
A Non-Monetary Mechanism for Optimal Rate
Control Through Efficient Delay Allocation

Tao Zhao
Department of ECE

Texas A&M University
College Station, TX 77843, USA

Email: alick@tamu.edu

Korok Ray
Mays School of Business
Texas A&M University

College Station, TX 77843, USA
Email: korok@tamu.edu

I-Hong Hou
Department of ECE

Texas A&M University
College Station, TX 77843, USA

Email: ihou@tamu.edu

Abstract—This paper proposes a practical non-monetary
mechanism that induces the efficient solution to the optimal
rate control problem, where each client optimizes its request
arrival rate to maximize its own net utility individually, and
at the Nash Equilibrium the total net utility of the system is
also maximized. Existing mechanisms typically rely on monetary
exchange which requires additional infrastructure that is not
always available. Instead, the proposed protocol is based on
efficient delay allocation, where the server controls the delay
experienced by each client through an intelligent scheduling
policy. Specifically, we present an efficient delay allocation rule
for the server to determine the target delay of each client. Then
we propose a simple scheduling policy to achieve such delay
allocation. Furthermore, we design a distributed rate control
protocol for the system to converge to the Nash Equilibrium.
The optimality of our mechanism is validated via extensive
simulations on two representative systems against a baseline
mechanism with FIFO scheduling and centralized rate control.

I. INTRODUCTION

The mobile Internet market has been enjoying an unprece-
dented growth since the recent few years. It is predicted that
the trend will continue, and the global mobile data traffic will
increase nearly eightfold between 2015 and 2020 [1]. With
the growing market, it is of great interest to understand the
economics of the network. In this paper, we are interested in
finding a practical mechanism to induce the efficient solution
to the optimal rate control problem in a network system of
multiple selfish and strategic clients. We consider systems
where a server processes requests from multiple clients, and
each client can dynamically adjust its own request arrival
rate. Each client obtains some utility based on its request
arrival rate and its own utility function, but also suffers from
some disutility based on its experienced delay. Each client
optimizes its request arrival rate to maximize its own net
utility individually, and at the Nash Equilibrium the total net
utility is also maximized. Our system model can be applied
to a wide range of networks. For example, the clients might
be smartphones, wearable devices, tablets and so on, and the
server can be a cellular base station (e.g. LTE eNodeB) or a
WiFi hotspot which provides Internet services to the clients.
Each request corresponds to an LTE subframe or an IP packet.

The optimal rate control problem, which entails maximizing
the total net utility in the system, is typically convex, and it
is thus easy to solve when one has complete information of

all the individual utility functions. In practice, however, the
utility functions are often private information of clients, and
a strategic client that aims to maximize its own net utility
may not reveal its true utility function. Further, request rates
are directly controlled by clients, instead of the server. Most
existing work employs some auction or pricing schemes to
ensure strategic clients to reveal their true functions and follow
the assigned rates from the server [2], [3]. However, these
schemes involve additional monetary exchange between clients
and the server, which requires additional infrastructure that is
not always available.

In this paper, we propose a novel non-monetary mechanism
for optimal rate control to address this issue. Note that each
client suffers from some disutility based on its experienced
delay, and the server can indirectly control the delay ex-
perienced by each request through its employed scheduling
policy. Therefore, the server can potentially steer request
rates of strategic clients toward the optimal point through its
scheduling policy. Effectively, the server uses “delay” as a kind
of “currency.”

In economic terms, there are negative externalities from
a client increasing its request rate, since this increases the
overall average delay of all clients. This is an analogy to a
public goods problem [4], in which one client’s consumption
choice affects the utility and payoffs of the other clients. As
such, the server’s objective is to design an allocation scheme
such that each client internalizes these negative externalities,
thereby leading to efficient consumption of resources.

In designing the non-monetary mechanism, we make the
following contributions:

1) We propose an efficient delay allocation rule through
which the server can guide the clients to the Nash
Equilibrium where the total net utility of the system is
also maximized.

2) We then come up with a simple yet effective scheduling
policy that can be proved to enforce the efficient delay
allocation rule in the heavy traffic regime, that is when
the total request rate approaches the service rate.

3) We present a scalable and lightweight distributed rate
control protocol between the server and the clients which
drives the system to converge to the Nash Equilibrium.

Altogether, they form our non-monetary mechanism for opti-

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

978-3-901882-90-6/17 ©2017 IFIP

mal rate control through efficient delay allocation.
The rest of the paper is organized as follows. Section II re-

views the literature related to our work. Section III introduces
our system model and problem formulation. Section IV, V, and
VI present the efficient delay allocation rule, the efficient delay
scheduling policy, and the distributed rate control protocol
respectively. Simulation study is described in Section VII, and
we conclude our paper in Section VIII.

II. RELATED WORK

There has been a number of literature that studies net-
works from the respect of economics. Altman et al. gave
a comprehensive survey on networking games [5]. Specifi-
cally for rate control, Kelly et al. analyzed the stability and
fairness of pricing based rate control algorithms [3]. Alpcan
and Başar gave a utility-based congestion control scheme
for cost minimization and showed its stability for a general
network topology [6]. Hou and Kumar presented a truthful and
utility-optimal auction for wireless networks with per-packet
deadline constraints [2]. Gupta et al. studied network utility
maximization where flows are aggregated into flow classes [7].
Ramaswamy et al. considered the case when a client can
choose from a number of congestion control protocols [8].

