t). (16)

The T -step Lyapunov drift is computed as

∆T (Y(t)) = E
[
L(Q(t+ T ))− L(Q(t))

∣∣∣∣Y(t)

]
. (17)

Theorem 2 follows by showing that as the system backlogs
grow large under DCPS, the drift in (17) becomes negative,
implying system stability [2]. We consider the Lyapunov drift
over a T -slot window, where T is large enough that the system
reaches its steady state distribution. The complete proof can be
found in [7].

The throughput optimal controller placement uses delayed
QLI Q(t− τQ). The delay τQ must be sufficiently large such
that Q(t − τQ) is available at every node, i.e. τQ ≥ dmax.
Furthermore, we require that τQ ≥ dmax + TSS(ε), where
TSS(ε) is the time required for the channel state process to
approach its steady state distribution (i.e. the mixing time of
the Markov process). Even though QLI is available at much
less delay, the controller must use an older version of the QLI
for throughput optimality. The reasoning behind this is related
to the fact that long queues are typically located at nodes with
OFF channels, and relocating the controller to those channels
will not increase throughput; however, if the QLI is sufficiently
delayed, the dependency between backlog and channel state is
removed.

While the throughput optimal controller placement is given
in Theorem 2, for specific topologies, the throughput optimal
controller placement in (12) takes on a simpler form. In par-
ticular, consider a topology for which each node is equidistant
from all other nodes, as in Figure 6.

Corollary 1. Consider a system of M nodes, where only
one can transmit at each time. Assume the controller has full
knowledge of its own channel state and d-slot delayed CSI for
each other channel, as in Figure 6. At time t, the DCPS policy
places the controller at the node with the largest backlog at
time t− τQ.

r∗ = arg max
r

Qr(t− τQ) (18)

Corollary 1 follows due to the symmetry of the system. Note

the queue lengths in the above theorem must still be delayed
according to Theorem 2.

IV. SIMULATION RESULTS

To begin, we simulate a 6-Queue system with Bernoulli
arrival processes of different rates. Assume the controller has
instantaneous CSI for its channel, and homogeneously delayed
(2 slots) CSI of each other channel, as in Figure 6. For each
symmetric arrival rate vector λ, we simulate the evolution of
the system over 100,000 time slots, and compute the average
system backlog over those time slots. The results are plotted
in Figure 7. Clearly, for small arrival rates, the average queue
length remains very small. As the arrival rates increase towards
the boundary of the stability region, the average system backlog
starts to slightly increase. When the arrival rate grows beyond
the stability region, the average queue length increases greatly,
since packets arrive faster than they can be served in the
system, implying that the system is unstable in this region.

(a) 2-Step Delayed QLI

(b) 100-Step Delayed QLI

Figure 7: Simulation results for different controller placement policies,
with channel model parameters p = 0.1, q = 0.1.

Figure 7 compares the average queue backlogs under several
controller placement policies. The black curve corresponds to
a fixed controller, as in Section II. The blue curve corresponds
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to a policy that chooses a controller at each time uniformly
at random. Note that this random policy is optimal when the
arrival rate is the same to each node, as it represents the
correct stationary policy to stabilize the system. The red curve
corresponds to the DCPS policy in Theorem 2.

In Figure 7a, the DCPS policy uses 2-step delayed QLI
to place the controller. In this case, the DCPS policy fails
to stabilize the system for the same set of arrival rates as
the time-sharing policy, implying that the DCPS policy is not
throughput optimal. However, in Figure 7b, the delay on the
QLI is increased to 100 time-slots. In this scenario, the DCPS
policy does stabilize the system for all symmetric arrival rates
in the stability region. Thus, using further delayed information
is required for throughput optimality. In general, dynamically
changing the controller location provides a 7% increase in
capacity region over the static controller placement.

Figure 8: Effect of QLI-delay on system stability, for p = q = 0.1.
Each curve corresponds to a different value of τQ.

Figure 8 illustrates the effect of the delay in QLI on the
stability of the system. This figure presents four different values
for τQ, the delay to QLI used by the controller placement
policy. For larger QLI delays, the system remains stable for
more arrival rates. As τQ increases, the improvements to the
stability region become smaller, as the stability region of
the policy approaches the actual throughput region. In this
example, using sufficiently delayed QLI yields a 16% increase
in the stability region of the system over the policy which uses
current QLI.

3

2 4

0 1 5 6

Figure 9: Two-level binary tree topology.

Additionally, we simulate the controller placement problem
over the network in Figure 9, to compare the dynamic con-
troller placement with the static controller placement in Section

Figure 10: Average queue length versus symmetric arrival rate for tree
network in Figure 9 for different controller placement policies.

