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Abstract. For time critical updates, it is desirable to
maintain the freshness of the received information. We
address the impact of hostile interference on information
freshness by formulating a non-zero-sum two-player game,
in which one player is the transmitter aiming to maintain
the freshness of the information updates it sends to its
receiver, and the other player is the interferer aiming
to prevent this. The strategy of a player is the power
level transmitted by that player. We then derive the
equilibria for both Nash and Stackelberg strategies. We
show that both players have the same power cost at
Nash equilibrium. In addition, the Stackelberg strategy
dominates the Nash strategy, i.e., the Stackelberg utility
function exceeds the Nash utility function.

Index Terms. Age of information, information freshness,
interference game, SINR, Nash equilibrium, Stackelberg
equilibrium

1 Introduction

We consider a wireless communication problem in which
a transmitter desires to maintain the freshness of the
information updates it sends to a receiver, in the presence
of a hostile interferer who desires to degrade the freshness
of the updates (Fig. 1). We can model the communication-
interference problem as a two-player game. One player
is the transmitter aiming to maintain the freshness of
the updates to its receiver, and the other player is the
interferer aiming to prevent this.

Each player chooses a transmission power level to
optimize its utility function, which incorporates both the
reward and operational cost for that player. The players’
rewards are related to the age of the information update
as observed at the receiver, while the cost incurred by
a player is proportional to the power or energy used by
that player. The age of an update process at time t
refers to the length of the interval from the timestamp of
the most recently received update to t [4, 8, 12, 13, 17].
Our communication-interference model forms a continuous
game, i.e., each player chooses a power level as a strategy
from a continuous set.

Game theory has many applications to computer and
communication systems [5, 7]. Several versions of the
interference game can be studied. In particular, if the

players act simultaneously, the solution is the Nash equi-
librium (NE) [15], i.e., the point at which neither player
could improve its performance by changing its strategy
while the other player’s strategy remains unchanged. Al-
ternatively, if one player (the leader) chooses its strategy
and the other player (the follower) reacts by choosing its
own strategy, the solution is then the Stackelberg equilib-
rium (SE) [15]. For example, there are situations in which
the interferer would like to choose its strategy to maximize
its utility in response to already established communica-
tions, or conversely the transmitter would like to choose
its strategy to maximize its utility in response to already
established interference. In this paper we consider both
the Nash and Stackelberg strategies.
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Fig. 1 Information updates under hostile
interference.

Applications of game theory, in which NE and SE are
the main analysis tools, to systems affected by hostile in-
terference are well known. However, the game reward
functions in existing papers typically emphasize through-
put performance (for example, see [1, 2, 9, 16, 19]). In
contrast, our game reward function is based on the age
measure that emphasizes information freshness.

In Section 2, we review the idea of age for a ran-
dom process, which is used to quantify the freshness of
the received information. In Section 3, we formulate the
interaction between information updates and hostile inter-
ference as non-zero-sum two-player games. In Section 4,
we compute the best responses from the players (see The-
orem 2), which are needed later for deriving the NE and
SE. In Sections 5 and 6, we derive the NE and SE for the
case of zero receiver noise (see Theorems 3-5). The re-
sults show that both players have the same power cost at
NE, whereas the interferer’s power cost is half of trans-
mitter’s power cost at SE (when the interferer is the
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leader). Furthermore, the Stackelberg strategy dominates
the Nash strategy, i.e., the SE utility function exceeds the
NE utility function. In Section 7, we summarize our main
results.