Besides, our work shares a similar spirit as delay-based TCP
variants, such as TCP Vegas [9], TCP Westwood+ [10], [11],
and FAST TCP [12], in the sense that delay is used as the
signal for the clients to adjust their request rates.

The intellectual foundation of our research comes from eco-
nomics. The early literature began with problems of creating
incentives to reduce free riding in teams, such as in Groves
[13]. This research uses much of the similar logic as our
method on the behavior of other agents in a strategic game.
Baldenius et al. [14], Moulin and Shenker [15], and Rajan
[16] studied the problem of cost allocation, namely, how to
allocate a common cost to separate corporate departments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system with N clients and a server. Each client
i generates requests by some predefined random process, such
as Poisson random process, but it can dynamically adjust its
average request rate, denoted by λi. We use λ := [λi] to
denote the vector containing the average request rates of all
clients, and λ−i to denote the vector of average request rates
of all clients other than i.

On the other hand, the server employs some scheduling
policy to determine which request to process. Unserved re-
quests are queued in the system. The processing time of each
request is a random variable with mean 1

µ . If the server’s
scheduling policy is work-conserving, which never idles as
long as there is at least one request available for processing,
then the average delay of all requests is a function of the
total average request arrival rate, Λ :=

∑
i λi, regardless of

the employed scheduling policy. The average delay function
C̄(Λ) is strictly increasing and strictly convex. We assume that
the average delay C̄(Λ) can be well fitted by a (N − 2)-order

polynomial function C(Λ) via, for example, Chebyshev least
squares approximation.

Suppose each client obtains some utility based on its request
rate λi and suffers from disutility for every unit delay experi-
enced by each of its request. Specifically, the utility of client
i is Ui(λi), where Ui(·) is an increasing, twice differentiable,
and concave function. Let Di(λi, λ−i) be the average delay
that client i experiences for all its requests. The disutility of
client i is λiDi(λi, λ−i). The net utility of client i is therefore
Ui(λi)− λiDi(λi, λ−i).

The server aims to maximize the total net utility in the
system, which can be written as

∑
i Ui(λi) − λiDi(λi, λ−i).

Since the average delay of all requests is the weighted average∑
i λiDi(λi,λ−i)

Λ ≈ C(Λ), we say that the server aims to
maximize

∑
i Ui(λi)−ΛC(Λ). Note that the average delay of

all requests is always infinite when the system is overloaded
with Λ ≥ µ. To simplify discussions, we assume that λ has
the properties that Λ :=

∑
i λi < (1 − ε)µ, where ε > 0 is a

predetermined value known to the server. We further assume
that λi > λδ for all i, for some predetermined λδ > 0
known to the server. These assumptions are not restrictive
since we can choose ε and λδ arbitrarily close to 0. The
server’s optimization problem is thus formally:

maximize
N∑
i=1

Ui(λi)− ΛC(Λ),

subject to Λ < (1− ε)µ,
λi > λδ,∀i. (1)

Since Ui(·) is concave, C(·) is convex, and the feasible
region Sλ := {λ |Λ < (1− ε)µ, λi > λδ} is a convex set, the
problem of maximizing the total net utility can be easily solved
when one has complete information of all these functions. In
practice, however, the function Ui(·) is the private information
of client i, and a strategic client may not reveal its true Ui(·).
Now consider a game where, given λ, the server determines
the average delay experienced by each client i, Di(λi, λ−i),
with the constraint that

∑
i λiDi(λi, λ−i) ≥ ΛC(Λ). On

the other hand, given λ−i and Ui(·), each client i aims to
maximize its own net utility by solving

λ̃i = argmax
λi

Ui(λi)− λiDi(λi, λ−i). (2)

Note that we allow
∑
i λiDi(λi, λ−i) to be strictly larger than

ΛC(Λ), which can be achieved by employing a policy that
is not work-conserving and may arbitrarily delay, or drop,
packets.

We say that the system reaches a Nash Equilibrium if no
client in the system can improve its own net utility unilaterally.

Definition 1. A vector λ̃ := [λ̃i] is said to be a Nash
Equilibrium if λ̃i = argmaxλi

Ui(λi)− λiDi(λi, λ̃−i),∀i.

Let λ∗ := [λ∗i] ∈ Sλ be the vector that maximizes the total
net utility, then the server’s problem is to find the rule that
allocates delays, [Di(·)], to induce optimal choices of [λi].

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Definition 2. A rule of allocating delays, [Di(·)], is said to
be efficient if λ∗ is the only Nash Equilibrium.

IV. EFFICIENT DELAY ALLOCATION

In this section, we propose an efficient delay allocation rule.
We first study some basic properties of the optimal vector
λ∗ = [λ∗i] that maximizes total net utility

∑
i Ui(λi)−ΛC(Λ).

