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Abstract—Motivated by applications in competitive WiFi sens-
ing, and competition to grab user attention in social networks,
the problem of when to arrive at/sample a shared resource/server
platform with multiple players is considered. Server activity
is intermittent, with the server switching between ON and
OFF periods alternatively. Each player spends a certain cost
to sample the server state, and the per-player payoff is inversely
proportional to the number of simultaneously connected/arrived
players. The objective of each player is to arrive/sample the server
as soon as any ON period begins while incurring minimal sensing
cost and to avoid having many other players overlap in time
with itself. For this competition model, we propose a distributed
randomized learning algorithm (strategy to sample the server)
for each player, which is shown to converge to a unique non-
trivial fixed point. The fixed point is moreover shown to be a
Nash equilibrium of a game, where each player’s utility function
is demonstrated to possess all the required selfish tradeoffs.

I. INTRODUCTION

A canonical example of a general problem “when to join a
shared server queue to maximize a payoff” [1]–[3] is a concert
queue problem [4], where a server (ticket window) opens and
closes at fixed times, and the problem for each customer is
to decide when to arrive at the server queue amidst many
competing customers so as to minimize its sum of waiting
and service times. In modern paradigms, as discussed next, the
server opening and closing time need not be deterministic, and
moreover, servers need not necessarily serve customers one at
a time, and multiple customers can be simultaneously served
but with a reduced individual perceived payoff or quality of
service (QoS) that is inversely proportional to the number of
concurrently existing customers.

Some of the applications that present with these new at-
tributes are as follows. Consider a large wireless network with
multiple access points (APs) deployed at fixed locations in a
given geographical area. Mobile nodes move within the given
area and encounter intermittent connectivity to APs depending
on their locations. To discover whether any AP is within
transmission range, a mobile node employs sensing, which
is equivalent to deciding to arrive in the system, and which
comes at a cost (battery usage). The mobile node would like
to sense (arrive) when the least number of other users are
connected to the same AP, since some form of fair sharing is
typically employed by the AP. For example, a video might be
available in SD with congestion, compared to HD otherwise.

A more modern application is on grabbing user attention in
social media under competition [5], [6]. In a social network
platform, user attention intensity varies over time, and multiple
players (advertisers, users) compete to get as much utility
(eyeballs, impressions) as possible. Treating user attention as

a limited, time-varying, shared resource, each player has to
decide when to tweet or insert their ads given that there are
multiple such competing players, so that their tweets have
the highest impact in the limited, high intensity user attention
span, where each tweet incurs a certain cost. Players would
want to avoid tweeting together with other players, since if
multiple tweets are shared within a short span of time, each
gets a divided impact/attention.

Another related paradigm is strategic job submission times
for users to cloud services, where the server is always ON, but
its price fluctuates depending on the demand process. Thus,
each player wants to avoid submitting jobs together with other
players (to incur lower price), subject to its deadlines.

To study the mentioned modern paradigms, we consider a
single game model, where a shared server has intermittent
activity periods, and transitions between active and inactive
states in a stochastic manner. Following some strategy, each
user senses the server and connects to it as soon as it discovers
it to be in active state. Each sensing comes at a fixed cost,
precluding sensing at arbitrarily small intervals. Once the user
connects to the server, it stays connected till the time its
service is completed or the server transitions to the inactive
state, whichever is earlier. To model the congestion aspect, the
perceived payoff or QoS for each user is inversely proportional
to the number of other users encountered by it during the time
it was connected/served to/by the server. Thus, to maximize
its utility, each user has to decide on a strategy to sense
(and connect to) the server as soon as it turns active, and
also to encounter a minimal number of other users during its
connectivity time. In prior work, Jeong et al. [7] and Kumar et
al. [8] considered only one user without any competition, and
found the exact optimal sensing distribution given the server
activity distribution.

A. Related Work

In the traditional sequential service setting, explicit Nash
equilibrium (NE) arrival distributions have been found for the
concert queue problem by Jain et al. [4]. Another related model
is that of distributed access in wireless (WiFi) networks, where
multiple nodes contend for slots when they have packets to
transmit, and transmissions are successful only if one node
ends up transmitting. Tang et al. study the equilibrium question
[9] for this setting when there is an exponential back-off
mechanism for contention resolution.

Compared to prior work, the problem considered here
covers a more general setting where a) there is uncertainty
over server activity periods, b) repeated sensing/arrival (instead
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of single shot decision as in [4]), and c) multiple nodes are
served at the same time from a shared resource.

Under strategic behavior from all competing players, with-
out cooperation, a natural goal from a system design stand-
point is to find stable operating points or equilibria from
which no player would prefer to deviate. Accordingly, the
objective of this paper is find an equilibrium strategy for each
competing player in this model, where the strategy for a player
is comprised of the decisions to sample the system or not, at
instants of time. Towards this end, the typical approach is to
identify a per-node utility function, and try to find a NE for
it, if it exists. This approach is analytically intractable for the
problem at hand for most choices of natural utility functions.

To make analytical progress, we take an alternate route of
considering that the players are running a natural distributed
learning algorithm that adjusts its sensing behavior dynami-
cally in response to its perceived payoff thus far, and show
that it reaches equilibrium.

