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Abstract—We consider an energy harvesting system where
the fixed size battery of the transmitter is recharged with
certain probability at each channel use. For this setup, we
explicitly characterize the optimal online energy management
strategy for maximizing the long-term throughput under different
assumptions on the availability of channel state information. We
show that in the case of no fading, the amount of energy allocated
to each channel use decreases exponentially with time since the
last battery recharge and in the case of fading, the optimal
solution has a discounted water-filling structure. Our results
reveal that the structure of the optimal energy management
strategy in the online case with finite battery is significantly
different from the infinite battery and offline cases characterized
in the literature.

I. INTRODUCTION

Recent advances in energy harvesting technologies enable
wireless devices to harvest the energy they need from the nat-
ural resources in their environment. This development opens
the exciting new possibility to build wireless networks that are
self-powered, self-sustainable and which have lifetimes limited
by their hardware and not the size of their batteries.

However, communication with energy-harvesting devices
has a number of aspects which make it fundamentally different
from conventional battery-powered communication. In con-
ventional systems, energy (or power) is a deterministic quan-
tity continuously available to the transmitter and the receiver,
and communication is typically constrained only in terms
of average power. However, in harvesting systems energy is
not generated at all times and the rate of energy generation
can fluctuate significantly over time. In such systems, energy
available for communication can be modeled as a stochastic
rather than a deterministic process.

The key to effective communication with such wireless
devices is the design of optimal energy management strategies.
This is a non-trivial problem. If available energy is consumed
too fast, transmission can be interrupted in the future due to
energy outage. On the other hand, if the energy consumption
is very slow, it can result in the wasting of the harvested
energy and missed recharging opportunities in the future due
to an overflow in the battery capacity. The problem is further
complicated when there is randomness in the wireless channel
due to fading. In this case, the energy management strategy
needs to decide whether or not to wait for a better channel
state in the future at the risk of wasting the energy in the
meantime due to an overflow in the battery capacity.

The simplest setting which allows to gain insights on this
problem is a wireless point-to-point link with a recharge-
able transmitter, which we consider here. Optimal energy
management for maximizing throughput on this channel has
been of significant interest in the recent years. The problem
is well-understood in the offline case where energy arrival
instants and amounts are assumed to be known uncausally
at the transmitter [1–4]. The optimal strategy keeps energy
consumption as constant as possible over time while ensuring
no energy wasting due to an overflow in the battery capacity.
For example, in the case of fading, the optimal strategy
is a directional water filling algorithm [3], which implies
transmission with piecewise constant energy.

The solution for the more realistic online case, when the
energy arrival process is known only causally at the transmit-
ter, is much less understood. Many works propose heuristics
inspired by the optimal offline solution, that of keeping the
energy consumption as constant as possible over time. Such
strategies become optimal in the limit when the battery size
tends to infinity [5–10]. For example, [8] shows that an energy
allocation strategy which tries to fix the energy allocated at
each time slot as close as possible to the average energy arrival
rate (long term mean of the energy process) becomes optimal
in the limit of infinite battery. However, not much is known
about the structure of the optimal online strategies in the more
realistic case of finite battery. Indeed, the problem can be
casted as a Markov Decision Process and the optimal solu-
tion can be computed using dynamic programming [11–14].
However the curse of dimensionality inherent in the dynamic
programming solution makes this approach computationally
intensive, which may not be suitable for sensor nodes with
limited computational capabilities. It also leads to little insight
on the structure of the optimal solution and its dependence on
major system parameters.

A. Overview of Our Results

In this paper, we focus on a simple model for the energy
harvesting process and derive explicit solutions for the online
problem. We assume that the transmitter is equipped with a
finite size battery, and this battery is recharged over time with
Bernoulli energy arrivals, i.e. at any time step the battery is
either charged to full with certain probability or no energy
is harvested at all. This simple model captures the small
battery regime which is relevant for many sensor networks.
Tiny sensors are often physically limited in the size of the
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Figure 1: Point to point energy harvesting system with fading channel and limited battery
of size bmax.

battery they can accommodate and if the energy harvesting
process is rich enough, the battery may be fully charged each
time there is an energy harvest. We derive the optimal online
energy management strategy for this channel and show that
it has an exponential structure; the allocated energy decreases
exponentially with the time since the last energy arrival. This
solution reveals that in the finite battery case, the optimal
online solution is structurally different from the solution for
the infinite battery and the offline cases, which rather aim to
keep the energy expenditure constant.