We have

∂

∂λi

[∑
i

Ui(λ
∗
i)− Λ∗C(Λ∗)

]
= 0. (3)

Hence,

U ′i(λ
∗
i) =

∂

∂λi
Λ∗C(Λ∗). (4)

On the other hand, if λ∗ is also the Nash Equilibrium
under some delay allocation rule [Di(·)], then λ∗i maximizes
Ui(λi)− λiDi(λi, λ

∗
−i), and we have

∂

∂λi
[Ui(λ

∗
i)− λ∗iDi(λ

∗
i , λ
∗
−i)] = 0. (5)

Hence,

U ′i(λ
∗
i) =

∂

∂λi
λ∗iDi(λ

∗
i , λ
∗
−i). (6)

Combining the above equations yields

∂

∂λi
[Λ∗C(Λ∗)− λ∗iDi(λ

∗
i , λ
∗
−i)] = 0. (7)

Eq. (7) suggests that an efficient rule of delay allocation should
ensure that ΛC(Λ)−λiDi(λi, λ−i) is only determined by λ−i,
and is not influenced by λi. This implication has indeed been
formally stated and proved in [4]:

Proposition 1. [Di(·)] is efficient if and only if there exists
functions Ri : RN−1 → R such that for all i,

λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i), (8)

and ∑
i

λiDi(λi, λ−i) = ΛC(Λ). (9)

Recall that C(Λ) is a (N −2)-order polynomial. Therefore,
ΛC(Λ) is a (N − 1)-order polynomial, and can be expressed
as ΛC(Λ) = c1Λ + c2Λ2 + · · ·+ cN−1ΛN−1.

We now define some helpful terminology. First define the
sets

P j :=
{
p = [pi]

∣∣ pi is a nonnegative integer,
N∑
i=1

pi = j
}
,

(10)
P ji := {p ∈ P j

∣∣ pi = 0}, (11)

for j = 1, . . . , N − 1 and i = 1, . . . , N . Next, for p ∈ P j , let
G(p) be the number of nonzero coordinates of p: G(p) :=∣∣{l ∣∣ pl 6= 0

}∣∣. Note that G(p) is at most j, for all p ∈ P j .
Finally, define

(
j
p

)
:= j!

p1!···pN ! .
By the multinomial expansion theorem, it holds that

(λ1 + · · ·+ λN)j =
∑
p∈P j

(
j

p

)
λp11 · · ·λ

pN
N . (12)

We now introduce our delay allocation rule. Let

βji = cj
∑
p∈P j

i

N − 1

N −G(p)

(
j

p

)
λp11 · · ·λ

pN
N , (13)

for j = 1, . . . , N − 1. We then choose Ri(λ−i) as

Ri(λ−i) =
N−1∑
j=1

βji , (14)

and
λiDi(λi, λ−i) = ΛC(Λ)−Ri(λ−i). (15)

Theorem 1. The rule of delay allocation [Di(·)] as defined
by Eq. (14) and (15) is efficient.

Proof: Since pi = 0 for all p ∈ P ji , it is obvious that
Ri(λ−i) =

∑N−1
j=1 βji is not influenced by λi.

Next, we check the condition
∑
i λiDi(λi, λ−i) = ΛC(Λ).

By Eq. (13), for every p ∈ P j , the term N−1
N−G(p)

(
j
p

)
λp11 · · ·λ

pN
N

appears in βji if and only if pi = 0, and there are
(N − G(p)) different i with pi = 0. Therefore, the term
N−1

N−G(p)

(
j
p

)
λp11 · · ·λ

pN
N appears in [βji] a total number of

(N −G(p)) times. We then have
N∑
i=1

Ri(λ−i) =
N∑
i=1

N−1∑
j=1

βji

=

N−1∑
j=1

cj
∑
p∈P j

(N − 1)

(
j

p

)
λp11 · · ·λ

pN
N

= (N − 1)ΛC(Λ), (16)

and∑
i

λiDi(λi, λ−i) = NΛC(Λ)−
N∑
i=1

Ri(λ−i) = ΛC(Λ).

(17)
Therefore, by Proposition 1, the rule of delay allocation [Di(·)]
as defined by Eq. (14) and (15) is efficient.

V. EFFICIENT DELAY SCHEDULING

In this section, we propose an online scheduling policy that
ensures that the actual delay experienced by each client is the
same as its allocated delay, as described in Eq. (14) and (15).
Before introducing the policy, we note that the allocated delays
of some clients might be negative following the efficient delay
allocation rule [Di(·)]. We call those clients with negative
allocated delays “VIP” clients, because their allocated delays
are among the smallest. Since it is impossible to drive the
delays of VIP clients to negative in practice, we resort to
ensure their delays are as close to zero as possible. If there
exists one or more VIP clients with unserved requests, the
server will schedule the VIP client with the largest number
of unserved requests. Otherwise, we will schedule one of the
non-VIP clients.

