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Abstract—In this paper, we consider the channel estimation
and multi-user detection problems in fog radio access networks
(F-RANs). Based on block coordinate descent algorithm, we
propose two methods to solve a mixed `2,1-regularization
functional which exploits both the sparsity of user activities
and the spatial sparsity of user signals in F-RAN. Both of
our methods split the computation and corresponding data into
multiple units of a cluster and solve the problem in a distributed
manner. Hence they can be deployed flexibly at the distributed
logical edges as well as the cloud baseband unit pool in F-RAN.
The differences between the two methods are that the first one
operates in a serial manner and is guaranteed to converge,
while the second one works in parallel and under empirical
guidance. Deployment details are also provided. Numerical
results demonstrate the effectiveness of the proposed methods.

Index Terms—Fog radio access network (F-RAN), compressed
sensing, channel estimation, multi-user detection

I. INTRODUCTION

Fog computing is a term for an alternative to cloud
computing that deploys substantial amounts of computation
and storage capabilities at the edge of network [1], [2].
Different from the cloud radio access network (C-RAN)
which centralizes all the collaboration radio signal processing
(CRSP) at cloud baseband unit (BBU) pool, fog radio access
network (F-RAN) pushes part of CRSP functions to the
distributed logical extremes of a network, such as remote
radio heads (RRHs). The F-RAN architecture alleviates the
burden on fronthaul links and BBU pool, and supports flex-
ible CRSP deployment which has potential to make services
more realtime and the network more adaptive to dynamic
traffic. Compared to C-RAN, part of RRHs in F-RAN are
upgraded to fog access points (F-APs) by adding storage and
computing power, as shown in Fig. 1. RRHs are connected
to adjacent F-APs and also connected to BBU pool directly
or indirectly by fronthaul links. Each F-AP is connected to
other F-APs through high-bandwidth and low-latency links.

The identification of user activities is vital for resource
allocation in F-RAN and the acquisition of CSI is critical for
optimal precoder design, energy-efficient resource allocation,
and interference management [3]–[6]. The estimation of user
activities and CSI which lead to the channel estimation (CE)
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and multi-user detection (MUD) problems have been inves-
tigated extensively in traditional cellular network [7], [8].
Conventionally, orthogonal identification pilots are assigned
to different users within the same cell to eliminate the intra-
cell interference, such that the pilot length needs to scale with
the number of users multiply by the number of antennas per
user. However, in F-RAN, since the CE and MUD problems
are no longer restricted to local BS processing, the mutually
orthogonal pilots will scale with the number of users in the
whole network. Therefore, more efficient processing scheme
is required for F-RAN.

Active User
Inactive User

RRH

BBU Pool

Fronthaul Links

F-AP

Fig. 1: Illustration of the F-RAN system.

Since most of users are silent in each time slot, in many
recent works, MUD and CE are formulated as a sparse
signal recovery problem that can be solved by compressed
sensing (CS) technology [9]–[12]. Therefore, rigorously or-
thogonal characteristic between pilots belonging to different
users is no longer required, and the pilot length can be
reduced considerably. The CE and MUD problems in the
similar C-RAN system are discussed in [13]–[15], where
the received pilot data in RRHs are transmitted through
fronthaul links to the BBU pool and jointly processed to
meet the demand of the whole network. In F-RAN, however,
the massive computing resources existing at network edges
provide another option that we can solve MUD and CE
problems at distributed F-APs rather than the BBU pool.
Solving MUD and CE problems by F-APs and local links



can alleviate the burden on fronthaul links and BBU pool,
which is one of the main bottlenecks in C-RAN [14]. Just
like the general CRSP in F-RAN, one flexible deployment
strategy for MUD and CE is that the local solving of MUD
and CE are triggered with assistance of F-APs and local links
when traffic load on fronthaul links or computation load on
BBU pool become high, while the centralized MUD and CE
are triggered with assistance of BBU pool and fronthaul links
when not executed efficiently by F-APs and local links.

Since architectures of C-RAN and F-RAN are similar, the
problem formulation of MUD and CE in C-RAN and F-RAN
is almost the same, and hence the methods proposed in [13]–
[15] for C-RAN are still applicable for the centralized process
scenario at BBU pool in F-RAN. Except a variant of methods
proposed in [13], all the methods in [13]–[15] operate in
a centralized fashion, and therefore can not apply to the
distributed computation setting at the edge of F-RAN. The
parallel method in [13] relies on the exact prior knowledge
of path loss between each RRH and each user, which can
be computationally intensive to obtain, especially when the
F-RAN is large [16].