We next extend our result to the case when there is fading
in the wireless channel and the fading states are known
ahead of time (but not the energy arrivals). This scenario is
motivated by the cognitive radio setup where the variation
of the channel states of the secondary users can be due to
interference from the primary users. The (cognitive) secondary
users can predict the activity of the primary users and hence
the interference levels. We show that the optimal solution in
this case is a discounted waterfilling algorithm, where the
water level decreases exponentially with the time since the
last energy arrival. Building on these insights, we also propose
a heuristic algorithm for the fully online case, where neither
the energy arrivals nor the fading states are known ahead of
time. Our numerical evaluations show that the performance of
this heuristic algorithm is very close not only to the optimal
solution, but also to what is achievable with channel states
known uncausally.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a point to point discrete-time communication
system with an energy harvesting transmitter as depicted in
Fig. 1. We assume that the channel is an additive white
Gaussian Noise channel (AWGN) potentially with fading. At
any time step t, the received signal at the receiver is given by

yt =
√

htxt + vt,

where xt is the transmitted signal at time t, ht is the channel
coefficient at time t. We assume ht to be nonnegative( w.l.o.g.)
and i.i.d. of finite mean. Also, vt is the white Gaussian noise
which we assume to be of zero-mean and unit-variance.

The transmitter is equipped with a rechargeable battery
of capacity bmax, which can be recharged by the energy
harvested from the surrounding environment. Let Et be the
amount of energy harvested at time step t. It is a discrete time
random process dictated by the randomness in the availability
of the exogenous energy. We assume that this energy arrival

process is known causally at the transmitter, i.e. at time t,
the transmitter knows the realization of the random variables
{Ei}ti=0. We assume that Et is an i.i.d. Bernoulli random
process,

Et =

{

bmax with prob. q
0 with prob. 1− q,

(1)

where q is the energy harvesting probability. In other words, in
each time step either the battery is fully charged or no energy
is harvested at all. We assume without loss of generality that
transmission starts with the first energy arrival, i.e. E1 = bmax.

Let bt be the amount of energy available in the battery
in the beginning of time step t and pt be the amount of
energy allocated for transmission in this time step. Then, we
necessarily have 0 ≤ pt ≤ bt. Moreover, the battery level in
the beginning of the next time step is given by

bt+1 =

{

bmax if Et+1 = bmax

bt − pt if Et+1 = 0.
(2)

Note that this means that if there is remaining energy in the
battery at the time of a new harvest, the remaining energy is
discarded (or equivalently, only part of the harvested energy,
dictated by the available space in the battery, can be stored.)

We assume that a rate function rt is associated with this
channel such that allocating pt amount of energy to the channel
with fade level ht at time t results in rt bits of information
transfer. We assume that

rt =
1

2
log2(1 + htpt). (3)

Note that this corresponds to the capacity function of a
Gaussian channel with channel gain

√
ht and power pt. With

appropriate scaling, this corresponds to assuming that each
time step is long enough or the bandwidth is large enough,
so that we can do capacity achieving coding and approach the
capacity of the AWGN channel.

B. Problem Formulation

We next define the energy management problem for this
channel. The problem depends on the information available
at the transmitter regarding the harvesting and the fading
processes. We assume that the energy arrival times are only
casually known at the transmitter and consider different as-
sumptions on the availability of channel state information
regarding the fading process.

1. Static channel: We assume that the channel is static and
there is no fading, ∀t ht = 1. In this case, the only randomness
in the system comes from the energy harvesting process. In
general, the transmission energy pt at time step t, can be a
function of all the realizations of the energy harvesting process
Et up to time t or equivalently the previous battery states
{bi}ti=1, i.e. pt = g(t, {bi}ti=1). The goal is to maximize the
long-term average throughput

Θ = lim inf
T→∞

1

T

T
∑

t=1

E[rt], (4)
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over all possible strategies g that are admissible, i.e. satisfy
for any t, bt:

0 ≤ g(t, {bi}ti=1) ≤ bt.