Finding learning algorithms that achieve equilibrium has
been considered for congestion games (that are also potential
games) where the congestion costs are additive, and the mul-
tiplicative weights learning algorithms is known to converge
to NE [10], [11]. For a more general setting, Friedman and
Shenker [12] showed that learning algorithms can achieve the
NE in a two player zero-sum game, however, a similar result
does not hold for a three player game as shown by Daskalakis
et al. [13]. For a brief survey, we refer the reader to the work
of Shoham et al. [14]. For non-congestion games, learning
algorithms achieving the NE has been briefly considered [15]–
[17]. Learning algorithms have also been used to achieve NE
in spectrum access games [16], [17]. The game considered in
this paper is not a congestion game, and is inherently repeated,
where each player has to make its decisions repeatedly.

B. Our Results

It is easy to argue that a deterministic sensing/arrival
strategy cannot be an equilibrium solution for the considered
game. Therefore, we consider that each player employs a
randomized strategy for sensing, i.e., in each slot it senses
with a certain probability. The learning algorithm we propose
(to update the sensing probability) learns the platform/server
activity period frequency by computing how often the server
was found active in previous sensing attempts, and implements
a form of congestion control by exponentially decreasing
its sensing probability with the number of other competing
nodes encountered by it. Thus, given the per-sensing cost,
the algorithm adapts to strike a balance between missing out
on server activity periods and encountering large number of
other nodes, when it senses the server. The learning algorithm
does not require explicit information about the other players’
strategies or the total number of them, and only depends on
its accumulated reward. It thus has a low ’learning overhead’
compared to best response strategies.

The main result of this paper is to show that the proposed
learning algorithm converges to a unique, non-trivial fixed
point. We also explicitly characterize the fixed point, and show

that it is in fact a NE for a sensing game in which each player’s
utility function has a particular form. As one would expect,
the corresponding per-player utility is increasing in its own
sensing probability, and decreasing in the other nodes’ sensing
probabilities and sensing costs.

To prove our results, we first consider an expected version
of the learning algorithm, where all random variables are
replaced by their expected values. We then find the underlying
utility function that the expected learning algorithm is trying to
maximize. Corresponding to this utility function, we identify
a multiplayer game G, and show that there is a unique NE for
this game, and that is achieved by the best response strategy.
To show the convergence of the actual learning algorithm to
a fixed point, we show that its updates converge to the best
response actions for G. Some of the proof techniques used in
this paper are similar to those of Tang et al. [9]; however, the
specific proofs themselves are entirely different.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a time-slotted system, where a server alternates
between two states {ON, OFF} following a two-state Markov
chain. The durations of each ON and OFF periods are as-
sumed to be independent and geometrically distributed with
parameters λc and λd, respectively. We partition the total
slots into frames, where each frame consists of M consecutive
time slots. Whenever convenient, we will use k ≥ 1 to index
frames, and t ∈ {1, 2, . . . ,M} to index slots within a frame;
the double-index notation (t, k) will thus denote the t-th time
slot in frame k.

Consider N players in a system, where player ` employs a
probabilistic sensing strategy {p`(k) : k ≥ 1}, where p`(k) is
the probability with which player ` senses the server in each
slot within frame k, to check whether the server is in ON state.
Each player incurs a cost cs upon a sensing attempt.

If, on sensing, a player finds the server to be in the OFF
state, then the player senses with the same probability in each
slot until the end of that frame, and then updates the sensing
probability in the next frame using (1). Alternatively, if the
server is found to be in ON state, the player joins/connects
to the server. The service time (number of slots needed for
completion of service) for each player is assumed to be
geometrically distributed with parameter µ. The player stays
connected to the server until its service is completed, or till the
time the server remains in the ON state, whichever is earlier.
The case µ = ∞ corresponds to player requiring unlimited
connection. For µ < ∞, a player’s service is defined to be
successful if its service is completed before the end of the ON
period during which the player connected.

With this strategy, during an ON period, multiple players
may discover the server to be in the ON state and connect
to it, creating congestion for each other. The competition
or congestion aspect is modelled by assuming that the each
player’s perceived payoff or QoS is inversely proportional to
the number of connected players. Such a model is relevant
for video broadcast, or Skype, etc. where quality suffers with
congestion without necessarily changing the service times, e.g.
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a video becomes available in SD with congestion, compared to
HD otherwise. An alternate model of congestion is to change
the parameter µ depending on the number of other active users,
following a processor sharing schedule, however, that makes
the problem too challenging. Thus, the inherent objective for
each player is to maximize the number of successful service
completions in time [0, t] as t → ∞ given the per-sensing
cost of cs while encountering as few other players as possible
during its service times.

A typical approach to studying this game would
be write a utility function for player `, as U` =
f(pk,k∈[1:N ], N, cs, λc, λd), where pk is the strategy of player
k, f is a decreasing function of N , pk, k 6= ` cs, and λd,
and an increasing function of λc, and find its NE. Such an
approach is fairly complicated and analytically intractable for
this problem. Instead, we consider learning type algorithms
to define the adaptive sensing strategies that can be shown to
converge to a fixed point/equilibrium.