2 Age of a Random Process

A renewal process is an arrival process in which the interar-
rival intervals are independent and identically distributed
(i.i.d.) random variables [4]. Let (Si, i ≥ 1) be a renewal
process, i.e., the interarrival intervals Xi = Si − Si−1
are i.i.d. random variables, where Si denotes the ar-
rival instant of arrival i (with S0 = 0). Let N(t)
be the number of arrivals in the interval (0, t]. Thus,
N(t) = max{n | Sn ≤ t}. In particular, if t is the current
time, then N(t) is also the most recent arrival. Thus, SN(t)

is the arrival time of the most recent arrival. The age of
the renewal process at time t is defined by Z(t) = t−SN(t),
which is the interval from the arrival time of the most re-
cent arrival to t. A sample function of the age process
Z(t) is shown in Fig. 2, which forms a sawtooth curve
consisting of isosceles right triangles [4]. The time aver-

age of Z(t) is defined by Aave = limt→∞ 1
t

∫ t
0
Z(u)du. For

the renewal process, it can be shown that [4]

Aave =
E[X2

1 ]

2E[X1]
(1)

An alternative to the average age Aave in (1) is the average
peak age Ap [3], which is the average of the peak values in
the sawtooth curve in Fig. 2. For the renewal process (see
Fig. 2), we have

Ap = E[X1] (2)
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Fig. 2 Age of a renewal process.

The age measures (1) and (2) above can be applied and
extended to the case of communication between a source-
destination pair in a network [8, 12, 13, 17]. Suppose
that packets arrive (or are generated) at the source node,
and these packets are timestamped and are transmitted
through the network to its destination. In general, these
packets are subject to queueing management before trans-
mission. They are also affected by delay and/or packet
loss during transmission. When the packets arrive at the

destination, the destination can read the timestamps con-
tained in these packets. The age (of the transmitted
packets) at time t, as observed by the destination, is de-
fined by Z(t) = t− SD(t), where D(t) is the most recently
received packet up to time t. A sample function of the
age process Z(t) is shown in Fig. 3, which forms a saw-
tooth curve consisting of right trapezoids [8, 12, 13, 17].
Furthermore, it can be shown that [3]

Aave = λe

(
E[(Y di )2]

2
+ E[Y si−1Y

d
i ]

)
Ap = E[Y si−1] + E[Y di ]

where λe is the (effective) rate of transmitted packets,
Y si is the system time (the sum of the waiting time and
service time) for packet i, and Y di is the interdeparture
time between packets (i− 1) and i.
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Fig. 3 Age of a random process affected by queueing
and service delay (Si = timestamp of packet i, S′i =

received time of packet i).

The communication channel between a source-
destination pair in a network can often be modeled as
a general A/S/n/K queue, where A specifies the arrival
process, S specifies the service time distribution (M: expo-
nential, G: general), n is number of servers, and K is the
capacity of the system (i.e., the maximum number of jobs
allowed in the system including those in service). Early
results on age for the cases of M/M/n/K queues appear
in [8, 12, 13, 17], while more recent developments on age
appear in [3, 6, 10, 11, 18].

3 System Model

We consider a wireless link on which transmitter T sends
time critical updates that it generates to a receiver (Fig. 1).
This receiver is affected by hostile interference from in-
terferer I, as well as by noise of power N . Let p and q
be the power levels transmitted by T and I, respectively.
Let g and h be the channel power gain from T and I to
the receiver, respectively. Thus, the signal-to-interference-
plus-noise ratio (SINR) at the receiver is

SINR(p, q) =
gp

N + hq
(3)
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3.1 Assumptions

To make the model more specific and to simplify the
analysis, we assume the following.

(A1) The update packets are generated at the transmitter
according to a Poisson process with rate λ.

(A2) The interfering signal does not carry information that
can be exploited to enhance the transmitter’s performance.
The receiver’s decoder considers the interfering signal as
additive white Gaussian noise (AWGN). Propagation delay
is assumed to be negligible.

(A3) The transmitter can transmit with bit rate r that
is proportional to the SINR at the receiver, i.e., r =
c SINR = c gp

N+hq , where c > 0 is a constant. For the

case of binary phase-shift keying (PSK) transmission, it
is shown in Remark 1 that c = 2W

[Q−1(Pe)]2
, where W =

system bandwidth, Pe = required bit error rate (BER),
and Q−1 is the inverse Q-function.