Here, the expectation is over the energy harvesting process.
Since the process Et is i.i.d., it is easy to see that {bt}∞t=1

form a Markov chain according to (2). Then, the above
maximization problem is equivalent to a Markov Decision
Process with instantaneous reward rt and average reward
criterion as defined in (4). Therefore, the optimal energy
management strategy is markovian [15]; i.e., at time step t,
the transmission energy pt is only a function of the current
state bt. This means without loss of optimality we can focus
only on markovian strategies of the form pt = g(t, bt).

2. Fading channel with channel coefficients known ahead of

time: Here, we assume a fading channel where the realization
of fading coefficients is known ahead of time. In this case
the energy management strategy at the transmitter can depend
not only on the battery level but also on the sequence of
past and future channel realizations. Given the sequence of
all fading coefficients h = {hk}∞k=1, the above argument for
the optimality of markovian strategies applies by still taking
the state to be bt. A markovian strategy in this case is of the
form pt = g(t, bt;h).1 The goal is still to maximize the long-
term average throughput in (4) over the set of all admissible
strategies that satisfy

0 ≤ g(t, bt;h) ≤ bt,

for all t, bt and h. However, the expectation in (4) is now
over the energy harvesting process and conditioned on the
fading realization h.Note that even though the channel states
are known uncausally, we are still in the online scenario where
the energy harvesting process Et is only causally known.

3. Online fading channel: Here, we assume a fading channel
and that the fading coefficients are only causally available
at the transmitter. In this case, while the energy allocation
strategy can a priori depend on {(bi, hi)}ti=1, due to the fact
that {(bt, ht)}∞t=1 forms a Markov chain, markovian strategies
are again sufficient to achieve optimality. A markovian energy
allocation strategy in this case is of the form pt = g(t, bt, ht).
The goal is again to maximize the long-term throughput
averaged over the energy harvesting and the fading processes.
We call a strategy admissible if the following holds:

0 ≤ g(t, bt, ht) ≤ bt.

III. MAIN RESULTS

The main result of our paper is to provide a closed form
expression for the optimal energy allocation strategy for the
static channel and the fading channel with channel coefficients
known ahead of time (Scenario 1 and 2 in Section II-B
respectively). Also, based on the optimal strategy for the
second case, we propose a heuristic strategy for the fully online
fading scenario (Scenario 3 in Section II-B).

1Note that h serves as a parameter of the function g and is known ahead
of time.

We define an epoch as the time interval between two suc-
cessive energy arrivals. Thus, the time horizon is partitioned
into a set of epochs and each time step belongs to a unique
epoch. For the time step t, let st denote the time of the most
recent energy arrival, i.e;

st = max{n|n ≤ t, En = bmax}. (5)

Also, let it be the index of the time step t in its corresponding
epoch, i.e., the number of time steps since the last energy
arrival, which can be obtained as

it = t− st + 1. (6)

The following theorem characterizes the optimal energy allo-
cation for the static channel and is proved in Section V.

Theorem 1. (Optimal Strategy for the Static Channel) Con-

sider the system described in Section II-A in the case of a

static AWGN channel. The optimal energy allocation strategy

is given by

g∗(t, bt) = π∗(it), (7)

where2

π∗(i) =

{

(1−q)i−1

µ
− 1 if 1 ≤ i ≤ N

0 if N < i,
(8)

where N is the smallest positive integer satisfying
(

q(bmax +N) + 1
)

(1− q)N < 1, (9)

and µ is given by

µ =
1− (1− q)N

q(N + bmax)
. (10)

The above theorem states two things of importance. First,
the energy allocated to a given time step depends only on the
number of time steps since the last energy arrival. Therefore,
the same structure is repeated in every epoch. Intuitively,
this is not difficult to see since due to our assumption of
Bernoulli recharges, the system is reset each time an energy
packet arrives (i.e., in the beginning of each epoch) and the
epochs are statistically equivalent to each other. Second, it
characterizes the optimal energy allocation in each epoch. The
optimal strategy allocates non-negative energy only to the first
N time steps in the epoch where N is determined by bmax and
q and moreover the allocated energy decreases exponentially
with the time since the last energy arrival (and shifted by 1
due to the subtractive term). Fig. 2 illustrates this strategy
through an example. Note how different this structure is from
the optimal strategies developed in the literature for the offline
and bmax =∞ cases, where the optimal strategy typically tries
to keep the energy allocation as uniform as possible over time.