For a special case of µ =∞, one can directly identify the
NE.

Lemma 1: With µ =∞, when each player stays connected
to the server (as soon as it senses it to be ON) until it goes
to the OFF state, the optimal strategy derived in [8] for only
one user without any competition is a NE.
Proof: If all players other than ` are following the optimal
strategy [8] for only one user when there is no competition,
then its optimal for player ` to follow that strategy as well,
since if it deviates from that either it reduces its own chances
of connecting to the server or pays more sensing cost, while
encountering the same number of other players. 2

A. Learning/adaptive sensing strategy

Let the set of players be denoted by Γ = {1, 2, . . . , N}; we
use the notation Γ−` = Γ\{`} to denote the set of all players
except player `. Let p(k) ≡ (p`(k))1≤`≤N be the sensing
vector employed by the N players. We assume the frame size
M to be large, so that under a two-time scale decomposition,
the sensing probability is updated slowly enough (i.e., before
each frame starts), while at the same time allowing players
to learn about, and adapt to, the underlying server ON-OFF
process and other players’ strategies.

Let the server be in the ON state at time slot t, where the
server last transitioned into the ON state at time slot tc ≤ t,
i.e., the server is ON throughout [tc, t]. A player is defined to
be active at time slot t if it discovered the ON state in time
period [tc, t] and its service is not finished by time slot t. We
denote by X(t) ∈ {0, . . . , N} the number of players that are
active at time slot t. Let us tag a player ` ∈ Γ for the remainder
of the discussion. For a fixed frame k, for the tagged player `,
let 1Sense(t) denote the indicator random variable that it senses
at (t, k), 1S(t) the indicator random variable that the server is
in ON state at time slot t in frame k, and 1`(t) the indicator
random variable that the tagged player ` is active at time slot t.
For the tagged player `, at the end of the kth frame, i.e., at slot
(M,k), define the random variable Â(k) to be the empirical
average of the number of players that were active (including

itself) for any slot in frame k in which player ` was active in
the system. Formally,

Â(k) =

{ ∑M
t=1 1`(t)X(t)∑M
t=1 1`(t)

if
∑M
t=1 1`(t) > 0,

0 otherwise.

Note that X(t) can be obtained via monitoring loss in payoff
or reduction in QoS, e.g. rate/video quality in WiFi application.
We consider the following distributed sensing algorithm for
updating the sensing probability at the start of the next frame
k + 1 for each player `:

p`(k + 1) = κ(k) max

{
pmin, pstart

1

M

M∑
t=1

(1− 1S(t))1Sense(t)

+ p`(k)η exp−cs exp−c0Â(k) 1

M

M∑
t=1

1S(t)1Sense(t)

+ p`(k)
1

M

M∑
t=1

(1− 1Sense(t))}

}
∧ 1 + (1− κ(k))p`(k),

(1)

with x ∧ y = min{x, y}, and where pmin > 0, pstart > 0
are minimum sensing probability and fixed reset sensing
probability, respectively, c0 and η are constants to be chosen
later, and κ(k) is the update step-size. It is important to note
that this algorithm does not need the knowledge of the total
number of other players N −1 or their sensing strategies, and
thus is easily implementable.

The second argument of the maximum in the sensing
algorithm (1) contains three complementary terms (only one
of them is non-zero for slot t in frame k), where the first
represents the empirical measure with which the AP was found
OFF on sensing scaled by a fixed reset sensing probability
pstart, the second weighs the number of competing players
(congestion penalty) and the cost of sensing exponentially
with the existing sensing probability, a constant η > 1, and
the empirical measure with which the AP was found ON on
sensing, and the third introduces a damping factor that resists
the change in sensing probability if sensing was not performed
often enough in that frame.

The basic idea behind the update (1) is to significantly
lower the sensing probability when there are a large number of
other active players found in the current frame. This directly
controls the congestion and incentivises sporadic sensing, and
can be thought of as a backoff mechanism to implement a
‘soft processor-sharing’ routine.

On the other hand, if the number of other active players is
low/moderate, and the empirical measure with which the AP
was found ON on sensing (that tracks the connection rate λc
of the server) is high, the sensing probability is increased to
maximally utilise the opportunity provided by the server for
service completions by each player. In a complementary sense,
if the empirical measure with which the AP was found OFF on
sensing is high, then the first term dominates and tries to lower
the sensing probability. The sensing cost is also incorporated
explicitly and weighed exponentially to limit the total sensing
cost.
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The following is the main result of the paper, showing
that the update strategy (1), when followed by all N players,
converges to a unique fixed point.

Theorem 2: If the following condition is satisfied

(N − 1)c0 pstart η
λcλd

(λc+λd)2[
1− η λd

λc+λd

]2 [
1

1− (1− µ)(1− λc)

]
≤ 1, (2)

then the sensing update strategy (1) when followed by all N
players converges to a unique fixed point, starting from any
initial point. The unique fixed point also corresponds to a NE
for a N player game, with individual utilities U` given by (5).