II. Figure 10 analyzes the stability of the system over different
controller placement policies. The black solid line represents
the DCPS policy, with QLI delay τQ = 150. This policy is
compared with the policy that randomly selects the controller
and the policy that places the controller at node 3. These results
show that relocating the controller according to the DCPS
policy shows improvements over both the static placement, and
a equal time-sharing between controller placements.

Figure 11 shows the fraction of time each node is selected
as the controller under the DCPS policy for the binary-tree
topology of Figure 9. For small transition probabilities (e.g.
p = q = 0.1), the central node 3 is chosen as the controller
most frequently. When the transition probabilities increase (e.g.
p = q = 0.3), then more time is spent with nodes 2 and 4 as
controllers. This corresponds to the analysis for static controller
placement shown in Section II. Moreover, as the arrival rate
increases toward the boundary of the stability region, the results
resemble the static results even more closely. Note that the
DCPS policy can be applied to any network topology, but
we only consider smaller topologies in this work due to the
computational complexity of computing the optimal controller
location.

A. Infrequent Controller Relocation

Throughout this paper, we assume that a new controller
placement occurs at every time slot. This is justified by
ensuring that the controller placement algorithm depends only
on information that is available to each node in the network.
Thus, there is no additional communication overhead required
to compute the controller placement. However, there may be
an additional cost associated with relocating the controller due
to the computation required. Therefore, in this section, we
consider the case in which the controller placement occurs
infrequently.

Consider the controller placement problem, in which the
controller is relocated every N time slots. As discussed in
Section III, the throughput region is not affected by infrequent
controller placement. Lemma 1 shows that any arrival rate
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(a) Symmetric arrival rate λ = 0.2.
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(b) Symmetric arrival rate λ = 0.25.

Figure 11: Fraction of time each node is selected as the controller
under DCPS for the topology in Figure 9. Blue bars correspond to
system with p = q = 0.1, and red bars correspond to system with
p = q = 0.3.

λ ∈ Λ corresponds to a stationary policy which stabilizes the
system. The throughput region Λ is formed by a time-sharing
between controller placements. Consequently, the frequency of
changing the controller placement does not affect throughput,
but rather the overall fraction of time spent in each controller
state.

The DCPS policy of Section III extends directly to the case
of infrequent controller placement as follows.

Theorem 3. Consider the dynamic controller placement and
scheduling policy (DCPS), which operates in two steps. First,
at each time t = k ∗ N , choose a controller by solving the
following optimization as a function of the delayed queue
backlogs Qi(kN − τQ).

r∗ = arg max
r

(∑
s∈S

PS(s) max
i
Qi(kN − τQ)p

dr(i)
si,1

)
(19)

where PS(s) is the steady state probability of the channel-state
process. At the subsequent time slots t = kN+j, the controller
uses its observed CSI S(kN + j − dr∗(i)) = s, and schedules
the following queue to transmit.

i∗ = arg max
i

Qi(kN − τQ)p
dr∗ (i)
si,1

(20)

For any arrival rate λ, and ε > 0 satisfying λ + ε1 ∈ Λ, the
DCPS policy stabilizes the system if τQ ≥ dmax + TSS(ε) for
TSS(ε) defined in (11).

The DPCS policy of Theorem 3 differs from that of Theorem
2 in that controller placement decisions are only made in time
slots which are multiples of N , but the controller placement
calculation is the same as in Theorem 2. The scheduling portion
of Theorem 3 uses the delayed QLI with respect to the time
at which the controller was placed, rather than the current
time slot. This additional delay in QLI, does not affect the
throughput optimality of the policy. The proof of Theorem 3
follows similarly to the proof of Theorem 2, except using a
T -slot drift argument at every time slot t = kN rather than
every time slot.

V. CONCLUSION

This paper studies the optimal controller placement in wire-
less networks. First, we formulated the location of the optimal
static controller placement. Then, we consider dynamically
placing controllers, using QLI to move the controller to the
heavily backlogged areas of the network. We characterize the
throughput region under dynamic controller placement, and
propose a throughput optimal joint controller placement and
scheduling policy. This policy uses significantly delayed QLI
to place the controllers, and the CSI available at the controller
to schedule links.

An interesting result in this paper is that because the con-
troller placement depends only on delayed QLI, the throughput
optimal policy uses a very delayed version of the QLI, even
if better QLI is available. This is due to the fact that QLI is
related to CSI, particularly if there is a high degree of memory
in the system.
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