We now state our main result for the fading case with
channel coefficients known ahead of time, which is proved
in Section VI.

Theorem 2. (Optimal Strategy for the Fading Channel with
Channel Coefficients Known Ahead of Time) Consider the

2Note that knowing t and bt allows to determine it.
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Figure 2: Optimal strategy in AWGN channel. The battery level bt (bottom boxes) and
transmission energy pt (top stems) are represented for 9 consecutive time steps for a
realization of energy arrival process. Here, bmax = 10 and q = 0.5, and hence, µ is
determined as 7.43 and N = 3.

Figure 3: Discounted Water Filling in an epoch of length greater than 5. Initial water
level at the beginning of the epoch is represented by W0 . Also, hi and pi are the
fading coefficient and transmission energy at time step i, respectively. Here, we have
p3 = p5 = 0.

system described in Section II-A with the fading channel and

with channel coefficients known ahead of time. The optimal

energy allocation strategy for this case is given by

g∗(t, bt;
{

hk

}∞

k=1
) = π∗(it;

{

hn

}∞

n=st
), (11)

where st, it are given by (5) and (6) respectively, and

π∗(i;
{

hn

}∞

n=1
) =

(

(1− q)i−1

µ
− 1

hi

)+

, (12)

where (x)+ = max(x, 0) is the hinge function and µ is given

as the solution of

∞
∑

n=1

(

(1− q)n−1

µ
− 1

hn

)+

= bmax. (13)

As in the earlier case, the theorem states that the allocated
energy to each time step depends on t only through it.
Therefore, the optimal strategy again has the same structure in
every epoch. On the other hand, the optimal policy in (12) for
each epoch is a water filling expression in which the water
level is discounted at each step by a factor of (1 − q), and
hence we call it a Discounted Water Filling algorithm (DWF).
Fig. 3 demonstrates the concept of discounted water filling.
Note that the height of the water at each time step determines
the energy allocated to this time step.

In addition to the above theorems which we prove in the
next three sections, we propose a heuristic Adaptive Dis-

counted Water Filling (ADWF) strategy for the online fading
scenario in Section VII which builds on the insights from
these theorems. Finally, in Section VIII, we provide numerical
examples of the optimal and heuristic strategies.

IV. OPTIMALITY OF EPOCH POLICIES

As a step towards proving our main theorems, in this section
we argue that the structure of the optimal policy should be
the same in each epoch and moreover we can concentrate on
maximizing the expected number of bits transmitted in each
epoch.

Consider the system in Scenario 2 where the fading co-
efficients are known ahead of time. Recall that an epoch is
the interval between two successive energy arrival. Let LT be
the number of epochs in a time horizon of length T which
is a random variable itself. Then, by the strong law of large
number we have

lim
T→∞

T

LT

= lim
T→∞

T
1

bmax

∑T

t=1 Et

=
bmax

E[Et]
=

bmax

qbmax

=
1

q
,

(14)
almost surely.

Now, let Rj be the number of bits transmitted in epoch j;
i.e.,

Rj =
∑

t∈ep(j)

rt, (15)

where ep(j) is the set of all time steps contained in epoch j.
The definition of the throughput in (4) can be rewritten as

Θ = lim inf
T→∞

1

T

T
∑

t=1

E[rt]

= lim inf
T→∞

∑LT

j=1 E[Rj ]/LT

T/LT

= q lim inf
T→∞

∑LT

j=1 E[Rj ]

LT

,

(16)

where the last equation follows from (14). Note that LT →∞
almost surely as T →∞.3

According to the equivalent representation of Θ in (16), in
order to maximize the throughput it suffices to individually
maximize the expected number of transmitted bits in each
epoch (i.e., E[Rj ]s). Note that the battery is fully charged
at the beginning of each epoch and hence, maximizing E[Rj ]
and E[Rk] are independent of each other when k 6= j. This
fact reveals an important point about the structure of the
optimal energy management strategy: it should maximize the
expected number of transmitted bits in each epoch. More
precisely once an epoch has started, the optimal strategy,
based on the information about the future fading coefficients,
determines the transmission energies in a way that the expected
number of transmitted bits up to the next energy arrival time
is maximized. Upon the arrival of the next energy packet, a
new epoch has started and the optimal strategy follows the
same procedure (probably with different set of future fading
coefficients). Thus, the optimal strategy consists of performing
the optimal epoch policy in each epoch.