The left-hand side (LHS) of (2) is inherently a measure of
congestion seen by each player; condition (2) specifies the
congestion tolerance for the update algorithm that allows the
convergence to a fixed point. Since c0 and η are parameters
under control, they can be chosen to satisfy (2) which deter-
mines the actual trajectory of the update strategy (1).

For proving Theorem 2, we first consider an expected
version of the update strategy (1) and interpret that each player
is updating that expected version so as to maximize some
utility function for itself. This association is made only for
theoretical purposes, and the actual update algorithm (1) does
not need to know any statistics or expected values. Using
that utility function, we define a game, for which there is a
unique NE (under technical conditions) and to prove Theorem
2, show that the update strategy (1) converges to that NE.
Next, we consider the expected version of (1) and develop the
corresponding utility function and the game for the N players
in Section II-C.

B. A steady-state version of the update rule

Instead of directly analysing the trajectory of the update rule
(1), we first study an expected or steady state version of (1).
To this end, observe that within a frame of large enough size
M , the player sensing probabilities p ≡ (pi)1≤i≤N , pi > 0 ∀i
are fixed. It follows that, within a frame, the {0, 1}N -valued
stochastic process that tracks where player i, i = 1, . . . , N is
active (state 1) or not (state 0) at time slot t = 1, 2, . . ., is an
irreducible and aperiodic discrete time Markov chain. By the
ergodic theorem for discrete time Markov chains [18], the time
average of the number of other players that are active during
the time player ` is active, converges with probability 1 to the
steady state expected number of active players in the server
conditioned on tagged player ` being active, as the number of
time slots M tend to ∞. For a fixed p, let A(p) = E{Â|p}
be the expected number of active players seen by the active
tagged player including itself under steady state.

Lemma 3: For a fixed sensing probability vector p > 0,
A(p) = 1 +

∑
j∈Γ−`

ψj , where ψj’s are given by

ψj =
pjλc

[1− (1− µ)(1− λc)]
1

[λc + pj(1− λc)]
.1 (3)

Given p(k) at the beginning of frame k, and a sufficiently
large frame size M , we replace Â(k) by A(p(k)) = 1 +

1The proof is elementary and omitted for lack of space.

∑
j∈Γ−`

ψj (Lemma 3), and all other random variables by
their expected values in (1), to obtain the following ‘expected’
update equation:

p`(k + 1) = κ(k) max{pmin, pstart
λd

λc + λd
p`(k),

+η exp−cs
λc

λc + λd
p`(k)2

∏
j∈Γ−`

exp−c0ψj

+p`(k)(1− p`(k))}+ (1− κ(k))p`(k). (4)

since E {(1− 1S((1, k)))1Sense((1, k))|p(k)} =
λd

λc+λd
E {1Sense((1, k))|p(k)}, and using the fact that

AP ON/OFF mode is independent of sensing given p(k),
E {1Sense((1, k))|p(k)} = p`(k).

C. Game Formulation

In this section, we adopt the view that each player updates
its sensing strategy according to (4), so as to maximize some
utility function for itself. Towards this end, consider a non-
cooperative game G = {N, p`, U`, ` ∈ [1 : N ]} with N play-
ers, utility function U` and strategy p` for player `. The game
G has a NE p∗ if U`(p`,p∗−`) ≤ U`(p∗` ,p∗−`), ∀ p` ∈ [1 : N ].
Next, in Theorem 4, we identify the utility function that each
player is trying to selfishly maximize via update strategy (4).

Theorem 4: The utility function for player ` that (4) attempts
to maximize is given by U`(p) = U`(p`,p−`) =

pstart
λc

λc + λd

p2
`

2
+
p3
`

3

η exp−cs λd
λc + λd

∏
i∈Γ−`

e−c0ψi − 1

 . (5)

Moreover, if2

pstart
λc

λc + λd
+ η exp−cs

λd
λc + λd

< 1, (6)

then there exists a valid non-zero NE p∗ for G that satisfies,

p∗` =
pstart

λc
λc+λd[

1−η λd
λc+λd

∏
i∈Γ−`

e−c0ψ
∗
i

] .

The proof is presented in Appendix A. The selfish utility
function U`(p`,p−`) defined by (5) contains two terms that
individually capture the natural benefit and cost for each user.
The first term scales the sensing probability with the duty
cycle (fraction of time the server is active) λc

λc+λd
, so as

to maximally utilize the server activity periods. The second
term corresponds to the congestion (via ψi) and the sensing
cost, and the utility decreases with the increasing number of
competing players and the sensing cost.

Note that the utility function (5) has extra powers of p`’s that
are important for showing that there exists NE. Disregarding
the quadratic and the cubic powers of p`, utility function (5)
has all the required selfish properties, but the exact form that
is amenable for analysis would have been difficult to guess to
begin with. This approach helps in identifying the right utility
function.

