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Abstract—We study the problem of serving randomly arriving

and delay-sensitive traffic over a multi-channel communication

system with time-varying channel states and unknown statistics.

This problem deviates from the classical exploration-exploitation

setting in that the design and analysis must accommodate the

dynamics of packet availability and urgency as well as the cost

of each channel use at the time of decision. To that end, we have

developed and investigated two policies, one index-based (UCB-

Deadline) and the other Bayesian (TS-Deadline), both of which

perform dynamic channel allocation decisions that incorporate

these traffic requirements and costs. Under symmetric channel

conditions, we have proved that the UCB-Deadline policy can

achieve bounded regret in the likely case where the cost of

using a channel is not too high to prevent all transmissions,

and logarithmic regret otherwise. In our numerical studies, we

also show that TS-Deadline achieves superior performance over

its UCB counterpart, making it a potentially useful alternative

when fast convergence to optimal is important.

I. INTRODUCTION

With the advances in wireless communications, next gener-
ation communication networks are expected to serve real-time
applications that require end-to-end deadline constraints and a
large amount of throughput over fading channels. Especially
real-time multimedia applications such as voice and video
streaming possess stringent deadline constraints that require
particular emphasis. The ultra-wideband communication chan-
nels that are designed to meet these requirements, such as
millimeter-wave (mmW) channels, have highly intermittent
dynamics, which makes existing channel probing and estima-
tion techniques inapplicable. Therefore, it is crucial to develop
new communication schemes that can handle applications with
deadline constraints and large throughput demands in the
absence of channel statistics and channel state information.

In wireless communication schemes such as IEEE 802.11
and 5G millimeter-wave (mmW) cellular systems, availability
of multiple orthogonal channels enables a user to simulta-
neously utilize multiple channels to increase the quality of
communication in various aspects [1], [2]. In [1], it is shown
that multi-channel operation provides significant increase in
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network capacity, which can be exploited to meet the increas-
ing demand for throughput. In mmW cellular communications,
multi-channel scenario is expected to overcome the intermit-
tence problem of mmW channels due to blockage, which
particularly hinders applications with quality of service (QoS)
requirements [2], [3]. As it is possible to equip a single node
with multiple radio interfaces due to the reduced hardware
costs, multi-channel communication scheme offers a feasible
solution to serve applications with deadline constraints and
large throughput demand [1], [4]. On the other hand, oper-
ational costs, such as power consumption, impose a critical
constraint in the number of active interfaces. Thus, it is im-
portant to activate a plausible number of channels dynamically
depending on queue-length and deadline constraints so as to
increase throughput while keeping the operational costs at
acceptable levels.

In conventional communication systems, there are efficient
channel estimation techniques that provide channel state in-
formation (CSI) for rate and power allocation policies [5].
However, these methods are inapplicable in millimeter-wave
communication systems as the channels are highly intermit-
tent and fast-varying [2], [6], [7], [8]. This necessitates the
development of online learning algorithms that rely on channel
feedback in the absence of channel state information and
channel statistics.

In this paper, we investigate the problem of dynamic channel
allocation for a single user in a multi-channel network with
deadline constraints and service costs in the absence of channel
statistics and CSI. Our main contribution is two online learning
algorithms that converge to the optimal solutions with small
regret by using only the channel feedback. In traditional
communication systems, efficient rate and power allocation
schemes that base the decisions on CSI and queue-lengths
exist [9], [10], [11], [12], [13], [14]. However, these methods
are built on the key assumption that CSI is available at the
time of decision, therefore they are not applicable in the
emerging communication scenarios where CSI and channel
statistics are unknown. There is an interesting body of work
which considers the online learning problem for rate allocation
based on success/fail feedback [15], [16]. These works do
not apply to our context since they do not provide short-term
performance guarantees, such as regret.
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There is a large body of work in the design and analysis
of online learning algorithms that optimize short-term per-
formance in the context of multi-armed bandits (MAB) [17],
[18]. Our work deviates from the context of classical stochastic
bandits as the revenue of the activated arms are coupled, the
controller has the incentive to activate no channels due to the
cost, and there is a strong dependence on the queue-length. In
[20], learning problem is investigated with a regret definition
based on queueing-delay. This work does not apply to our
setting as it does not consider deadline-constrained traffic.