In order to define the optimal epoch policy, we first define
the epoch policy. Consider an epoch whose future fading

3Note that in (16) we are dealing with lim inf , but the denominator can
still be replaced with its limit because (14) holds in lim.
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coefficients are given as {hn}∞n=1. An epoch policy for this
sequence of fading coefficients (treated as a parameter) is
a function π : N → R, where π(i;

{

hn

}∞

n=1
) specifies the

amount of energy to be allocated to the ith time step in the
epoch. Note that even though each epoch will be eventually of
some finite length (hence not all of

{

hn

}∞

n=1
will fall in the

epoch), the epoch policy needs to specify the energy allocation
for each i ≥ 0. We call an epoch policy π admissible if the
following conditions hold for any

{

hn

}∞

n=1
:

1. 0 ≤ π(i;
{

hn

}∞

n=1
); i = 1, 2, · · · ;

2.

∞
∑

i=1

π(i;
{

hn

}∞

n=1
) ≤ bmax.

(17)

The second condition follows from the fact that the amount
of energy we can spend in each epoch can not exceed the
available energy in the battery in the beginning of the epoch.
We let Π denote the set of all admissible epoch policies.

Given {hn}∞n=1 as the sequence of future fading coefficients
of an epoch, we call an epoch policy π(.; {hn}∞n=1) optimal if
it maximizes the expected number of transmitted bits in this
epoch. In other words, the optimal epoch policy for this epoch
is given as

π∗ = argmax
π∈Π

Eπ

[

R
]

,

where R is the random variable denoting the number of
transmitted bits in the epoch and the expectation is taken over
the random length of the epoch. Note that when policy π is
adopted, the expected number of transmitted bits in the epoch
can be explicitly written as

Eπ[R] =
1

2

∞
∑

m=1

m
∑

i=1

log2
(

1 + hiπ(i;
{

hn

}∞

n=1
)
)

q(1− q)m−1,

(18)
since the epoch length is a geometrically distributed random
variable with mean 1/q.

Note that according to the definition of the optimal epoch
policy, if π∗(.;

{

hn

}∞

n=1
)
)

is the optimal epoch policy for an
epoch whose future fading coefficients are given by

{

hn

}∞

n=1

then, π∗(.;
{

h′

n

}∞

n=1
)
)

is also the optimal epoch policy for an
epoch whose future fading coefficients are given by

{

h′

n

}∞

n=1
.

This together with our previous discussion about the structure
of the optimal energy management strategy allows us to
conclude that the optimal strategy g is composed of repeating
the optimal epoch policy π∗ in every epoch parametrized with
the future fading coefficients of that epoch. This observation
is summarized in the following lemma.

Lemma 3. (Optimality of epoch policy in fading channel)
Consider the system described in Section II-A and Scenario 2

of the fading channel with channel coefficients known ahead

of time. If π∗ is the optimal epoch policy for this system, then

the optimal strategy g is given by the following:

g∗(t, bt;
{

hn

}∞

n=1
) = π∗(it;

{

hn

}∞

n=st
), (19)

where st, it are given by (5) and (6), respectively.

So far in this section, we were considering Scenario 2 in
which there is a fading channel and fade levels are known
ahead of time. Scenario 1 (static channel) on the other hand
can be regarded as a special case of the second scenario
where all the fading coefficient are equal to 1. In this case,
by dropping the dependency on the fade levels, we can take
π(i) to be the transmission energy at the ith time step in an
epoch when policy π is adopted. Following from Lemma 3,
we immediately have the following corollary for this case.

Corollary 4. (Optimality of epoch policy in static channel)
Consider the system described in Section II-A in the static

channel scenario. If π∗ is the optimal epoch policy for this

system then, the optimal energy allocation strategy is given

by the following:

g∗(t, bt) = π∗(it), (20)

where it is given by (6).