From now on, in this section, we focus on the non-VIP
clients, and assume that gi := λiDi > 0 for all i. According to
Little’s law, gi = λiDi can be interpreted as the target average

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

queue length (i.e. number of requests in the system) of client
i, which is known to the server. Based on this observation, we
propose the following maximum-relative-queue-length (MRQ)
policy:

Definition 3 (MRQ). Let Qi(t) be the queue length of client
i at time t. At time t, the MRQ policy schedules the client
with the largest relative queue length, defined as Qi(t)/gi,
breaking tie by scheduling the client with the lowest ID.

The intuition behind MRQ is that by always scheduling
the client with the largest relative queue length, eventually all
relative queue lengths are equal on average in steady state, or
equivalently, the average queue length of each client is roughly
the same as its target queue length.

Below we will show that the MRQ policy indeed achieves
the desirable efficient delay allocation in the heavy traffic
regime.1 In particular, we show that the deviation of the actual
average delay from the target delay is bounded for each client
i, regardless of the difference between the total request rate
Λ and the service rate µ. When Λ approaches µ, the actual
average delay goes to infinity, and therefore the deviation
becomes negligible compared to the actual average delay. Our
technical approach is similar to the state space collapse results
in the queueing theory literature [17].

Let g := [gi] be the vector of target queue lengths for all
clients. Let ĝ := g/

∑
i gi be the normalized vector of g such

that ĝi > 0 is the fraction of target queue length for client
i and

∑
i ĝi = 1. Define the weighted inner product of two

vectors x and y by:

〈x,y〉 :=
N∑
i=1

xiyi
ĝi

,

and the norm of a vector x by:

‖x‖ :=
√
〈x,x〉.

Note that ‖ĝ‖ = 1 and thus ĝ is the unit vector in the direction
of g.

Let Q(t),A(t), and S(t) be the vector of queue lengths,
arrivals, and services respectively for all clients at time t. To
simplify discussions, we assume that time is slotted and the
duration of a time slot is τ . Moreover, in each time slot, each
client can generate at most one request, and the server can
serve at most one request. This assumption is not restrictive
as we can set τ to be arbitrarily small. Next we define the
generalized projection of Q(t) onto g, denoted by Q‖(t), as
follows:

Q‖(t) := 〈Q(t), ĝ〉ĝ =
N∑
i=1

Qi(t)ĝ.

Since the total queue length is
∑
iQi(t), the queue length

of each client i is exactly the i-th element of Q‖(t) if we
allocate queue lengths proportionally to g. Therefore, Q‖(t)

1On the other hand, if the traffic is light and queues are not built up, it
is not quite necessary to employ an advanced scheduling policy. The clients
will also increase their request rates to maximize their net utilities.

can be thought of as the vector of target queue lengths of all
clients under perfect state space collapse.

The deviation Q⊥(t) of actual queue lengths Q(t) from the
target queue lengths Q‖(t) is defined as:

Q⊥(t) := Q(t)−Q‖(t).

Now we introduce a helpful lemma to prove the state space
collapse property. Our proof is based on the Lyapunov drift
techniques. First, define the following Lyapunov functions:

V⊥(t) := ‖Q⊥(t)‖,W (t) := ‖Q(t)‖2,W‖(t) := ‖Q‖(t)‖
2
.

The respective drifts are defined as follows:

∆V⊥(t) := V⊥(t+ τ) − V⊥(t)
∆W (t) := W (t+ τ) − W (t)

∆W‖(t) := W‖(t+ τ) − W‖(t)

The following lemma, adapted from Lemma 7 in [17],
shows that the drift ∆V⊥(t) can be bounded by ∆W (t) and
∆W‖(t), and absolutely bounded.

Lemma 1. We have

∆V⊥(t) ≤ 1

2‖Q⊥(t)‖
(∆W (t)−∆W‖(t)), (18)

and

|∆V⊥(t)| ≤ 2

√
N

ĝmin
, (19)

where ĝmin := mini ĝi.

The proof is similar to that of Lemma 7 in [17] and is
omitted here.

Since we are considering a single server system, it is easy
to see our MRQ policy stabilizes the queues of all clients
as long as Λ < µ. Therefore, Q(t) converges to a limiting
random vector Q̄ in steady state.

Consider the following limiting queueing process: Fix a
vector ĝ of unit length with ĝi > 0, we consider all systems
whose allocated delays satisfy g/

∑
i gi = ĝ. Each system is

indexed by ε := µ − Λ(ε), where Λ(ε) is the total request
arrival rate of the system. We use Q̄(ε) to denote the random
vector of queue lengths in steady state for the system, and use
Q̄

(ε)
⊥ to denote the deviation in steady state. The effectiveness

of MRQ is formally stated in the following theorem:

Theorem 2. The efficient delay allocation rule is enforced by
the MRQ scheduling policy in the heavy traffic regime. That
is, there exists a sequence of finite integers {Nr} such that
E
[∥∥∥Q̄(ε)

⊥

∥∥∥r] ≤ Nr for all r = 1, 2, . . . and for all ε > 0.

Proof: Below the superscript (ε) is omitted for brevity.
By [17, Lemma 1], we only need to show the Lyapunov drift
∆V⊥(t) is 1) negative when ‖Q⊥(t)‖ is sufficiently large, and
2) absolutely bounded. Lemma 1 has shown that 2) is satisfied.
Moreover, 1) can be reduced to bound ∆W (t) and ∆W‖(t).