The organization of this paper is as follows. In Section II,
we present the system model for the multi-channel network
with deadline constraints and service costs along with the
definitions of admissibility, optimal policy and regret. In
Section III, first we characterize the optimal policy for a
particular definition of throughput, then we propose two online
learning algorithms, one index-based (UCB-Deadline) and the
other Bayesian (TS-Deadline), that achieve bounded regret in
the interesting case that cost is small enough for channel use.
In Section IV, we provide performance guarantees for UCB-
Deadline. Finally, in Section V, we evaluate the regret perfor-
mances of the proposed algorithms in specific communication
scenarios.

II. SYSTEM MODEL

We consider a discrete-time system. The packets arrive into
the system according to an arrival process A(t) which is
independent and identically distributed (iid) over a finite set
A = {0, 1, . . . , A

max

} with probability distribution P(A(t) =

a) = ↵

a

for a 2 A. The packets have a lifetime of one
timeslot, and will be lost if they are not served immediately.

The packets in the queue can be transmitted by K (possibly
infinite) independent fading channels. The rate C

k

(t) of chan-
nel k evolves according to an iid Bernoulli process with mean
µ, i.e., C

k

(t)

iid⇠ Ber(µ) for k = 1, 2, . . . ,K. This Bernoulli
channel model reflects the sharp difference between line-of-
sight (LOS) and non-line-of-sight channel (NLOS) states in
millimeter-wave communications [2], [6], [7], [8]. C

k

(t) is
revealed via ACK or NACK signals after the transmission only
if channel k is activated at time t. The system is illustrated in
Figure 1.

In order to increase the reliability of communication under
channel uncertainty, more channels than the queue-length can
be activated at every timeslot. The number of channels to be
activated at a timeslot is determined by a centralized controller
who has the knowledge of queue-length prior to the decision
and also that all channels are Bernoulli distributed with the
same mean, µ, which is unknown and learned over time.
Each channel use incurs a constant cost of d 2 [0, 1], which
measures the operational costs associated with each channel
use, such as power. It is assumed that d is known by the
controller. If k channels are activated and there are a packets
in the queue at timeslot t, the revenue is as follows:

X

(a,k)

(t) = ⌧

(a,k)

(t)� k · d, (1)

A(t) 

C1(t) 

C2(t) 

CK(t) 

."

."

."

D(t) 
Dropped packets 

Controller

ACK/NACK from the channels used at t-1

Receiver

Fig. 1. The multi-channel network with symmetric Bernoulli channels. At
the end of each transmission, CSI of each activated channel is revealed to the
controller via ACK/NACK signals.

where ⌧

(a,k)

(t) is the throughput at time t when a packets
arrive and k channels are activated. Note that ⌧

(a,k)

(t)  a

for any k and a, which implies that X

(a,k)

(t) < 0 for all
a 2 A and k >

A

max

d

since throughput is bounded and the
cost of adding a new channel increases linearly. The maximum
number of channels that can be activated at any timeslot is
denoted by K

max

= min{K,

A

max

d

}. An example for ⌧ is the
number of successfully transmitted packets out of a, which
has the following expectation:

E⌧
(a,k)

(t) =

8
<

:

kµ, if k  a

kP
i=1

(i ^ a)

�
k

i

�
(1� µ)

k�i

µ

i

, if k > a.

(2)

The decision variable is the number of activated channels at
each timeslot. Let I

a

(t) be the number of activated channels
at time t when there are a 2 A packets in the queue. Then,
the policy I is defined as follows:

I

A(t)

(t) =

X

a2A
I{A(t)=a}Ia(t), (3)

where I is the indicator function. Also, let U(t) denote the
set of channels activated at time t. An admissible policy I

is based on the knowledge of channel realizations until and
excluding t, and arrivals until and including t:

I{I
A(t)

(t)=k} 2 �({C
i

(s) : i 2 U(s), s < t}, {A(s) : s  t}),

for all k = 1, 2, . . . ,K, where �({X
i

}J
i=1

) denotes the �-
field generated by a collection of random variables X

i

, i =

1, 2, . . . , J .
If a genie reveals the mean µ to the controller, the optimal

policy that maximizes the revenue given that A(t) = a is as
follows:

I

⇤
a

(µ) = max

1kK

E[X
(a,k)

(t)]. (4)

Note that for fixed a and k, E[X
(a,k)

(t)] is constant over time
because of the iid nature of fading channels. Therefore, the
time index will be dropped in such cases.
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As the a priori knowledge of µ is absent, an algorithm has
to learn the mean, and maximize the revenue simultaneously.
Pseudo-regret, which will be simply referred to as regret
throughout this paper, is a common measure to evaluate the
performance of learning algorithms [17], [19], [18]. The regret
under an admissible policy I is defined as follows:

¯

R

n

= E
h nX

t=1

X

a2A
I{A(t)=a}(X(a,I

⇤
a

(µ))

(t)�X

(a,I

a

(t))

(t))

i

=

X

a2A
↵

a

· E
h nX

t=1

(X

(a,I

⇤
a

(µ))

(t)�X

(a,I

a

(t))

(t))

i
.

(5)

In words, regret is defined as the cumulative difference be-
tween the maximum expected revenue given the mean µ and
the expected revenue under policy I in n timeslots.

The objective in this paper is to design policies that provide
low regret. In the following section, we propose algorithms
that achieve this goal.

III. OPTIMAL POLICY AND ALGORITHM DESIGN

In this section, we will investigate the behavior of the
optimal policy and introduce two algorithms that achieve desir-
able regret performances for the exploration-and-exploitation
problem in the deadline-constrained multi-channel network
described in the previous section.

A. Optimal Policy

The optimal policy is illustrated as a function of µ in Figure
2 under the throughput given in (2) for the case A

max

= 6

and d = 0.2.
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Fig. 2. Optimal policy as a function of µ for the case A

max

= 6 and
d = 0.2. The behavior is highly dependent on the queue-length a.

Note that the optimal number of channels to maximize revenue
increases up to some µ to increase reliability, then decreases
since an additional channel is too costly as the current ones are
reliable enough. Also, note that I⇤

0

(µ) = 0 for all µ 2 [0, 1].

B. UCB-Deadline

For the exploration-and-exploration problem at hand, learn-
ing must be reinforced when the confidence is low to avoid
linear regret in certain sample paths on which exploration is
stopped at an early stage, and the estimates must converge to
the true mean after a sufficiently long time for achieving small
regret in the long-run. Utilization of upper confidence bound
(UCB) in the absence of the true mean reinforces learning
through ”optimism in the face of uncertainty” [17], therefore
is a suitable strategy in algorithm design. In the following, we
define a policy named UCB-Deadline that makes use of UCB
to determine the number of channels to be activated.

Definition 1 (UCB-Deadline). Let T (t) =
P

t

s=1

I

A(s)

(s) be
the number of activated channels until timeslot t,

m(t) =

1

T (t)

tX

s=1

X

i2U(s)

C

i

(s), (6)

be the sample mean of activated channels until timeslot t, and
c

t,s

=

q
� log t

2s

for � > 0. UCB at timeslot t is defined as
follows:

µ̄

T (t�1)

(t) = m(t� 1) + c

t,T (t�1)

. (7)

Let µ̂

s

be the sample mean of channel realizations after
s channel uses. Since all channels are iid and symmetric,
m(t � 1)

d

= µ̂

T (t�1)

, which will provide simplicity in the
performance analysis.

With these definitions, UCB-Deadline with parameter �,
denoted as UCB-Deadline(�), is summarized in Algorithm 1,

Algorithm 1: UCB-Deadline(�)
input: � > 0

Initialization: T (0) = 1; m(0) ⇠ Ber(µ);
for t = 1, 2, . . . , n do

µ̄

T (t�1)

(t) = m(t� 1) + c

t,T (t�1)

;
I

A(t)

(t) = I

⇤
A(t)

(µ̄

T (t�1)

(t));
T (t) = T (t� 1) + I

A(t)

(t);

m(t) =

1

T (t)

·
⇣
T (t� 1) ·m(t� 1) +

I

A(t)

(t)P
i=1

C

i

(t)

⌘
;

where (I

⇤
a

)

a2A is the optimal policy defined in (4).