In the two following sections, we use Lemma 3 and Corol-
lary 4 to derive the optimal energy allocation strategies and
prove Theorems 1 and 2.

V. OPTIMAL STRATEGY FOR AWGN CHANNEL

In this section, we consider the described system in Section
II-A in the static channel scenario and prove Theorem 1.

Proof of Theorem 1: According to Corollary 4, the opti-
mal energy allocation strategy in this scenario is determined by
the optimal epoch policy. According to (18) (when the fading
coefficients are equal to 1) and the definition of admissible
epoch policy in (17), the optimal epoch policy in the static
channel is the solution of the following problem:

maximize
π

1

2

∞
∑

m=1

m
∑

i=1

log2(1 + π(i))q(1− q)m−1

subject to 0 ≤ π(i); i = 1, 2, · · · ,
∞
∑

i=1

π(i) = bmax.

In the following, we show that the solution to the above
problem is given by (8). After removing a 1

2 log 2 factor of
the objective function (w.l.o.g.), the Lagrangian of the above
problem is

L({π(i)}∞i=1,{λi}∞i=1, µ) =

−
∞
∑

m=1

m
∑

i=1

log(1 + π(i))q(1− q)m−1

−
∞
∑

i=1

λiπ(i) + µ

( ∞
∑

i=1

π(i)− bmax

)

,

(21)

and then, the KKT conditions are

∀i ≥ 1 :
∂L

∂π(i)
= 0, λiπ(i) = 0, λi ≥ 0, π(i) ≥ 0

and
∞
∑

i=1

π(i) = bmax.
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Substituting L from (21) and applying the KKT conditions
gives

π(i) =

{

(1−q)i−1

µ
− 1 if µ ≤ (1− q)i−1

0 Otherwise.

Since (1−q)i−1 → 0 as i gets larger, then ei is non-zero only
for a finite number of indices i = 1, 2, · · · , N , where N is the
smallest integer satisfying

µ > (1− q)N . (22)

Now, applying the last KKT condition gives

bmax =

N
∑

i=1

(

(1− q)i−1

µ
− 1

)

=
1− (1− q)N

qµ
−N,

and therefore, µ can be written as

µ =
1− (1− q)N

q(N + bmax)
. (23)

Substituting (23) into (22) determines N as the smallest integer
that satisfies

(

q(bmax +N) + 1
)

(1− q)N < 1,

and also gives

π(i) =

{

(1−q)i−1

µ
− 1 if 1 ≤ i ≤ N

0 if N < i,

which together with Corollary 4 completes the proof of
Theorem 1.

VI. OPTIMAL STRATEGY FOR OFFLINE FADING CHANNEL

In this section, we consider the energy harvesting system
in Scenario 2, fading channel with fading coefficients known
ahead of time. We show that the optimal strategy in this case
is a DWF strategy and prove Theorem 2.

Proof of Theorem 2: . According to Lemma 3, the optimal
energy allocation in this scenario is specified by the optimal
epoch policy. Also, according to (18) and the definition of
admissible epoch policies in (17), the optimal epoch policy for
an epoch with future fading coefficients given by {hn}∞n=1 is
the solution of the following problem:

maximize
π

1

2

∞
∑

m=1

m
∑

i=1

log2(1 + hiπ(i;
{

hn

}∞

n=1
))q(1− q)m−1

subject to 0 ≤ π(i;
{

hn

}∞

n=1
); i = 1, 2, · · · ,

∞
∑

i=1

π(i;
{

hn

}∞

n=1
) = bmax.

Similar to the approach in the proof of Theorem 1 in Section
V, after removing a 1

2 log 2 factor of the objective function

(w.l.o.g.) the Lagrangian is

L({π(i;
{

hi

}∞

n=1
)}, {λi}, µ) =

−
∞
∑

m=1

m
∑

i=1

log(1 + hiπ(i;
{

hn

}∞

n=1
))q(1− q)m−1

−
∞
∑

i=1

λiπ(i;
{

hn

}∞

n=1
)

+ µ

( ∞
∑

i=1

π(i;
{

hn

}∞

n=1
)− bmax

)

,

(24)
and the KKT conditions are

∀i ≥ 1 :
∂L

∂π(i;
{

hn

}∞

n=1
)
= 0, λiπ(i;

{

hn

}∞

n=1
) = 0,

λi ≥ 0, π(i,
{

hn

}∞

n=1
) ≥ 0,

and
∞
∑

i=1

π(i;
{

hn

}∞

n=1
) = bmax.