(A4) All transmitted update packets are received success-
fully. This assumption is approximately true, for example,
when a good error-correcting code is used to protect the
packets. tu

Let Li is the length (in bits) of update packet i.
Assume that (Li, i ≥ 1) are i.i.d. random variables. Note
that the packet length L1 can have arbitrary distribution.
Let Ti be the random variable representing the duration
of update packet i, i.e., Ti = Li/r, where r is the bit
rate, i ≥ 1. Note that (Ti, i ≥ 1) are i.i.d. random
variables with T1 = L1/r and E[T1] = E[L1]/r. Thus, the
update packets are transmitted with rate µ = r/E[L1].
Using (3) and assumption (A3), the packet transmission
rate associated with power profile (p, q) is then

µ(p, q) = z SINR(p, q) = z
gp

N + hq
(4)

where z = c/E[L1] is a constant.

Recall from assumption (A1) that update packets are
generated at the transmitter according to a Poisson pro-
cess with rate λ. Thus, the transmission from the trans-
mitter to the receiver can be modeled as an M/G/1/K
queue (for some 1 ≤ K ≤ ∞) in which the server is the
communication channel, and the service time is the packet
transmission duration.

In this paper we are interested in the average peak
age metric, which reflects the need for fresh updates [3].
Furthermore, to simplify the packet management, we
assume that there is no queue (i.e., K = 1) for the
update packets. In particular, any update packet that
arrives while another update packet is being transmitted
is discarded. Thus, the transmission of the update packets
can be modeled as an M/G/1/1 queue. The average peak
age Ap, which is now denoted by A, is then given by [3, 6]

A =
1

λ
+

2

µ
(5)

where λ is the packet arrival rate and µ is the packet
service rate. The average peak age is now denoted by
A(p, q) to show its dependence on power profile (p, q).
Substituting (4) into (5), we have

A(p, q) =
1

λ
+

2 (hq +N)

gpz
(6)

In our non-cooperative game, the transmitter wants
to reduce the average peak age A(p, q) [equivalently, to
increase −A(p, q)], whereas the interferer wants to increase
A(p, q).

Let cT (p, q) and cI(p, q) be the costs of transmitter T
and interferer I for playing the game. We now formulate
a two-player game in which one player is transmitter T
wanting to maximize its utility function uT , whereas the
other player is interferer I wanting to maximize its utility
function uI , where

uT (p, q) = −A(p, q)− cT (p, q) (7)

uI(p, q) = A(p, q)− cI(p, q) (8)

We require that p > 0 and q ≥ 0. In particular, q = 0
when interferer I does not transmit. We exclude the case
of p = 0 (i.e., when transmitter T does not transmit),
because the age in (6) is infinity for this case. In the
following we present two versions of the game, depending
on whether the players’ costs are based on energy or
power.

Remark 1. Consider binary PSK transmission on a
link without fading. From assumption (A2), the receiver’s
decoder considers the interfering signal as noise. Assume
further that the sum of the receiver noise and the received
interfering signal approximates AWGN of power spectral
density N0. We have N + hq = WN0, where W is the
system bandwidth. The BER is then given by Pe =

Q
(√

2Eb

N0

)
, where Q(x) = 1√

2π

∫∞
x
e−x

2/2dx [14]. Let

r be the bit rate. We then have Eb = gp/r. Thus,
Eb

N0
= Wgp

r(N+hq) . Using (3), we have

Pe = Q

(√
2W SINR

r

)

which implies that r = 2W
[Q−1(Pe)]2

SINR.

3.2 Two-Player Game: Energy-Based Costs

In this version of the game, we assume that the players’
costs are proportional to the average energy used to
transmit or to interfere with an update packet. Here we
assume that interferer I can detect whether transmitter T
transmits or is idle. For each update packet transmitted
by transmitter T , interferer I emits an interfering signal
that lasts for the duration of that packet. Note that
the average packet duration is 1/µ(p, q), which implies
that the average transmission energy for transmitter T
is p/µ(p, q). Similarly, the average transmission energy
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for interferer I is q/µ(p, q). Thus, the players’ energy
costs are cT (p, q) = vT p/µ(p, q) and cI(p, q) = vIq/µ(p, q),
where vT and vI are the unit energy costs of transmitter
T and interferer I. From (4), (7), and (8), it can be shown
that

uT (p, q) = − 1

λ
− 2 (hq +N)

gpz
− vT

N + hq

gz
(9)

uI(p, q) =
1

λ
+

2(hq +N)

gpz
− vI

q(N + hq)

gpz
(10)

Recall that p > 0 and q ≥ 0. Note that a strategy profile
(pn, qn) is said to be an NE if uT (pn, qn) ≥ uT (p, qn) for
all p > 0, and uI(pn, qn) ≥ uI(pn, q) for all q ≥ 0. The
following result follows directly from the definition of NE.