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

Consider E [∆W (t) | Q] := E [∆W (t) | Q(t) = Q].

E [∆W (t) | Q]

= E
[
‖Q(t+ τ)‖2 − ‖Q(t)‖2

∣∣∣ Q]
= E

[
‖(Q(t) +A(t)− S(t))

+‖2 − ‖Q(t)‖2
∣∣∣ Q]

≤ E
[
‖Q(t) +A(t)− S(t)‖2 − ‖Q(t)‖2

∣∣∣ Q]
≤ 2E [〈Q(t),A(t)− S(t)〉 | Q] +K1,

(20)

where (·)+ := max{0, ·} and K1 is a bounded constant. Below
we will omit (t) in the derivation for brevity.

Given a request rate vector λ, define a hypothetical service
rate vector µ := λ + εĝ, where ε > 0. Note that µΣ :=∑
i µi = Λ + ε = µ. Recall µ is the service rate the server

can provide.
Next, we bound the term E [〈Q,A− S〉 | Q] in Eq. (20).

Without loss of generality, suppose at time t, client 1 has the
largest relative queue length, that is Q1(t)/g1 ≥ Qi(t)/gi for
all i. Note that by the definition of the MRQ scheduling policy,

〈Q,E [S | Q]〉 =
Q1

ĝ1
µ ≥ Qi

ĝi
µ.

Therefore,

E [〈Q,A− S〉 | Q] = 〈Q,λ− µ〉+ 〈Q,µ− E [S | Q]〉

= −ε‖Q‖‖ −
N∑
i=1

µi

∣∣∣∣Qiĝi − Q1

ĝ1

∣∣∣∣
≤ −ε‖Q‖‖ − µmin

N∑
i=1

∣∣∣∣Qiĝi − Q1

ĝ1

∣∣∣∣,
(21)

where µmin := mini µi.
Since 0 < ĝi < 1 for all i, we know ĝ2

i < ĝi, and thus

N∑
i=1

∣∣∣∣Qiĝi − Q1

ĝ1

∣∣∣∣ ≥
√√√√ N∑

i=1

(
Qi
ĝi
− Q1

ĝ1

)2

≥
∥∥∥∥Q− Q1

ĝ1
ĝ

∥∥∥∥,
Hence,

E [〈Q,A− S〉 | Q] ≤ −ε‖Q‖‖ − µmin

∥∥∥∥Q− Q1

ĝ1
ĝ

∥∥∥∥
≤ −ε‖Q‖‖ − µmin‖Q⊥‖
≤ −ε‖Q‖‖ − δ‖Q⊥‖,

(22)

for any δ such that 0 < δ < mini λi.
Substituting Eq. (22) to Eq. (20), we get

E [∆W (t) | Q] ≤ −2ε‖Q‖‖ − 2δ‖Q⊥‖+K1. (23)

Next, we obtain a lower bound of ∆W‖(t). Consider
E
[
∆W‖(t)

∣∣ Q] := E
[
∆W‖(t)

∣∣ Q(t) = Q
]
. Let Ψ(t) be

the unused service at time t such that Q(t + 1) = Q(t) +

A(t)− S(t) + Ψ(t). Note that 0 ≤ ψi ≤ 1 for all i.

E
[
∆W‖(t)

∣∣ Q] =E
[
〈ĝ,Q+A− S + Ψ〉2 − 〈ĝ,Q〉2

∣∣∣ Q]
=E

[
2 〈ĝ,Q〉 〈ĝ,A− S〉+ 〈ĝ,A− S〉2

+2 〈ĝ,Q+A− S〉 〈ĝ,Ψ〉+ 〈ĝ,Ψ〉2
∣∣∣ Q]

≥2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉
− 2E [〈ĝ,S〉 〈ĝ,Ψ〉 | Q]

≥2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉 −K2,
(24)

where K2 := 2N2 considering Si ≤ 1 and ψi ≤ 1 for all i.
The first term can be further reduced as follows:

2 〈ĝ,Q〉 〈ĝ,λ− E [S | Q]〉 = 2‖Q‖‖(Λ− µ) = −2ε‖Q‖‖.
Therefore,

E
[
∆W‖(t)

∣∣ Q] ≥ −2ε‖Q‖‖ −K2. (25)

By taking expectation of Eq. (18), and substituting Eq. (23)
and (25) into it, we have

E [∆V⊥(t) | Q] ≤ −δ +
K1 +K2

2‖Q⊥‖
,

which establishes the negative drift of E [∆V⊥(t) | Q]. Along
with the absolute boundness provided by Lemma 1, we can
conclude that the conditions for Lemma 1 of [17] are satisfied,
and thus there exists a sequence of finite integers {Nr} such
that E

[∥∥∥Q̄(ε)
⊥

∥∥∥r] ≤ Nr for all r = 1, 2,
Remark: Since the constants in these bounds are all inde-

pendent of ε, the deviation of the limiting queue length vector
Q̄(ε) from the target queue length vector g becomes negligible
as ε → 0. Therefore, we observe the state space collapse
behavior of relative queue lengths, and the efficient delay
allocation rule is enforced by our MRQ scheduling policy in
the heavy traffic regime.