Substituting L from (24) into the first 4 KKT conditions gives

π(i;
{

hn

}∞

n=1
) =

(

(1− q)i−1

µ
− 1

hi

)+

, (25)

and applying the last KKT condition determines µ as the
solution of the following equation:

∞
∑

i=1

(

(1− q)i−1

µ
− 1

hi

)+

= bmax. (26)

Consequently, the optimal epoch policy in the fading channel
with offline knowledge of fade levels is given by (25), and
this together with Lemma 3 completes the proof of Theorem
2.

VII. SUB-OPTIMAL STRATEGY FOR THE FADING

CHANNEL WITH ONLINE KNOWLEDGE OF FADE LEVELS

Consider the energy harvesting system described in Section
II in the online fading scenario where the fade levels are
only causally known at the transmitter. For this scenario, we
propose a suboptimal online strategy for energy allocation
which is based on the structure of DWF algorithm introduced
in the previous section.

According to Lemma 3, when fading coefficients are known
ahead of time, the optimal strategy can be obtained by first
finding the optimal epoch policy and then repeating it after
each energy arrival. On the other hand, according to Theorem
2, when the fading coefficients are known ahead of time, the
optimal epoch policy is given by (12). We follow the same
steps as in the previous section to derive a heuristic strategy
for the online fading scenario.

In the previous case, the offline knowledge of fading coef-
ficients

{

hn

}∞

n=1
is only utilized to determine the water level

parameter µ in (13). However, if the fading coefficients are
only causally available at the transmitter, at time step j, all the
future coefficients

{

hi

}∞

i=j+1
are random variables. Therefore,

each term in front of the sum on the LHS of (13) would also
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be a random variable. More precisely, for a given µ and for
any i = 1, 2, · · · , define Zi as

Zi(µ) =

(

(1− q)i−1

µ
− 1

hi

)+

, (27)

which generally is a random variable due to the randomness
in hi. Once the realization of fading coefficient hi is known,
Zi is also determined and is not random anymore. Since the
realization of all Zis are not known ahead of time, the optimal
water level parameter µ cannot be determined according to
(13). In order to tackle this problem, we, at each time step,
replace the future (un-realized) Zis with their expected values
and obtain an updated value for µ. In other word, at the time
step j, the transmitted energies in the previous time steps
(i.e.; p1, p2, · · · , pj−1) are known and given the current fading
coefficient hj , the transmission energy for the current time step
is determined as

pj =

(

(1− q)j−1

µj

− 1

hj

)+

, (28)

where µj is the solution of the following equation:

bmax = p1 + p2 + · · ·+ pj−1 +

(

(1− q)j−1

µj

− 1

hj

)+

+

∞
∑

i=j+1

E

[

(

(1− q)i−1

µj

− 1

hi

)+
]

.

Note that when the fading coefficient are known ahead of time
the above equation is equivalent to (13) and all µjs will be the
same. By moving p1, p2, · · · , pj−1 to the LHS and substituting
Zi from (27), the above equation is simplified to

bj =

(

(1− q)j−1

µj

− 1

hj

)+

+

∞
∑

i=j+1

E
[

Zi(µj)
]

, (29)

where

bj = bmax − p1 − p2 − · · · − pj−1

is the available energy in the battery at the beginning of time
step j, and the expectation in (29) is taken over the fading
coefficients.

Now assume a Rayleigh fading channel where his are
distributed according to the following pdf:

f(h) = αe−αh, h ≥ 0,

for some α > 0. Consequently, it is easy to show that for any
µ > 0

E[Zi(µ)] =
(1− q)i−1

µ
e
−

αµ

(1−q)i−1 − expint(
αµ

(1− q)i−1
),

(30)
where the function expint is given by

expint(x) =

∫

∞

x

e−t

t
dt.