The best response strategy for player `, assuming all
other player strategies p−` are fixed, is given by: pbr

` =

2Condition (6) ensures that the updated value of probability is ≥ 0.
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argmaxpmin≤p`U`(p`,p−`), which for game G (from ∂U`
∂p`

= 0)
evaluates to

pbr
` =

pstart
λc

λc+λd[
1− η λd

λc+λd

∏
i∈Γ−`

e−c0ψi
] . (7)

We next show, via a contraction mapping argument, that the
NE for the game G is unique, and that the best response
strategy (7) achieves it (Proof in Appendix B).

Theorem 5: If condition (2) holds, then the NE for the
considered game G is unique, and the best response strategy
(7) converges to the unique equilibrium.
Since the NE for the considered game G is unique, next, we use
that to prove Theorem 2 by showing that the original update
strategy (1) converges to the best response solution (7) for
game G.

D. Proof of Theorem 2
We are now ready to work towards proving Theorem 2.

The first step in this direction is to reinterpret the expected
update equation (4) in terms of a gradient descent algorithm
for maximizing U` by player `, given by

p`(k + 1) = max

{
pmin, p`(k) + κ

∂U`(p(k))

∂p`

}
, (8)

that is identical to the expected update equation (4), which is
no surprise because of the definition of utility U`.

The first result we have with the gradient descent algorithm
is its convergence to the NE depending on the step-size.

Lemma 6: Under the condition (6), with stepsize κ ≤ 1, the
iterates of the gradient descent algorithm (8) converge to the
best response solution (7) for player `, under fixed p−`.
Thus, if all other players freeze their strategies p−`, then
player ` can reach the best response to p−` by running the
gradient descent update equation (8) or the expected update
strategy (4). Lemma 6 is applicable as long as each player’s
strategy is updated sequentially, which requires time dilation
(i.e., each player updates its strategy not in every frame but
after multiple frames depending on the convergence time) for
converging to the best response solution, which eventually
converges to the global NE as shown in Theorem 5.

The proof of Lemma 6 is provided in Appendix C, where
we show that the utility function is β-smooth with β = 2,
using which the convergence is established.

Finally, we now complete the proof of Theorem 2, by
showing that the proposed update algorithm (1) converges to
the best response strategy (7). Towards that end we make a
correspondence between a stochastic sub-gradient algorithm
and the update strategy (1) as follows.

E. A Stochastic Sub-Gradient interpretation of Update Strat-
egy (1)

Let v`(k) = −p`(k) + 1
M

∑M
t=1 pstart(1− 1S(t))1Sense(t)

+ηp`(k) exp−cs exp−c0Â(k) 1

M

M∑
t=1

1S(t)1Sense(t)

+
p`(k)

M

M∑
t=1

(1− 1Sense(t)). (9)

Then, (1) can be written as

p`(k + 1) = max{pmin, p`(k) + κ(k)v`(k)}, (10)

where p̃min ≥ p̃min will be chosen to satisfy technical
condition required in Theorem 7. From the definition of utility
function U`(p) (5), it is easy to check that E{v`|p} = ∂U`(p)

∂p`
,

and (1) or (10) is the stochastic gradient descent algorithm
counterpart of (8). Thus, the update strategy (1) is solving
a stochastic sub-gradient maximization of the utility function
U`.

In a manner similar to Lemma 6, we next show that
stochastic gradient descent algorithm (10) converges to the
best response solution (7) for each player ` in the game G for
fixed strategies p−` under appropriate choice of step-size κ.

Theorem 7: With fixed p−`, for each player `, the iterates
of (10), converge to the best response solution (7) with
probability 1 if the following conditions hold,

1) The step size κ(k) satisfies κ(k) ≥ 0,
∑∞
k=0 κ(k) =∞

and
∑∞
k=0 κ(k)2 <∞.

2) pmin ≥ p̃min = pstartλc
2[λc+λd−λcηe−c0 ]

.
The proof is provided in Appendix D. With this, we have
completed the proof of Theorem 2, since we have shown
that the proposed sensing strategy (1) converges (if updated
sequentially by each player) to the best response solution (7),
which converges to the fixed point that corresponds to the
unique NE of game G under condition (2).

Compared to best response strategy, the proposed sensing
strategy (1) does not have precise knowledge of other nodes’
sensing probabilities, but still converges to the same equilib-
rium point.

III. NUMERICAL RESULTS

We consider the WiFi network testbed model [19], where
31 APs are distributed uniformly randomly in an area of 2000
acres, with density ρ = 31

2000×4046 APs/m2. N = 5, and each
mobile’s speed is v = 30 m/s in random orientation. The
mobile is connected to an AP, if it is within R = 250 m from
it. Under these settings, from [19], we have λc = 2Rvρ =
0.05745 and λd = v

R − 2Rvρ = 0.06253, and service rate
µ = 5λc. We let pstart = 0.5, then from (6), we need η < 1.46.
For simulation, we consider η = 1.2. Moreover, to satisfy
(2), we take c0 = 0.05. In Fig. 1, we plot the trajectories
of the sensing probabilities for any one player obtained by
the best response updates, the gradient descent updates, and
the actual learning (stochastic gradient descent) algorithm, and
observe that the actual update is noisy but converge towards
the equilibrium.