VI. DISTRIBUTED RATE CONTROL PROTOCOL

Theorem 1 has shown that our proposed delay allocation
rule in Section IV is efficient. That is, suppose there is a unique
vector λ∗ = [λ∗i] that maximizes total net utility

∑
i Ui(λi)−

ΛC(Λ) in Eq. (1), then λ∗ is also the unique vector of Nash
Equilibrium under our delay allocation rule. In this section,
we propose a distributed rate control protocol for clients to
dynamically adjust their rates so as to converge to the Nash
Equilibrium.

Our protocol is based on the projected gradient method [18],
a simple yet effective method to solve convex optimization
problems. The projected gradient method consists of two steps:
initialization and iterative update. In the initialization step, the
method arbitrarily chooses a vector λ(1) ∈ Sλ. Recall that
Sλ is the feasible region for λ. In each subsequent iteration
k, the projected gradient method updates λ by:

λ̂(k + 1) = λ(k) +
κ(k)

η(k)
∇

[
N∑
i=1

Ui(λi)− ΛC(Λ)

]
,

λ(k + 1) = P (λ̂(k + 1)),

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

where κ(k) > 0 is the step size at the k-th iteration, η(k) is
the Euclidean norm of the gradient at the k-th iteration, and
P is the projection to the convex set Sλ. Note that the index
k of iteration should not be confused with the time slot for
scheduling. We assume a time scale separation, where rate
update happens in a more coarse time scale than scheduling,
so that there is sufficient time for the scheduling policy to
steer the clients and enforce the efficient delay allocation rule.
[18] has shown that the projected gradient method converges
to the unique optimal solution, and therefore also converges
to the Nash Equilibrium.

Theorem 3. If κ(k) satisfies
∑∞
k=0 κ(k) = ∞ and∑∞

k=0 κ
2(k) <∞, then the projected gradient method either

stops at some iteration k, or the infinite sequence {λ(k)}
generated by the method converges to the optimal point.

Note that stopping at some iteration k means the method
reaches the optimality in finite steps. However, the projected
gradient method is a centralized algorithm. In particular,
calculating the projection λ(k + 1) = P (λ̂(k + 1)) requires
the knowledge of all elements in λ̂(k+1). Below, we propose
a distributed rate control protocol that is inspired by the
projected gradient method.

Since
∂

∂λi
[ΛC(Λ)] =

d[ΛC(Λ)]

dΛ

∂Λ

∂λi
=

d

dΛ
[ΛC(Λ)],

λ̂(k + 1) can be acquired by each client updating its own
request rate:

λ̂i(k + 1) = λi(k) +
κ(k)

η(k)

[
U ′i(λi(k))− d[ΛC(Λ)]

dΛ

]
.

Note that, to facilitate the update, the server only needs
to broadcast the value of κ(k), η(k) and d[ΛC(Λ)]

dΛ in each
iteration to all clients.

To ensure that λ(k+1) satisfies both constraints Λ(k+1) ≤
(1− ε)µ and λi(k + 1) ≥ λδ , each client i further chooses

λi(k + 1) = min{max{λ̂i(k + 1), λδ}, λi(k)
(1− ε)µ

Λ(k)
}.

This step ensures that λδ ≤ λi(k + 1) ≤ λi(k) (1−ε)µ
Λ(k) , and

therefore Λ(k + 1) ≤ Λ(k) (1−ε)µ
Λ(k) = (1 − ε)µ. We also note

that, to facilitate this step, the server only needs to broadcast
the value of Λ(k) in each iteration.

The complete distributed protocol is summarized in Proto-
col 1. Compared with the centralized method, our distributed
protocol is more scalable and lightweight, since it utilizes the
broadcast nature of wireless channel and requires less resource
of the server and the channel.

Protocol 1: Distributed rate control protocol

Server: on convergence of relative queue lengths:
1. k ← k + 1
2. Broadcast Λ(k), κ(k), η(k), and d[ΛC(Λ)]

dΛ

Client i: on reception of server broadcast message:

1. Update: λ̂i ← λi + κ(k)
η(k)

[
U ′i(λi)−

d[ΛC(Λ)]
dΛ

]
2. Projection: λi ← min{max{λ̂i, λδ}, λi (1−ε)µ

Λ }

We conjecture that our distributed protocol also converges
to the Nash Equilibrium. This conjecture will be verified by
simulations in the next section.

Conjecture 1. If κ(k) satisfies
∑∞
k=0 κ(k) = ∞ and∑∞

k=0 κ
2(k) < ∞, then the distributed rate control protocol

either stops at some iteration k, or the infinite sequence
{λ(k)} generated by the protocol converges to the Nash
Equilibrium of the system.