Theorem 1. For the game version with the utility
functions (9) and (10), the set of all NE is given by
{(∞, q) : q ∈ [0,∞)}.
Proof. Assume that (p∗, q∗) is an NE. Suppose that

0 < p∗ < ∞. We have uT (p∗, q∗) < − 1
λ − vT

N+hq∗

gz =

uT (∞, q∗). Thus, (p∗, q∗) is not an NE, which contradicts
the assumption. Thus, p∗ = ∞. It follows that if an NE
exists, it has the form (∞, q) for q ≥ 0.

Consider any q ∈ [0,∞). We have uT (∞, q) = − 1
λ −

vT
N+hq
gz ≥ − 1

λ −
2 (hq+N)
gpz − vT

N+hq
gz = uT (p, q) for all

p > 0, and uI(∞, q) = 1
λ ≥ 1

λ = uI(∞, q1) for all q1 ≥ 0.
Thus, (∞, q) is an NE for any q ∈ [0,∞). Note that
uT (∞,∞) = −∞, but uI(∞,∞) = limp→∞,q→∞ uI(p, q)
does not exist. tu

Theorem 1 shows that any NE has the form (pn, qn) =
(∞, q), where q ≥ 0. Thus, the NE solution is degenerate.
It can be shown that the SE solution is also degenerate.
Thus, we will not discuss any further the energy-cost-
based version of the game. Next, we present another
version of the game, which is based on the power costs
and will be our main focus of this paper. As shown later,
the power-cost-based version of the game yields NE and
SE that are nondegenerate.

3.3 Two-Player Game: Power-Based Costs

For this version of the game, we assume that the cost
incurred by a player is the power cost of that player.
Here we assume that transmitter T transmits two types
of traffic: regular traffic and update (high-priority) traffic,
using the same power level. Transmitter T transmits
continuously, i.e., we assume that it always has data to
transmit. Update traffic is generated at random times, and
has preemptive priority over regular traffic, i.e., update
packets are transmitted immediately upon their generation
(thus interrupting the transmission of the regular packet
currently in progress). Our focus in this paper is on
the information freshness of the update traffic, which is
not affected by the regular traffic. We assume that the
interferer transmits (at the same power level) continuously,
because it cannot distinguish between regular traffic and

update traffic. Let wT and wI be the unit power costs of
transmitter T and interferer I. For a given power profile
(p, q), the power costs for T and I are then wT p and wIq.
Thus, cT (p, q) = wT p and cI(p, q) = wIq.

From (4), (7), and (8), it can be shown that

uT (p, q) = − 1

λ
− 2 (hq +N)

gpz
− pwT (11)

uI(p, q) =
1

λ
+

2 (hq +N)

gpz
− qwI (12)

where p is the power transmitted by T and q is the power
transmitted by I. Recall that p > 0 and q ≥ 0.

In summary, for the rest of this paper we focus on
the non-zero sum game for which the utility functions
of the two players are given by (11) and (12). The set
of strategies, from which the players choose their power
levels, is {(p, q) : p > 0, q ≥ 0}. Our goal is to find the
equilibria for the game, in two forms of pure strategies:
NE (pn, qn) and SE (ps, qs).

4 Best Responses of Players

We now determine the best responses from the players,
which are needed later for deriving the NE and SE. The
best response set of transmitter T to an interfering power
level q ≥ 0 is defined by BT (q) = arg maxp>0 uT (p, q).
Similarly, the best response set of interferer I to a
transmitting power level p > 0 is defined by BI(p) =
arg maxq≥0 uI(p, q).