We also consider a twitter-like setup, where number of
tweeting/competing users changes over time. We start with
N = 5 users, and consider a time-horizon of T = 100 frames,
where at t = 0.33 ∗ T th frame, N increases to 100 and at
t = 0.67∗T th frame, N goes back to 5. In Fig. 2, we plot the
trajectories of the sensing probabilities with the three discussed
algorithms with η = 1.2, c0 = 0.05, λc = 0.05 and λd = 0.06,
and µ = 5λc. As expected, with increased N , the sensing
probabilities converge to a lower value.
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IV. CONCLUSIONS

In this paper, we considered competition models when there
is uncertainty about the underlying resource availability, and
there is competition from other users that are trying to extract
maximum share of the available resource. Rather than directly
considering a particular utility function, we instead started
with an intuitive distributed adaptive strategy and showed that
it converges to the NE of a sensing game with reasonable
utility function for the studied problem. The approach pre-
sented in this paper is expected to be useful for many other
related settings, e.g., uplink scheduling with quality of service
guarantees, device-to-device communications etc.
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Fig. 1. The trajectories of the three update algorithms for the WiFi example.
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Fig. 2. Three update algorithm trajectories for the twitter example.
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APPENDIX A
PROOF OF THEOREM 4

In order to obtain a utility function corresponding to the
expected update equation (4), consider the equilibrium point
p∗ for (4), with pmin < p∗` < 1, ∀ `, for which the update
equation will satisfy the following fixed point equation,

p∗` = pstart
λd

λc + λd
p∗` + p∗` (1− p∗` )

+η exp−cs
λc

λc + λd
(p∗` )

2
∏
i∈Γ−`

exp−c0ψ
∗
i , (11)

where ψ∗i is the function ψi(pi) evaluated when p∗i . We need
0 ≤ p∗` ≤ 1, which is satisfied as long as (6) is satisfied.

The 2017 International Workshop on Resource Allocation, Cooperation and Competition in Wireless Networks (RAWNET)



Using (4), inherently each player is trying to maximize
some utility function U`, and if at equilibrium (11) is satisfied,
then one obvious choice of such utility function is that which
satisfies ∂U`(p)

∂pl
= 0 at p∗. Thus, by moving p` to RHS in (11),

we have

∂U`(p)

∂p`
= pstart

λd
λc + λd

p` + p`(1− p`)− p`

+η exp−cs
λc

λc + λd
p2
`

∏
i∈Γ−`

exp−c0ψi ,

which gives the utility function (5) for player ` (unique upto
to a constant), The set {p`|pmin ≤ p` ≤ 1} is a non-empty
compact convex set on R. Moreover, the utility function U`
(5) is quasi-concave and continuous in p` (for lack of space
we omit the proof here). Thus, using the Proposition 20.3 in
[20] there exists a NE, where (11) is satisfied with ψi replaced
by ψ∗i .

APPENDIX B
PROOF OF THEOREM 5

We use the following Theorem from [21] to prove this result.
Theorem 8: Let M be a complete metric space with metric

d, and f : M →M be a mapping. Assume that there exists a
constant γ such that 0 ≤ γ < 1 and d(f(v), f(u)) ≤ γd(v, u)
for all u, v ∈ M ; such an f is called a contraction. Then f
has a unique fixed point; that is, there exists a unique u∗ ∈M
such that f(u∗) = u∗. Furthermore, the sequence u(t+ 1) =
f(u(t)) converges to this unique fixed point.

We will consider the best response strategy pbr` as the
function f , and apply the above theorem with M being
the Euclidean space RN endowed with a norm || · ||2. Let
d(·) be the distance metric induced by this norm. Let ||∂f∂x ||
be the Jacobian, then from properties of matrix norm [22],
the following is true: d(f(v), f(u)) = ||f(v) − f(u)|| ≤
||∂f∂x ||||u − v|| = ||∂f∂x ||d(v, u), and for proving that f is a
contraction mapping, it is sufficient to show that ||∂f∂x || < 1
everywhere in x, and then invoke Theorem 8 to prove the
claim.

Next, we work towards showing the infinity norm of
J (J`j ,

∂pbr
`

∂pj
) is less than 1 which implies that ||∂f∂x || < 1 for

all players `. By definition, J`j

=


−c0pstartη exp−cs

λcλd
(λc+λd)2

(
∏
i∈Γ−`

e−c0ψi )
∑
k∈Γ−`

∂ψk
∂p`[

1−η exp−cs
λd

λc+λd

∏
i∈Γ−`

e−c0ψi
]2 , if ` = j,

−c0pstartη exp−cs
λcλd

(λc+λd)2
(
∏
i∈Γ−`

e−c0ψi )[
1−η exp−cs

λd
λc+λd

∏
i∈Γ−`

e−c0ψi
]2

∂ψj
∂pj

, o.w.