VII. SIMULATIONS

In this section, we evaluate the performance of our overall
design via simulations. Specifically, we validate the polyno-
mial approximation assumption for average delay functions,
the state space collapse behavior of relative queue lengths
through the MRQ scheduling policy, and the optimality of
our distributed rate control protocol. For comparison, we
also consider a baseline mechanism with the classic first-
in-first-out (FIFO) policy for scheduling and centralized pro-
jected gradient method for rate control. Note that with FIFO
scheduling, each client experiences the same average delay,
i.e. Di(λi, λ−i) = C(Λ).

In our simulation, we consider two systems each with N =
10 clients and one server. Both systems have Poisson arrivals
of requests from all clients. The service time distribution
of one system is exponential, and the other is deterministic.
Hence, the two systems correspond to an M/M/1 queue and an
M/D/1 queue respectively. Each system has an average service
rate µ = 1× 103 s−1 and an initial total average request rate
Λ = 0.99µ = 0.99× 103 s−1. We round up all inter-arrival
times between two consecutive requests and service times of
requests to the nearest microsecond. We make a scheduling
decision every microsecond.

A. Polynomial Approximation

First, we evaluated the assumption that the average delay
function can be well approximated by a polynomial C(Λ).
There are two methods to obtain the average delay function:
One is via the theoretical formula, and the other is via
simulation. Here, we use the first method. For the M/M/1
queue, the theoretical average delay function is:

C̄(Λ) =
1

µ− Λ
.

For the M/D/1 queue, it is:

C̄(Λ) =
1

µ
+

Λ

2µ(µ− Λ)
.

In our simulation, we fit C̄(Λ) with ten samples in our most
interested heavy traffic region, where Λ/µ ∈ [0.95, 0.995], to
get the polynomial C(Λ). Recall that the total disutility in
terms of total average queue length is ΛC(Λ). The total disu-
tility functions before and after approximation are compared in
Fig. 1, labeled as “Theory” and “Approx” respectively. We can

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

observe that the polynomial approximation fits the theoretical
functions very well. In fact, the order of the polynomial
C(Λ) is as small as six, and the largest relative error of the
approximation is only about 2.66%.

0.95 0.96 0.97 0.98 0.99 1
0

50

100

150

200

M/M/1 Theory

M/M/1 Approx

M/D/1 Theory

M/D/1 Approx

Fig. 1. Polynomial approximation of the total disutility functions.

B. Scheduling Policy

We implemented our MRQ scheduling policy and validated
the state space collapse behavior in the simulation. We use a
new metric, the relative difference of queue lengths, defined
as: (

max
i

Qi(t)

gi
−min

i

Qi(t)

gi

)/∑
i

Qi(t)

gi

to evaluate the state space collapse performance. Theorem 2
has shown that, given the target queue length gi of each client
i, our MRQ policy ensures that the relative difference of queue
lengths converges to 0 in the heavy traffic regime.

Fig. 2 shows the evolution of the relative difference of queue
lengths for both systems for two sets of initial request rates,
“Same rate” and “Diff rates”. “Same rate” means all ten clients
have the same request rate λ = Λ/N = 99 s−1, while in “Diff
rates” we have two groups of request rates: λi = 99.6 s−1 for
i = 1, 2, . . . , 5 and 98.4 s−1 for i = 6, 7, . . . , 10. We initialize
the queue length of client i to be i2 to exhibit the convergence
of relative queue lengths more clearly. We can see that the
relative difference of queue lengths converges to 0 quickly for
each scenario.

C. Nash Equilibrium

Furthermore, we evaluated our distributed rate control pro-
tocol in the simulation. We set the utility functions for both
systems to be Ui(λi) = αwi log λi, where α = 1000 is
the common scaling coefficient for all clients, and wi’s are
different weights for different clients. We set the weights to
be in two groups: wi = 1− 5× 10−4 for i = 1, 2, . . . , 5 and
1 + 5× 10−4 for i = 6, 7, . . . , 10. Therefore, the evolution
of request rates of all the clients can be captured by those of
Client 1 and Client 10. For the step size, we let κ(k) = 1/k
for all k.

0 0.2 0.4 0.6 0.8

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

R
e
la

ti
v
e
 d

if
fe

re
n
c
e
 o

f
q
u
e
u
e
 l
e
n
g
th

s Same rate, M/M/1

Same rate, M/D/1

Diff rates, M/M/1

Diff rates, M/D/1

Fig. 2. State space collapse of relative queue lengths.

Fig. 3a and Fig. 3b shows the rate convergence performance
for the two systems respectively. We can see that for each
system, the request rates converge to two distinct values after
tens of iterations. Observe that the distributed rate control
protocol (“Dist” in the figure) has almost the same rate updates
as the projected centralized gradient method (“Cent” in the
figure). It validates our conjecture that the distributed rate
control protocol achieves the Nash Equilibrium of the system.

Fig. 4a and Fig. 4b shows the convergence performance
in terms of total net utility for the two systems. The total
net utility settles down quickly with our distributed protocol
(“MRQ, Dist” in the figures), and the evolution is again almost
the same as the centralized method (“MRQ, Cent” in the
figures). In these figures we also plot the performance of
the baseline mechanism with the FIFO scheduling policy for
comparison. We can see that the baseline mechanism also
makes the total net utility converge. However, it converges to
a suboptimal value, which indicates that the delay allocation
rule of the baseline mechanism is not efficient.