In this paper, we propose two new methods to solve MUD
and CE problems in F-RAN which do not require any prior
information of channel parameters. Both methods can apply
to the distributed computation setting composed of F-APs
and local links, as well as the centralized computation setting
at BBU pool. Note that, in both methods, user pilots are
stored uniquely and distributedly at F-APs, and hence they
work well with dynamic changes of users in the network.
Specifically, when a new user enters the F-RAN, it is assigned
a randomly-generated pilot which is non-orthogonal with
existing pilots. This pilot can be generated and then stored
locally in one single F-AP and the storages in other F-APs
do not need to be updated. On the other hand, when one
user leaves the F-RAN, all the needed operation is deleting
its pilot at the F-AP where it is stored.

The main contributions of this paper are as follows:
• A novel method based on block coordinate descent

(BCD) algorithm is proposed to solve MUD and CE
problems in F-RAN, which operates in a serial manner
and is guaranteed to converge. A practical assumption
is made which dramatically simplifies the computation
and expression. As a baseline work, a BCD method is
also proposed to solve the standard sparse group lasso
criterion.

• To accelerate the optimization procedure, extended from
BCD, we propose another method named hybrid BCD
(HBCD) which works in a parallel fashion. Compared
to BCD, HBCD has lower complexity but works under
empirical guidance. Note that we introduce two levels
of parallelism in HBCD: one is across distributed F-
APs, and the other is among cores within each F-AP.
Deployment details for HBCD are also provided.

• Simulations are conducted to verify the effectiveness of
the proposed methods. It is shown that, even without any
prior information on channels, BCD provides the same

performance as state-of-the-art method, while HBCD
works a little worse but has rather low computational
complexity.

Notations: We use uppercase (lowercase) boldface letters
to denote matrices (column vectors). iff denotes “if and
only if”. The operators (·)T , (·)H , ‖·‖F stand for transpose,
conjugate transpose and Frobenius norm, respectively. The
operator (a)+ denotes max{a, 0}. IN denotes an N × N
identity matrix. 1K×G stands for a K × G matrix where
each element equals to 1. ⊗ denotes the Kronecker product.
vec(A) denotes the vectorization of A formed by stacking
its columns into a single column vector. A[i,j] stands for
the {i, j}th element in A, and Ai,j denotes the {i, j}th
submatrix in A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We call F-APs and RRHs together as access points (APs)
in this paper. Consider an uplink F-RAN system with G APs
and K users. APs consist of C F-APs and (G − C) RRHs.
There are N antennas in each user device, and M antennas
in each AP. The kth user is assigned with a pilot matrix
Pk ∈ CN×L, where L denotes the length of training pilots.
As only a small part of users are active, we denote the set of
active users by A $ {1, ...,K}, and define indicator function
∆k = 1 if the kth user is active, otherwise ∆k = 0.

It is assumed that transmission and reception of training
pilots are synchronized, which can be achieved by broad-
casting periodical beacon signals in network, receiving GPS
signals or other technologies. Then the received training pilot
data in the gth AP can be described as

Rg =
∑
k∈A

Hg,kPk + N̄g =

K∑
k=1

Hg,k∆kPk + N̄g (1)

where Hg,k ∈ CM×N denotes the quasi-static channel from
the kth user to the gth AP, and N̄g ∈ CM×L denotes additive
noise in the gth AP.

By concatenating received pilot data in all the G APs, the
total received data in system can be described as

R = HΛP + N̄ (2)

where R = [RT
1 , ... ,R

T
G]T , Λ = diag[∆1, ... ,∆K ]⊗ IN ,

P = [PT
1 , ... ,P

T
K ]T , N̄ = [N̄T

1 , ... , N̄
T
G]T , and

H =

H1,1 · · · H1,K

· · · · · · · · ·
HG,1 · · · HG,K

 (3)

With the knowledge of training pilot matrix P as well as
received data R, the MUD problem is to detect Λ in (2), and
the CE problem is to estimate matrices [HT

1,k; ...; HT
G,k]T ,

∀k ∈ A. To accomplish the two objectives, we transform (2)
into an under-determined measurement system as below, and
aim to estimate ΛHH as a whole:

RH = PHΛHH + N̄H (4)



where PH ∈ CL×KN is a matrix with the assumption that
the pilot length L is less than the number of users K times
the antenna number per user N .