From the definition of {ψk}k∈Γ−` in (3), we have ∂ψk
∂p`

=
0 ∀k ∈ Γ−`. Therefore, J`j = 0 for ` = j. Next, we first
bound the partial derivative ∂ψj

∂pj
by rewriting the definition of

ψj from (3) as, ψj =
h1pj

h2+h3pj
, where h1 = λc, h2 = [1−(1−

µ)(1−λc)]λc, and h3 = (1−λc)[1− (1−µ)(1−λc)]. Taking
the partial derivative of ψj w.r.t pj , we get ∂ψj∂pj

= h1h2

(h2+h3pj)2 ,

which trivially imply the following bounds, h1h2

(h2+h3)2 ≤ ∂ψj
∂pj
≤

h1

h2
. Using the expressions for hi, we get the following bounds

λ2
c

[1− (1− µ)(1− λc)]
≤ ∂ψj
∂pj
≤ 1

[1− (1− µ)(1− λc)]
. (12)

We now upper bound ||J||∞ = max`
∑N
j=1 |J`j |, as fol-

lows. Since J`,` = 0, and J`,j < 0, we have ||J||∞

= max
`


∑
j∈Γ−`

c0 pstart η exp−cs λcλd
(λc+λd)2 (

∏
i∈Γ−`

e−c0ψi)
[
∂ψj
∂pj

]
[
1− η exp−cs λd

λc+λd

∏
i∈Γ−`

e−c0ψi
]2

 ,

(a)

≤ max
`


∑
j∈Γ−`

c0 pstart η exp−cs λcλd
(λc+λd)2[

1− η exp−cs λd
λc+λd

]2 [
∂ψj
∂pj

] ,

(b)

≤ max
`

|Γ−`|c0 pstart η exp−cs λcλd
(λc+λd)2[

1− η exp−cs λd
λc+λd

]2 [
∂ψj
∂pj

] ,

(c)

≤ max
`

 (N − 1)c0 pstart η exp−cs λcλd
(λc+λd)2[

1− η exp−cs λd
λc+λd

]2 [
∂ψj
∂pj

] ,

(d)

≤ max
`

 (N − 1)c0 pstart η exp−cs λcλd
(λc+λd)2[

1− η exp−cs λd
λc+λd

]2
[

1

1− (1− µ)(1− λc)

]}
, (13)

where (a) follows since
∏
i∈Γ−`

e−c0ψi ≤ 1, (b) follows by
replacing the outer sum by Γ−`, (c) follows since |Γ−`| =
N − 1, and in (d) we use the upper bound (12).

Note that the argument of the max in (13) does not depend
on `, hence to make ||J||∞ ≤ 1 it is sufficient for the argument
of the max to be less than 1, i.e.

(N − 1)c0 pstart η exp−cs λcλd
(λc+λd)2

[
1

1−(1−µ)(1−λc)

]
[
1− η exp−cs λd

λc+λd

]2 < 1.

This inequality is satisfied by choosing appropriately the
values of parameters η and c0 as specified in condition (2).

APPENDIX C
PROOF OF LEMMA 6

Definition 9: A function f : R→ R is Lipschitz continuous
with constant L < ∞ if ||f(x) − f(y)|| ≤ L||x − y|| ∀ x, y.
Moreover, a function f whose derivative is Lipschitz con-
tinuous with constant β < ∞, i.e., ||∇f(x) − ∇f(y)|| ≤
β||x− y|| ∀ x, y, is called a β-smooth function.

We will use the following Theorem to prove Lemma 6.
Theorem 10: [23, §1.2.3] Let f be a β smooth function and

f∗ = min f(x) > −∞. Then the gradient descent algorithm
with a constant step size κ < 2

β converges to a stationary point
i.e., the set {x : ∇f(x) = 0}
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For fixed p−`, let player ` update the strategy using the
gradient descent algorithm, and let f ≡ U`. For player `, the
gradient expression is given by,

∇f =
∂U`
∂p`

= pstart
λc

λc + λd
p` + p`(1− p`)− p`

+η exp−cs
λd

λc + λd
p2
`

∏
i∈Γ−`

e−c0ψi . (14)

Now we check the β-smoothness condition for f , and
find a bound on the constant as follows. For that purpose,∣∣∣∣∣∣∣∣∂U`∂p`

∣∣∣∣
p`=x

−
∣∣∣∣∂U`∂p`

∣∣∣∣
p`=y

∣∣∣∣ =

∣∣∣∣pstart
λc

λc+λd
(x− y)− x2 + y2

+η exp−cs
λd

λc + λd
(x2 − y2)

∏
i∈Γ−`

e−c0ψi
∣∣∣∣,

(a)

≤ |x− y|
∣∣∣∣pstart

λc
λc + λd

− (x+ y)

+η exp−cs
λd

λc + λd
(x+ y)

∏
i∈Γ−`

e−c0ψi

∣∣∣∣∣∣ ,
(b)

≤ |x− y|
∣∣∣∣pstart

λc
λc + λd

−

1− η exp−cs
λd

λc + λd

∏
i∈Γ−`

e−c0ψi

 (x+ y)

∣∣∣∣∣∣ ,
(c)

≤ ||(x, p−`)− (y,p−`)||
∣∣∣∣pstart

λc
λc + λd

−

1− η exp−cs
λd

λc + λd

∏
i∈Γ−`

e−c0ψi

 (x+ y)