C. TS-Deadline

In problems that involve exploration-and-exploitation trade-
off, Thompson Sampling provides effective solutions that
reinforce learning through randomization [21], [22]. In the
following, we propose an algorithmic prescription to the
learning problem at hand based on Thompson Sampling, which
is abbreviated as TS-Deadline.

Definition 2 (TS-Deadline). Let Beta(✓

0

, ✓

1

) denote the
beta distribution with parameters ✓

i

> 0 for i = 0, 1

whose probability density function is given by f(x; ✓

0

, ✓

1

) =
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Algorithm 2: TS-Deadline

Initialization: ✓
0

(0) = 1, ✓

1

(0) = 1

for t = 1, 2, . . . , n do

µ̄

TS

(t) ⇠ Beta(✓

0

(t� 1), ✓

1

(t� 1));
I

A(t)

(t) = I

⇤
A(t)

(µ̄

TS

(t));

✓

k

(t) = ✓

k

(t� 1) +

I

A(t)

(t)P
i=1

I{C
i

(t)=k}, k = 0, 1.

�(✓

0

+✓

1

)

�(✓

0

)�(✓

1

)

(1� x)

✓

0

�1

x

✓

1

�1 [21]. TS-Deadline is described in
Algorithm 2.

In the following section, performance guarantees under
UCB-Deadline will be presented in the form of regret upper
bounds.

IV. PERFORMANCE ANALYSIS OF UCB-DEADLINE

In this section, we will provide upper bounds for the regret
under UCB-Deadline. The strategy to accomplish this is as
follows: first we will provide two lemmas in a general setting,
and then use these lemmas to upper bound the regret under
UCB-Deadline.

Lemma 1. Consider a case where the optimal policy is
I

⇤
a

(µ) = k

a

·I{µ>d} for some k

a

2 {1, 2, . . . ,K
max

}, 8a 2 A.
Let T

0

(n) =

P
n

t=1

I{I
A(t)

(t)=0} be the number of timeslots
when all channels are idle under UCB-Deadline. Under UCB-
Deadline with � � 3, the following upper bounds are obtained
for any a 2 A:

1) If µ > d, then E[T
0

(n)]  K

max

⇡

2

6

,
2) If µ  d, then

E[n� T

0

(n)]  2� log n

(d� µ)

2

+K

max

⇡

2

6

,

for all n � 1.

Lemma 1 implies that in a binary decision case, UCB-Deadline
makes a bounded number of wrong decisions if the true mean
is higher than the cost, and a logarithmically growing number
of wrong decisions over time otherwise in the expected sense.

Lemma 2. Fix a 2 A. Let ⌧ l
a

< ⌧

u

a

be two given constants in
[0, 1]. Consider the following case:

I

⇤
a

(µ) =

8
><

>:

0, if µ < ⌧

l

a

k

⇤
a

, if µ 2 [⌧

l

a

, ⌧

u

a

]

k

a

, if µ > ⌧

u

a

.

(8)

for some k

a

, k

⇤
a

> 0. Assume µ 2 [⌧

l

a

, ⌧

u

a

]. Under UCB-
Deadline with � � 4, the following upper bounds hold for
all n � 1:

1) E[
P

n

t=1

I{I
a

(t)=0}]  K

max

⇡

2

6

.
2) E[

P
n

t=1

I{I
a

(t)=k

a

}]  K

max

⇡

2

6

+ M(

(µ�⌧

u

a

)

2

2�

) < 1,
where

M(✏) = t

✏

+K

max

· ⇡
2

2

1X

t=1

1

(t� log(t+ 1)/✏)

2

and t

✏

= inf{t : t� log(t+1)

✏

> 0}.

Lemma 2 says that if the true mean is in an interval with
nonempty interior so that the correct decision can be made
after sufficient concentration around the mean, then the num-
bers of wrong decisions under UCB-Deadline are bounded in
both directions in the expected sense.

Proofs of Lemma 1 and Lemma 2 will be given in Appendix.
The following theorem provides performance guarantees

under UCB-Deadline.