To regularize the expression, the system model (4) is
rewritten as below,

B = AX + N (5)

where B = RH ∈ CL×GM , A = PH ∈ CL×KN , X =
ΛHH ∈ CKN×GM , and N = N̄H .

We use Xi ∈ CN×GM to denote the ith row submatrix
[∆iH

H
1,i, ... ,∆iH

H
G,i] in ΛHH , which is also referred to

as the ith “row chunk” in X; and use Xi,j ∈ CN×M to
denote the {i, j}th element chunk ∆iH

H
j,i in ΛHH , which

is also referred to as the {i, j}th “element chunk” in X.
The structure of X is shown in Fig. 2. We further define
Ai = PH

i ∈ CL×N in (4), then A = [A1, ... ,AK ].

the ith “row chunk” 
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Fig. 2: The row chunks and element chunks in X

The sparsity of the ith row chunk Xi is determined by
∆i, that is whether the ith user is active. Therefore most
of row chunks in X equal to zero, and X has row-chunk
sparsity structure. In a F-RAN, numerous APs are distributed
on large areas, and far away APs have negligible effect on a
specific active user. This results in that if the ith row chunk
Xi is nonzero, Xi,j = HH

j,i approximates to zero for most
of j ∈ {1, ...,M}. Hence the non-zero row chunk Xi has
element-chunk sparsity structure.

To exploit the two type of sparsities in X simultaneous-
ly, we propose a weighted `2,1-regularization minimization
functional as follows:

min
X

α1

K∑
i=1

wi ‖Xi‖F + α2

K∑
i=1

G∑
j=1

Wi,j ‖Xi,j‖F

+
1

2
‖AX−B‖2F (6)

where w ∈ RK×1
+ is a weight vector in which wi is the

weight scaler of the ith row-chunk Xi, and W ∈ RK×G
+ is

a weight matrix in which Wi,j is the weight scaler of the
{i, j}th element-chunk Xi,j .

The first term in (6) exploits the row chunk sparsity,
and the second term takes into account the element chunk
sparsity. The re-weighting strategy can provide democratic
penalization on chunks and further enhance performance
[17]. Different from our previous work in [15] where an

element-level re-weighting strategy is used, we adopt a
chunk-level re-weighting strategy in this paper in order to
improve efficiency and fit the proposed methods.

The choices of α1 and α2 have critical effect on the
performance of (6). A theorem on the rigorous upper bounds
of α1 and α2 is shown as below, which is a direct inference
of Theorem 1 in [15].

Theorem 1. The solution of the functional (6) is X̂ = 0
if α1 ≥ α∗1 = max

i

{∥∥(AH
i B)

∥∥
F
/wi

}
or α2 ≥ α∗2 =

max
i,j

{∥∥(AH
i Bj)

∥∥
F
/Wi,j

}
.

In addition, we consider a special case where each RRH
and user is equipped with only single antenna, i.e., M =
N = 1. Then, the element chunk Xi,j in X reduces to a
complex number. By defining b := vec(BT ), x := vec(XT ),
n := vec(NT ) and Ā := A ⊗ IG, we obtain the simplified
system model from (5) as follows:

b = Āx + n =

K∑
k=1

Ā(k)x(k) + n, (7)

where x(k) ∈ CG×1 denotes the transposition of the kth row
in X, and Ā(k) ∈ CLG×G denotes the column submatrix
of Ā corresponding to x(k). We also address x(k) as the
kth group in x. It can be observed that the vector x to
be estimated has two levels of sparsity: group-wise sparsity
and element-wise sparsity. By further removing the effect of
weight vector w and matrix W, the proposed functional in
(6) is reduced to

min
x

α1

K∑
k=1

∥∥∥x(k)
∥∥∥
F

+ α2 ‖x‖1 +
1

2

∥∥Āx− b
∥∥2
F
, (8)

where ‖x‖1 denotes the sum of magnitudes of each complex
element in x.

The model in (7) belongs to single measurement vector (S-
MV) model which aims to recover an unknown sparse signal
vector from a single measurement vector, while our targeted
problem in (5) lies in the context of multiple measurement
vectors (MMV) scenario. If we eliminate the first term in the
simplified functional (8) by setting α1 = 0, only the sparse
relationship between each active user and each effective RRH
is exploited, and (8) reduces to the standard least-absolute
shrinkage and selection operator (lasso) problem [18]. If we
eliminate the second term in (8) by setting α2 = 0, only
the sparsity of user activities is exploited, and (8) reduces to
the group lasso problem [19]. The functional in (8) exploits
element sparsity and group sparsity together, and is known
as sparse group lasso criterion [20].