∣∣∣∣∣∣ ,(15)

where (a) follows since |pq| ≤ |p||q| ∀p, q ∈ R, (b) involves
rearrangement of terms, and (c) follows since |x − y| ≤
||(x,p−`)− (y,p−`)||, where (x,p−`) is the N -length vector.
If (6) holds, then each of the two terms of (6) are < 1, namely:
0 < η exp−cs λd

λc+λd
< 1, and 0 < pstart

λc
λc+λd

< 1. Moreover,
we have

∏
i∈Γ−`

e−c0ψi > 0, x ≤ 1, and y ≤ 1. Using these
inequalities, the second term in right-hand side of (15), can
be bounded by 2 and we get∣∣∣∣∣∣∣∣∂U`∂p`

∣∣∣∣
p`=x

−
∣∣∣∣∂U`∂p`

∣∣∣∣
p`=y

∣∣∣∣ < 2||(x,p−`)− (y,p−`)||. (16)

Thus, U` is β-smooth with β < 2. Moreover, since β < 2,
∃ a ε > 0 such that, 2

β > 1 + ε. Thus, from Theorem 10, if
stepsize κ satisfies, κ < 1 + ε, then the iterates of the gradient
descent algorithm (8) converge to the stationary point. For
fixed p−`, the stationary point is the best response solution,
and hence we have the result.

APPENDIX D
PROOF OF THEOREM 7

Theorem 11: [Theorem 6.2 [24]] Consider

max
x∈[a,b]

F (x), (17)

where F is a concave, continuous one-dimensional function,
and let X∗ be the set of optimal solutions. Consider the fol-
lowing stochastic subgradient projection method to solve (17):
x(t + 1) = max{a,min{b, x(t) + s(t)ξ(t)}}, t = 0, 1, 2, . . .
If the following conditions are satisfied

1) F (x∗) − F (x(t)) ≤ E[ξ(t)|x(0), . . . , x(t)]{x∗ −
x(t)}] + γ0(t), where γ0(t) may depend on
(x(0), . . . , x(t)), x∗ ∈ X∗,

2) step size s(t), s(t) ≥ 0,
∑∞
t=0 s(t) =∞, and

3)
∑∞
t=0 E

[
s(t)|γ0(t)|+ s2(t)|ξ(t)|2

]
<∞,

Then limt→∞ x(t) ∈ X∗ with probability 1.
We will use Theorem 11 to prove Theorem 7. From (10),

the proposed learning algorithm is

p`(t+ 1) = max{pmin, p`(t) + κ(t)v`(t)}, (18)

where we will choose pmin ≥ p̃min to satisfy condi-
tions of Theorem 11. We first note that U`(p) is con-
cave for p` ∈ [p1

` , 1] from Lemma 12, where p1
` =

pstartλc

2
[
λc+λd

[
1−η

∏
i∈Γ−`

e−c0ψi
]] . Thereafter, in order to apply

the Theorem 11 for our system, make use of the following
mappings: p` ↔ x, U`(p`) ↔ F (x), p̃min ↔ a, 1 ↔ b,
{pbr
` } ↔ X∗, and v`(t) ↔ ξ(t). Also note that the best

response strategy pbr
` (7), satisfies pbr

` = 2p1
` . Thus, we choose

p̃min = max{pmin, p
1
`}.

Recall that for fixed p−` (strategy of all other players), the
maximizer of the utility function U` is pbr

` , to which we want
the update equation (18) to converge. Thus, to use Theorem 11
we need to need to ensure that pbr

` does indeed lie in the range
[a, b] = [p̃min, 1]. In order to satisfy pbr

` ∈ [p̃min, 1], we need
both pmin ≤ pbr

` and p1
` ≤ pbr

` , where the latter is automatically
satisfied since pbr

` = 2p1
` , and the former because of condition

2 in our theorem statement. Thus, we have max{pmin, p
1
`} =

p̃min ≤ pbr
` ≤ 1 ∀` ∈ Γ−`.

Since the utility function U`(p`) is strictly concave within
the range p` ∈ [p̃min, 1] (Lemma 12) and E{v`|p} = ∂U`(p)

∂p`
,

first condition of Theorem 11 holds with γ0(t) = 0. More-
over, as we have diminishing step-size κ(k) which satisfies
condition 1 of our theorem statement, and |v(t)| ≤ (η+ pstart)
(easy to see from (9)). Hence, all the required conditions
for Theorem 11 are satisfied, and we conclude that p`(t)
following (18) converges to the best response strategy pbr

` with
probability 1.

Lemma 12: The utility function U` is concave in p` for
p` ∈ [p1

` , 1], where p1
` = pstartλc

2
[
λc+λd

[
1−η

∏
i∈Γ−`

e−c0ψi
]] .

Proof: Note that ∂2U`
∂p`∂pk

=

{
pstart

λc
λc+λd

− 2p`

[
1− η λd

λc+λd

(∏
i∈Γ−`

e−c0ψi
)]
, for k = `,

−c0η λd
λc+λd

p2
`

∏
i∈Γ−`

e−c0ψi ∂ψk∂pk
, o.w.

(19)
Thus, for p` ∈ [p1

` , 1], ∂
2U`
∂p2
`
≤ 0. 2
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