Theorem 2. The players’ best responses for the game
with the utility functions (11) and (12) are given by

BT (q) =

{
not exist if q = 0 and N = 0√

2(hq+N)
gwT z

if q > 0 and N ≥ 0
(13)

BI(p) =


∞ if 0 < p < 2h

gwIz

0 if p > 2h
gwIz

[0,∞) if p = 2h
gwIz

(14)

where N is the receiver noise power.

Proof.

a Best response from transmitter T

(1) Case: N = 0 and q = 0. For p > 0, we have from (11)
that

uT (p, 0) = − 1

λ
− pwT

Thus, there does not exist p∗ > 0 such that uT (p∗, 0) ≤
uT (p, 0) for all p > 0, which implies that BT (0) does not
exist.
(2) Case: N ≥ 0 and q > 0. From (11), we have

∂

∂p
uT (p, q) = −wT +

2 (hq +N)

gp2z
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It can be shown that the unique solution of ∂
∂puT (p, q) = 0

is p∗ =
√

2(hq+N)
gwT z

. Note that

∂2

∂p2
uT (p, q) = −4 (hq +N)

gp3z
< 0

which implies that uT (., q) is concave for all q > 0. Thus,
p∗ maximizes uT (p, q), i.e.,

BT (q) =

√
2(hq +N)

gwT z

(3) Case: N > 0 and q = 0. For p > 0, from (11) we have

uT (p, 0) = − 1

λ
− 2N

gpz
− pwT

Similarly to Case (2), it can be shown that

BT (0) =

√
2N

gwT z

b Best response from interferer I

We can rewrite (12) as

uI(p, q) = q

(
2h

gpz
− wI

)
+

1

λ
+

2N

gpz

Thus, for each p > 0, uI(p, .) represents a straight line.

(1) Case: p < 2h
gwIz

. Then 2h
gpz−wI > 0. Thus, BI(p) =∞.

(2) Case: p > 2h
gwIz

. Then 2h
gpz −wI < 0. Thus, BI(p) = 0.

(3) Case: p = 2h
gwIz

. Then 2h
gpz − wI = 0. We have

uI(p, q) = 1
λ + 2N

gpz = 1
λ + NwI

h , for all q ∈ [0,∞). Thus,

BI(p) = [0,∞). tu

In the following, we focus on the case of zero receiver
noise power (i.e., N = 0), which approximates the case of
negligible receiver noise. From (11), (12), and (13), we
have

uT (p, q) = − 1

λ
− 2hq

gpz
− pwT (15)

uI(p, q) =
1

λ
+

2hq

gpz
− qwI (16)

BT (q) =

{
not exist if q = 0√

2hq
gwT z

if q > 0
(17)

5 Nash Strategies

A strategy profile (pn, qn) is said to be an NE if
uT (pn, qn) ≥ uT (p, qn) for all p > 0, and uI(pn, qn) ≥
uI(pn, q) for all q ≥ 0.

Theorem 3 (NE). Suppose that the receiver noise power
is zero, i.e., N = 0. Then the NE is unique and is given

by (pn, qn) =
(

2h
gwIz

, 2hwT

gw2
I
z

)
.

Proof. Suppose that (p∗, q∗) is an NE, i.e., q∗ ∈
BI [BT (q∗)] and p∗ = BT (q∗). From (14) and (17), we
have BI [BT (∞)] = BI(∞) = {0}, which does not contain
∞. Thus, q∗ 6=∞. Then p∗ 6= BT (∞) =∞.

Suppose that q∗ = 0. From (15), we have

uT (p∗, 0) = − 1

λ
− p∗wT

Let 0 < p0 < p∗. Then uT (p0, 0) > uT (p∗, 0). Thus,
(p∗, 0) = (p∗, q∗) is not an NE, which contradicts the
assumption.