VIII. CONCLUSIONS

We have presented our non-monetary mechanism for opti-
mal rate control through efficient delay allocation. First, we
give our delay allocation rule and prove its efficiency based on
multinomial expansion. Then we propose our MRQ scheduling
policy that can enforce the delay allocation rule effectively in
the heavy traffic regime. Furthermore, we design a distributed
rate control protocol which can lead the system to Nash
Equilibrium. Finally, simulation results validate the optimality
of our mechanism and depict its convergence efficiency. We
consider to further study VIP clients in future work.

REFERENCES

[1] Cisco and/or its affiliates, “Cisco visual networking index: Global mobile
data traffic forecast update, 2015–2020,” Cisco, White Paper, Feb. 2016.

[2] I.-H. Hou and P. R. Kumar, “Utility-optimal scheduling in time-varying
wireless networks with delay constraints,” in Proc. 11th ACM Int. Symp.
Mobile Ad Hoc Networking and Computing. Chicago, Illinois, USA:
ACM, 2010, pp. 31–40.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

0 20 40 60 80 100 120

Index of iteration

98.6

98.7

98.8

98.9

99

99.1
R

e
q
u
e
s
t
ra

te

M/M/1, Dist, Client 1

M/M/1, Dist, Client 10

M/M/1, Cent, Client 1

M/M/1, Cent, Client 10

(a) M/M/1 system

0 20 40 60 80 100 120

Index of iteration

99

99.05

99.1

99.15

99.2

99.25

99.3

99.35

R
e
q
u
e
s
t
ra

te

M/D/1, Dist, Client 1

M/D/1, Dist, Client 10

M/D/1, Cent, Client 1

M/D/1, Cent, Client 10

(b) M/D/1 system

Fig. 3. Simulation results to validate rate convergence.

[3] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
1998.

[4] K. Ray and M. Goldmanis, “Efficient cost allocation,” Management
Science, vol. 58, no. 7, pp. 1341–1356, 2012.

[5] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter,
“A survey on networking games in telecommunications,” Computers &
Operations Research, vol. 33, no. 2, pp. 286–311, 2006, special issue
on Game Theory: Numerical Methods and Applications.

[6] T. Alpcan and T. Başar, “A utility-based congestion control scheme for
Internet-style networks with delay,” in IEEE INFOCOM 2003, vol. 3,
Mar. 2003, pp. 2039–2048.

[7] R. Gupta, L. Vandenberghe, and M. Gerla, “Centralized network utility
maximization over aggregate flows,” in 2016 14th Int. Symp. Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
May 2016.

[8] V. Ramaswamy, D. Choudhury, and S. Shakkottai, “Which protocol?
Mutual interaction of heterogeneous congestion controllers,” IEEE/ACM
Transactions on Networking, vol. 22, no. 2, pp. 457–469, Apr. 2014.

[9] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[10] L. A. Grieco and S. Mascolo, TCP Westwood and Easy RED to Improve
Fairness in High-Speed Networks. Springer, Berlin, Heidelberg, 2002,
vol. 2334, pp. 130–146.

[11] ——, “Performance evaluation and comparison of Westwood+, New
Reno, and Vegas TCP congestion control,” ACM SIGCOMM Comput.
Commun. Rev., vol. 34, no. 2, pp. 25–38, Apr. 2004.

[12] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,

0 20 40 60 80 100 120

Index of iteration

4.58

4.581

4.582

4.583

4.584

4.585

4.586

T
o

ta
l
n

e
t

u
ti
lit

y

10 4

MRQ, Dist
MRQ, Cent
FIFO

(a) M/M/1 system

0 20 40 60 80 100 120

Index of iteration

4.59

4.5902

4.5904

4.5906

4.5908

T
o

ta
l
n

e
t

u
ti
lit

y

10 4

MRQ, Dist
MRQ, Cent
FIFO

(b) M/D/1 system

Fig. 4. Simulation results to validate utility convergence.

architecture, algorithms, performance,” IEEE/ACM Transactions on Net-
working, vol. 14, no. 6, pp. 1246–1259, Dec. 2006.

[13] T. Groves, “Incentives in teams,” Econometrica, vol. 41, no. 4, pp. 617–
631, 1973.

[14] T. Baldenius, S. Dutta, and S. Reichelstein, “Cost allocation for capital
budgeting decisions,” The Accounting Review, vol. 82, no. 4, p. 837,
2007.

[15] H. Moulin and S. Shenker, “Serial cost sharing,” Econometrica, vol. 60,
no. 5, pp. 1009–1037, 1992.

[16] M. V. Rajan, “Cost allocation in multiagent settings,” The Accounting
Review, vol. 67, no. 3, pp. 527–545, 1992.

[17] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue
length bounds implied by drift conditions,” Queueing Systems, vol. 72,
no. 3, pp. 311–359, 2012.

[18] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the projected
subgradient method for nonsmooth convex optimization in a Hilbert
space,” Mathematical Programming, vol. 81, no. 1, pp. 23–35, 1998.

2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