Theorem 1 (Regret Upper Bounds for UCB-Deadline). Let
k

min

a

= argmin

k=0,1,...,K

max

EX
(a,k)

, 8a 2 A. Then, the following

upper bounds hold for the regret under UCB-Deadline with
parameter � � 4.

1) If µ < d, then

¯

R

n


X

a2A
↵

a

(�EX
(a,k

min

a

)

) ·
⇣
2� log n

(d� µ)

2

+K

max

⇡

2

6

⌘
.

(9)
2) If µ > d, let ⌧ l

a

 µ  ⌧

u

a

be the largest interval such
that I⇤

a

(µ̃) = I

⇤
a

(µ), 8µ̃ 2 [⌧

l

a

, ⌧

u

a

] for any a 2 A. Then,

¯

R

n


X

a2A
↵

a

⇣
EX

(a,I

⇤
a

(µ))

� EX
(a,k

min

a

)

⌘

· (K
max

⇡

2

3

+M

⇣
(µ� ⌧

u

a

)

2

2�

⌘
). (10)

Proof. 1) Note that µ < d implies I

⇤
a

(µ) = 0, 8a 2 A.
Thus, the regret is upper bounded by using (5) as
follows:

¯

R

n

=

X

a2A
↵

a

· E
h nX

t=1

�X

(a,I

a

(t))

(t)

i


X

a2A
↵

a

· E[
nX

t=1

�X

(a,k

min

a

)

(t) · I{I
a

(t)6=0}]

(a)

=

X

a2A
↵

a

E[�X

(a,k

min

a

)

] · E[
nX

t=1

I{I
a

(t)6=0}]

=

X

a2A
↵

a

E[�X

(a,k

min

a

)

] · E[n� T

0

(n)]

(b)


X

a2A
↵

a

E[�X

(a,k

min

a

)

]

·( 2� log n

(d� µ)

2

+K

max

⇡

2

6

),

where (a) follows from the fact that X

(a,k

min

a

)

(t) is
a function of {C

k

(t)}Kmax

k=1

and therefore independent
from I

a

(t) and its expectation is time-invariant, and (b)
follows from Lemma 1.

2) Let �X

max

a

= E[X
(a,I

⇤
a

(µ))

(t) � X

(a,k

min

a

)

(t)] be the
maximum expected error for any a 2 A and k 2
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{0, 1, . . . ,K
max

} at any timeslot t. Then, the regret
under UCB-Deadline can be upper bounded as follows:

¯

R

n


X

a2A
↵

a

�X

max

a

nX

t=1

E
h
I{I

a

(t)6=I

⇤
a

(µ)}

i


X

a2A
↵

a

�X

max

a

nX

t=1

E
h
I{µ̄

T (t�1)

(t)<⌧

l

a

}

+I{µ̄
T (t�1)

(t)>⌧

u

a

}

i

(a)


X

a2A
↵

a

�X

max

a

nX

t=1

E
h
I{I

a

(t)=0}

+I{I
a

(t)= min

µ̂>⌧

u

a

I

⇤
a

(µ̂)}

i

(b)


X

a2A
↵

a

�X

max

a

(K

max

⇡

2

3

+M(

(⌧

u

a

� µ)

2

2�

)),

where (a) follows from the fact that minimal learning
and maximal possible regret per timeslot maximize the
overall regret, and (b) is a direct application of Lemma
2.

Theorem 1 implies that the regret under UCB-Deadline is
bounded if channel usage is feasible and decision errors can
be eliminated as a result of the concentration around the true
mean after sufficiently many trials. This is an interesting result
since the regret is logarithmic in most classical MAB settings
whereas we have a bounded regret in this case [17], [18].

As an illustrative example, we will consider the case
A

max

= 2 and K

max

= 2 in the rest of this section. For
this case, the decision regions are given in Figure 3.

0 0.2 0.4 0.6 0.8 1
d

0

0.2

0.4

0.6

0.8

1

7 I$1 (7) = 2

I$1 (7) = 1

I$1 (7) = 0

=u
1

= l
1

Fig. 3. Optimal decision regions I

⇤
1 (µ) for the case of A

max

= 2 and
K

max

= 2. The black, red and blue dashed lines indicate I

⇤
1 (µ) = 0,

I

⇤
1 (µ) = 1, I⇤1 (µ) = 2, respectively for d = 0.2.