Algorithm 1 Adaptive Discounted Water Filling Strategy

1: Parameters: q ∈ (0, 1), bmax > 0
2: Initialize: j ← 1 and bj ← bmax

3: Find µj: by solving the following for µ
(

(1−q)j−1

µ
− 1

hj

)+

+ φj(µ) = bj

4: Transmit: with the following energy:

pj =

(

(1−q)j−1

µj
− 1

hj

)+

5: Update the state:

If Energy packet arrives at next time step
Go to 2

Else

bj ← bj − pj
j ← j + 1
Go to 3

Now, for any j = 1, 2, · · · , we define

φj(µ) =
∞
∑

i=j+1

E
[

Zi(µ)
]

=

∞
∑

i=j+1

[

(1− q)i−1

µ
e
−

αµ

(1−q)i−1 − expint(
αµ

(1− q)i−1
)

]

,

(31)
which indicates the expected value of total energy that is going
to be transmitted after the jth time step in the epoch. Using
this definition, (29) can be represented as

(

(1− q)j−1

µj

− 1

hj

)+

+ φj(µj) = bj , (32)

which can be numerically solved for µj .
Now, we introduce an epoch policy as follows: at any time

step j, hj and bj are known and µj can be numerically
computed as the solution of (32). Then, the transmission
energy for time step j is determined as in (28). Based on
this epoch policy, we introduce the Adaptive Discounted Water

Filling (ADWF) strategy which basically is to repeat the above
policy after each energy arrival. Details and successive steps
of ADWF strategy are summarized in Algorithm 1.

It worth mentioning that because of the recurrence structure
of φjs, these functions can efficiently be stored in the memory
and called at step 3 in the algorithm and hence, the above
algorithm can be easily implemented on low-memory systems.
Furthermore, for the same set of parameters, the performance
of DWF strategy is an upper bound on the performance of
ADWF strategy, because the earlier one utilizes the informa-
tion about future fading coefficients while the later does not. In
the following section, we compare the performance of ADWF
strategy against DWF which utilizes the offline knowledge of
fade levels and show that in contrast to its simplicity, ADWF
strategy has near-optimal performance.

VIII. NUMERICAL EVALUATIONS

In this section, we provide numerical examples and demon-
strate the performance of optimal and sub-optimal strategies
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Figure 4: Throughput achieved by the optimal strategy (Theorem 1) in AWGN channel
vs. harvesting probability.

in different scenarios. In order to find the throughput of the
system in a specific scenario, we run a simulation of the system
over T = 10000 time slots where the energy arrival process
and fading coefficients are drawn randomly according to their
distribution. Then, for the given strategy, Θ is computed as

Θ ≈
1
2

∑T

t=1 log2(1 + htpt)

T
.

First, consider the system in the static (AWGN) channel
where the optimal strategy is given by Theorem 1. Fig. 4 plots
the achieved throughput(Θ) of the system as a function of
harvesting probability q. The performance is determined for
different battery sizes bmax = 100, 50, 10. As depicted in this
figure, the throughput of the system is increasing both in the
harvesting probability and battery size. This is because in both
case more energy will be available to use for transmission.

Now, we consider the system over a Rayleigh fading channel
and take two cases into account. First, we assume that the
realization of the fading coefficients are known ahead of time
(second scenario in Section II-B), and the transmission ener-
gies are determined according to DWF strategy in Theorem 2.
Next, we assume that the fading coefficients are only causally
available at the transmitter (third scenario in Section II-B),
and the transmission energy at each time step is determined
according to ADWF strategy in Algorithm 1. Fig. 5 plots
the achieved throughput for these two scenarios as a function
of the harvesting probability and for different battery sizes,
bmax = 100, 50, 10. Here, the fading parameter is set to α = 2
which means an average fade level of 0.5. As depicted in
this figure, the achieved throughput of ADWF strategy (in the
online fading case) is very close to the throughput achieved by
DWF strategy (in the offline fading case) which serves as an
upperbound. Thus, in contrast to its simplicity, ADWF strategy
has a performance near the optimal strategy.
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Figure 5: Throughput vs. harvesting probability. The solid plots correspond to the case
of offline knowledge of fade levels and when DWF strategy is adopted. Broken plots
correspond to the case of online knowledge of fade levels when ADWF strategy is
adopted. The solid plots also serve as upper-bounds for bit-per-energy in the online case.
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