In summary, if (p∗, q∗) is an NE then p∗, q∗ ∈ (0,∞).
Let q1 = 2hwT

gw2
I
z

. It can then be shown that 2h
gwIz

=√
2hq1
gwT z

. Note that BT (q1) =
√

2hq1
gwT z

. Thus, BT (q1) =
2h
gwIz

. Let p1 = 2h
gwIz

. We then have q1 ∈ [0,∞) =

BI

(
2h
gwIz

)
= BI(p1) and p1 = BT (q1). Thus, (p1, q1) =(

2h
gwIz

, 2hwT

gw2
I
z

)
is an NE.

Next, we show that the NE is unique. Thus, suppose
that there is another NE (p2, q2) 6= (p1, q1). Then p2 =
BT (q2) and q2 ∈ BI(p2). As discussed above, we have
p2, q2 ∈ (0,∞).

(1) Case: p2 < p1 = 2h
gwIz

. Then BI(p2) = {∞}.
Because q2 ∈ BI(p2), we have q2 = ∞. Thus, p2 =
BT (q2) = BT (∞) =∞, which contradicts the assumption
p2 <

2h
gwIz

.

(2) Case: p2 > p1 = 2h
gwIz

. Then BI(p2) = {0},
which implies that q2 = 0, which contradicts the fact that
q2 ∈ (0,∞).

(3) Case: 0 < q2 < q1. Then BT (q2) < BT (q1). Using
p2 = BT (q2) and p1 = BT (q1), we have p2 < p1, which
leads to the same contradiction mentioned in Case (1).

(4) Case: q2 > q1. Then BT (q2) > BT (q1). Using
p2 = BT (q2) and p1 = BT (q1), we have p2 > p1, which
leads to the same contradiction mentioned in Case (2). tu

Theorem 3 implies that the NE (pn, qn) does not
depend on the arrival rate λ. Thus, the players do
not need to know λ to compute the NE. Furthermore,
wT pn = wIqn = 2hwT

gwIz
. Thus, the players incur the same

power costs at NE. Note also that uT (pn, qn) = − 4hwT

gwIz
− 1
λ ,

uI(pn, qn) = 1
λ , and

A(pn, qn) =
1

λ
+

2hwT
gwIz

(18)

which implies that A(pn, qn) = 1
λ + wT pn = 1

λ + wIqn.
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6 Stackelberg Strategies

In the following we show that, when transmitter T is the
leader, an SE does not exist. In contrast, when interferer
I is the leader, the SE exists and dominates the NE.

6.1 Transmitter is the Leader

Suppose that transmitter T is the leader. The set
(ps, BI(ps)) = {(ps, q) : q ∈ BI(ps)} is said to be an
SE (under the leadership of transmitter T ) if, for all
qs ∈ BI(ps), we have uT (ps, qs) ≥ uT (p, q) for all p > 0
and all q ∈ BI(p).
Theorem 4 (SE). Suppose that the receiver noise power
is zero, i.e., N = 0, and transmitter T is the leader. Then
there is no SE.

Proof. We provide a proof by contradiction, by assuming
that an SE (p∗, BI(p∗)) exists. Recall that

uT (p, q) = −pwT −
1

λ
− 2hq

gpz

BI(p) =


∞ if 0 < p < 2h

gwIz

0 if p > 2h
gwIz

[0,∞) if p = 2h
gwIz

Let p1 = 2h
gwIz

and q1 = 0. Then q1 ∈ [0,∞) = BI(p1) and

uT (p1, q1) = −p1wT − 1
λ = − 2hwT

gwIz
− 1

λ > −∞.

(1) Case: 0 < p∗ < 2h
gwIz

. Then BI(p
∗) = ∞.

Thus, uT (p∗, BI(p∗)) = −∞. We have uT (p∗, BI(p∗)) <
uT (p1, q1), which implies that (p∗, BI(p∗)) is not an SE.

(2) Case: p∗ > 2h
gwIz

. Then BI(p
∗) = 0.

We have uT (p∗, BI(p∗)) = uT (p∗, 0) = −p∗wT − 1
λ <

− 2hwT

gwIz
− 1

λ . Recall that uT (p1, q1) = − 2hwT

gwIz
− 1

λ .

Thus, uT (p∗, BI(p∗)) < uT (p1, q1), which implies that
(p∗, BI(p∗)) is not an SE.