For this example, ⌧

l

1

=

1

2

�
q

1

4

� d, ⌧

u

1

=

1

2

+

q
1

4

� d,
⌧

l

2

= d and ⌧

u

2

= 1. Note that the use of extra channel when
a = 1 is infeasible for any µ when d > 0.25 in this case. For
d = 0.2, corresponding decision regions I

⇤
1

(µ) are illustrated
in Figure 4.
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I
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= l
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1

Fig. 4. Optimal decisions I

⇤
1 (µ) for d = 0.2 and K

max

= 2. Using an
additional channel becomes infeasible when the channel is too reliable.

The optimal number of channels when a = 1 is I

⇤
1

(µ) = 2

when µ 2 [⌧

l

1

, ⌧

u

1

], and it decreases to 1 when µ > ⌧

u

1

. This is
observed because the additional channel becomes costly when
the channel is highly reliable, i.e., µ is too high.

V. NUMERICAL RESULTS

In this section, we will provide simulation results for
regrets under UCB-Deadline and TS-Deadline in a variety of
scenarios. The revenue function in these simulations is chosen
as the one defined in (2).

For µ = 0.52 and d = 0.2, we first investigate the
performance of a naı̈ve pure exploitation algorithm called
PE-Deadline, which makes decisions according to the sample
means solely. The regret under PE-Deadline is given in Figure
5.
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Fig. 5. Regret under PE-Deadline for the case A

max

= 6, d = 0.2 and
µ = 0.52. Exploration under PE-Deadline halts in early stages with a non-
zero probability, which leads to this linear regret behavior.

The regret under PE-Deadline grows linearly over time. This
is because in the early stages of learning when confidence is
low, PE-Deadline is prone to stop learning. This observation
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emphasizes the necessity of reinforcement in learning, which
is captured in UCB-Deadline and TS-Deadline.

The arrival process throughout this section is chosen as an
iid process with the truncated Poisson distribution, denoted
by Poisson

A

max

(�) for � > 0, which has the following
probability mass function:

P(A(t) = k) =

(
�

k

/k!P
A

max

i=0

�

i

/i!

, if 0  k  A

max

0, otherwise
(11)

where A

max

is the maximum number of arrivals in a timeslot.
For µ = 0.52 and d = 0.2, simulation results under UCB-

Deadline and TS-Deadline are provided in Figure 6. The
arrival distribution {↵

a

}
a2A is chosen as a truncated Poisson

distribution with maximum element A
max

= 6.

0 1 2 3 4 5
n #104

0

5

10

15

20

25

30

35

40

45

7 R
n

UCB-Deadline(4.0)
TS-Deadline

Fig. 6. Regrets under UCB-Deadline with parameter � = 4 and TS-Deadline
for the case A

max

= 6, d = 0.2 and µ = 0.52. Since µ > d, bounded
regret is observed in both cases as expected.

From Figure 2, it is observed that for all a 2 A, there exists
⌧

l

a

, ⌧

u

a

such that µ 2 (⌧

l

a

, ⌧

u

a

) and the optimal decision is
constant in that interval. Therefore, the regret is bounded
by Theorem 1, which is verified by Figure 6. Also, it is
noteworthy that TS-Deadline achieves significantly smaller
regret than UCB-Deadline in this case.

Performance results for µ = 0.15 and d = 0.2 are illustrated
in Figure 7 with the same truncated Poisson distribution for
the arrival process. Note that µ < d in this case, and therefore
channel usage is infeasible for any queue-length. By Theorem
1, the upper bound for the regret under UCB-Deadline is
logarithmic over time, consistent with the simulation results.
It is observed that TS-Deadline also has an increasing regret,
but it achieves significantly lower regret than UCB-Deadline
in this case as well.

In order to observe the effect of queue-length on regret, we
consider the case where µ = 0.52, d = 0.2 are fixed and
A(t) ⇠ Poisson

A

max

(3) for various values of A

max

. Regret
performances of UCB-Deadline with parameter � = 4 and
TS-Deadline are given in Figure 8.
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Fig. 7. Regrets under UCB-Deadline with parameter � = 4 and TS-Deadline
for the case A

max

= 6, d = 0.2 and µ = 0.15.
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Fig. 8. R̄1 for various values of A

max

when A(t) ⇠ Poisson

A

max

(3).
The regret has an increasing behavior with a decreasing rate of increase with
respect to A

max

for fixed � = 3.

For fixed �, the regrets increase with the maximum queue-
length A

max

under both algorithms. However, the rate of
increase has a decreasing behavior with respect to A

max

.

VI. CONCLUSION

In this paper, we investigated the channel allocation problem
in a wireless network under a deadline-constrained traffic
when the channel statistics and channel state information are
unknown. We first identified the optimal policy assuming
that the channel statistics are known by the controller. Then,
we proposed two learning algorithms, an index-based policy
(UCB-Deadline) and a Bayesian policy (TS-Deadline). We
proved that the regret under UCB-Deadline is bounded in
the likely case that channel use is feasible, and logarithmic
otherwise. This is an interesting result as the regret is loga-
rithmic in most MAB problems. Our numerical investigations
revealed that TS-Deadline achieves significantly lower regret
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than UCB-Deadline, which suggests it is potentially a useful
alternative for faster learning.

It is assumed that there is a single class of independent and
statistically symmetric channels in this work. UCB-Deadline
is proved to achieve a bounded regret by incorporating the
number of pending packets and utilizing the knowledge of
statistical symmetry of the channels. In an extension of this
setting where there are multiple classes of statistically symmet-
ric channels, a similar exploitation of statistical symmetry may
provide significant performance improvements. As a future
work, we would like to investigate the learning problem in
this extended setting.

In this paper, we investigated the performance of TS-
Deadline numerically and observed that it achieves signifi-
cantly lower regret than its UCB counterpart. Another future
work might be the regret analysis of TS-Deadline and com-
parison with UCB-Deadline.

On the side of the service, an interesting extension of
this work might be the learning problem where certain QoS
requirements such as delivery ratio and service regularity must
be met.

APPENDIX

A. Proof of Lemma 1

1) If µ � d,

T

0

(n) =

nX

t=1

I{µ̄
T (t�1)

(t)<d}


nX

t=1

I{ min

1sK

max

·t
µ̄

s

(t)<d}


nX

t=1

K

max

·tX

s=1

I{µ̄
s

(t)<d}


nX

t=1

K

max

·tX

s=1

I{µ̄
s

(t)<µ}.

by following a similar path as [17]. Taking the expecta-
tion and using Hoeffding-Chernoff Bound, the following
is obtained if � � 3:

E[T
0

(n)]  K

max

nX

t=1

t

1��

 K

max

1X

t=1

t

1��  K

max

⇡

2

6

.

2) The following claim is necessary for proving this part.
Claim 1. If I

A(t)

(t) > 0, then at least one of the
following must hold:

a) µ̂

T (t�1)

� µ+ c

t,T (t�1)

b) T (t� 1) <

2� logn

(d�µ)

2

.

Proof of Claim 1. Suppose neither holds. Then,

µ̂

T (t�1)

+ c

t,T (t�1)

< µ+ 2c

t,T (t�1)

 µ+ 2c

n,T (t�1)

 µ+ (d� µ) = d.

Thus, I
A(t)

(t) = 0.

Let l =
l
2� logn

(d�µ)

2

m
. Then, by using a similar methodol-

ogy as [17],

n� T

0

(n)  l +

nX

t=1

I{µ̄
T (t�1)

(t)>d,T (t�1)�l}

= l +

nX

t=1

I{µ̂
T (t�1)

�µ+c

t,T (t�1)

}

 l +

nX

t=1

K

max

tX

s=1

I{µ̂
T (t�1)

�µ+c

t,T (t�1)

},

where the first line holds with equality iff T (t� 1) � l

and the second line follows from Claim 1. Taking the
expectation and exploiting Hoeffding-Chernoff Bound,
the result is obtained.