(3) Case: p∗ = 2h
gwIz

. Then BI(p
∗) = [0,∞). Let

q = 1. Then q ∈ BI(p∗). We have uT (p∗, q) = uT (p∗, 1) =
−p∗wT − 1

λ − 2h
gp∗z = − 2hwT

gwIz
− 1

λ − wI .
Let 0 < e < wI/wT and p2 = 2h

gwIz
+ e. Then BI(p2) =

0. Thus, uT (p2, BI(p2)) = uT (p2, 0) = −p2wT − 1
λ =

−
(

2h
gwIz

+ e
)
wT − 1

λ = − 2hwT

gwIz
− 1

λ − ewT .

From 0 < e < wI/wT , we have −wI < −ewT . Thus,
uT (p∗, q) < uT (p2, BI(q2)), which implies that the set
(p∗, BI(p∗)) is not an SE. tu

6.2 Interferer is the Leader

Suppose that interferer I is the leader. The set
(BT (qs), qs) = {(p, qs) : p ∈ BT (qs)} is said to be an
SE (under the leadership of interferer I) if, for all
ps ∈ BT (qs), we have uI(ps, qs) ≥ uI(p, q) for all q ≥ 0
and all p ∈ BT (q).

Theorem 5 (SE). Suppose that the receiver noise power
is zero, i.e., N = 0, and interferer I is the leader. Then

the SE is (ps, qs) =
(

h
gwIz

, hwT

2gw2
I
z

)
. Furthermore, the

Stackelberg strategy dominates the Nash strategy, i.e.,
uT (ps, qs) > uT (pn, qn) and uI(ps, qs) > uI(pn, qn).

Proof. Suppose that q > 0. From (17), BT (q) exists and

BT (q) =
√

2hq
gwT z

. Using (16), we have

uI [BT (q), q] = −qwI +
1

λ
+

2hq

gz
√

2hq
gwT z

It can be shown that

∂

∂q
uI [BT (q), q] = −wI +

(
hwT
2gqz

) 1
2

Then the unique solution of ∂
∂quI [BT (q), q] = 0 is q∗ =

hwT

2gw2
I
z
. Note that

∂2

∂q2
uI [BT (q), q] = −

(
hwT
8gz

) 1
2

q−
3
2 < 0

Thus, uI [BT (q), q] is concave down, which implies that q∗

maximizes uI [BT (q), q]. Thus, qs = q∗ and ps = BT (q∗) =
h

gwIz
.

For the case of N = 0, we have at NE

uT (pn, qn) = −4hwT
gwIz

− 1

λ

uI(pn, qn) =
1

λ

When I is the leader, we have at SE

uT (ps, qs) = −2hwT
gwIz

− 1

λ

uI(ps, qs) =
hwT

2gwIz
+

1

λ

Thus, uT (ps, qs) > uT (pn, qn) and uI(ps, qs) > uI(pn, qn).
tu

From Theorems 3 and 5, when interferer I is the leader,
we have (ps, qs) = (pn/2, qn/4) and qswI = pswT /2 =
hwT

2gwIz
. Thus, the Stackelberg strategy uses less power

than the Nash strategy, and interferer I’s power cost is
half of transmitter T ’s power cost. Note also that

A(ps, qs) =
1

λ
+
hwT
gwIz

(19)

which implies that A(ps, qs) = 1
λ+pswT = 1

λ+2qswI . Fur-
thermore, it follows from (18) and (19) that A(pn, qn) =
A(ps, qs) + hwT

gwIz
. Similar to the case of NE, the players do

not need to know the arrival rate λ to compute the SE.
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7 Summary

This paper studies the interaction between communication
and hostile interference in a time-critical wireless system,
which is formulated as a non-zero-sum two-player game.
The transmitter’s strategy is a transmission power level,
while the interferer’s strategy is an interfering power level.
As shown in the paper, when the payoff is the information
freshness quantified by the age metric, both players have
the same power cost at NE. In addition, the Stackelberg
strategy, when led by the interferer, dominates the Nash
strategy, i.e., the SE utility function exceeds the NE utility
function.
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