B. Proof of Lemma 2

1) Proof of this part is similar to the proof of the first part
of Lemma 1.

2) The following claims play an essential role in the proof.
Claim 2. If I

a

(t) = k

a

, then at least one of the following
must hold:

a) µ̂

T (t�1)

> µ+ c

t,T (t�1)

,
b) c

t,T (t�1)

>

⌧

u

a

�µ

2

.
Claim 3. For any n � 1, UCB-P with parameter � � 4

provides the following:

E[T 2

0

(n)]  K

max

⇡

2

2

.

Claim 4. For any ✏ > 0, UCB-P with � � 4 implies the
following:

1X

t=0

P
⇣
log(t+ 1)

T (t)

> ✏

⌘
 M(✏) < 1

The proofs for Claim 2, Claim 3 and Claim 4 are given
at the end of this subsection.
Let ˜

T (n) =

P
n

t=1

I{I
a

(t)=k

a

}. Using Claim 2, ˜

T (n) can
be upper bounded as follows:

˜

T (n) 
nX

t=1

I{c
t,T (t�1)

>

⌧�µ

2

or µ̂
T (t�1)

>µ+c

t,T (t�1)

}


nX

t=1

I{c
t,T (t�1)

>

⌧�µ

2

}

+

nX

t=1

I{µ̂
T (t�1)

>µ+c

t,T (t�1)

}

=

nX

t=1

I{ log t

T (t�1)

>

(⌧�µ)

2

2�

}

+

nX

t=1

I{µ̂
T (t�1)

>µ+c

t,T (t�1)

}.
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Thus, E[ ˜T (n)] is upper bounded as follows:

E[ ˜T (n)] 
nX

t=1

P
⇣

log(t)

T (t� 1)

>

(⌧ � µ)

2

2�

⌘
+

⇡

2

3

. (12)

The first term on the right-hand side of (12) is upper
bounded by Claim 4 with ✏ =

(⌧�µ)

2

2�

. Thus the proof
follows.

Proof of Claim 2. Suppose neither holds. Then,

µ̄

T (t�1)

+ c

t,T (t�1)

 µ+ 2 · c
t,T (t�1)

 µ+ 2 · ⌧ � µ

2

= ⌧.

Thus, I
a

(t) 6= k

a

.

Proof of Claim 3. The decomposition of T 2

0

(n) into diagonal
and off-diagonal elements and union bound provide the fol-
lowing upper bound:

T

2

0

(n) 
nX

t=1

I{µ̄
T (t�1)

(t)d} + 2

n�1X

t=1

nX

s=t+1

I{µ̄
T (s�1)

(s)d}


nX

t=1

K

max

tX

r=1

I{µ̄
r

(t)d} + 2

n�1X

t=1

nX

s=t+1

I{µ̄
r

(s)d}.

Taking the expectation, and applying Hoeffding-Chernoff
Bound,

ET 2

0

(n)  K

max

nX

t=1

t

1��

+ 2K

max

n�1X

t=1

nX

s=t+1

s

1��

 K

max
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t=1

t
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+ 2K

max

·
nX

t=1

t

2��

 K

max

(

⇡

2

6

+

⇡

2

3

) = K

max

⇡

2

2

.

Proof of Claim 4. Fix ✏ > 0. Note that

T (n) = n� T

0

(n) + T

2

(n)

� n� T

0

(n).

Therefore,

P
⇣
log(t+ 1)

T (t)

> ✏

⌘
 P

⇣
T

0

(t) > t� log(t+ 1)

✏

⌘
. (13)

If t� log(t+1)

✏

> 0, Markov Inequality applied to the RHS
of (13) implies the following:

P
⇣
T

0

(t) > t� log(t+ 1)

✏

⌘
 ET 2

0

(t)

(t� log(t+1)

✏

)

2

. (14)

Let t
✏

= inf{t : t� log(t+1)

✏

> 0}. Then,

1X

t=0

P
⇣
log(t+ 1)

T (t)

> ✏

⌘
 t

✏

+K

max

⇡

2

2

1X

t=1

1

(t� log(t+1)

✏

)

2

= M(✏)

< 1,

where the first line above follows from Claim 3. Thus the
proof follows.
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