III. BLOCK COORDINATE DESCENT METHOD

In this section, a new method is proposed based on block
coordinate descent (BCD) algorithm for the distributed mem-
ory and computation setting in F-RAN. The BCD algorithm
is one class of iterative algorithms where coordinates are



partitioned into blocks, and the objective is optimized cycli-
cally over each block-coordinate hyperplane while remaining
unchanged at all the other block-coordinate hyperplanes [21].
In BCD, each optimization subproblem is a low-dimensional
minimization problem that can be solved much easier than
the full problem.

As a baseline work, we first consider the standard S-
MV sparse group lasso criterion in (8) and extend it to
solve the proposed functional later [20], [22]. Considering
the simplified SMV system model in (7), inspired by [23]
which handles the general group lasso problem, we assume
that Ā(k) is an orthogonal matrix for each user k, that is
Ā(k)HĀ(k) = IG, ∀k = 1, ...,K. It can be achieved by
normalizing the pilot of each user antenna, i.e. each column
in A, as unit complex vector. Aiming at solving the functional
in (8), we propose a BCD method as shown in Appendix B,
which is based on a chunk-wise shrinkage operation defined
in Appendix A. In each iteration, the estimation of x(k) is
obtained by (19) sequentially for k = 1, ...,K. The solution
of (8) can be obtained by iterating until convergence.

Next, we consider the targeted functional in (6). It is
practical to consider that the pilot length L is larger than
the user-antenna number N , and we have the following
assumption.

Assumption 1. Within each user device in F-RAN, the pilot
sequences transmitted by antennas are mutually orthogonal,
that is AH

i Ai = PiP
H
i = IN , ∀i = 1, ... ,K in (5).

With Assumption 1, the BCD method to solve the func-
tional in (6) is depicted in Appendix C. The convergence of
BCD method is stated in the following, which is a direct
extension of the results in [24].

Proposition 1. For any α1, α2 > 0, and fixed w, W, the
estimation of the ith row chunk Xi is obtained by (28)
sequentially for i = 1, ...,K in each iteration. Then, the
iterations of X are guaranteed to converge to the global
minimizer of (6).

The BCD method loops for several times, in each of which
the solution of (6) is obtained with fixed weight vector w
and matrix W. As an empirical law, each element in w and
W are set inversely to the previous estimation of respective
chunk norms, shown in (9). In summary, the BCD method is
described in Table I.

wi =
1

‖Xi‖F + ε
, Wi,j =

1

‖Xi,j‖F + ε
(9)

For deployment of BCD method in F-RAN, we consider
a setup that consists of C distributed F-APs with a ring
connecting topology. An example with three F-APs is shown
in Fig. 3 with definition R := B −AX̂, where X̂ denotes
the current estimation of X. To update the estimation of Xi

as described at Steps 5 in Table I, with the received R, the
variable R−i in (28) is obtained by R−i = R+AiX̂i where
X̂i denotes the current estimation of Xi. It can be seen that,
except R, the updating of X̂i needs Ai,Wi,wi and the
current estimation of Xi, all of which can be stored locally.

TABLE I: BCD Method

Algorithm Block Coordinate Descent Method

1: Initialize weight vector w and weight matrix W.
2: Initialize parameters α1, α2, ε and the max loop number
MaxCount. Set the loop counter count← 1.

3: while count ≤MaxCount do
4: while not convergent and stopping criterion not met

do
5: Get the estimation of row chunk Xi by (28) sequen-

tially for i = 1, ... ,K.
6: end while
7: Update w and W with (9).
8: count← count+ 1.
9: end while

In the deployment, the K row-chunk coordinates are
sequentially partitioned into C blocks, P1 , ... , PC , with
cardinality

∑
c |Pc| = K. The computation task of the cth

block Pc is assigned to the cth F-AP. Within the cth F-
AP, row chunks are computed sequentially, and the finally
updated R is passed to the {c + 1}th F-AP. We further
define the column submatrix in pilot matrix A corresponding
to Pc as APc. WPc,wPc and XPc are defined similarly.
Then APc,WPc,wPc and the estimation result X̂Pc are
only stored on the cth F-AP. Data and computation in BCD
method are thus distributed to C F-APs. Other deployment
details of BCD are omitted in this paper. Besides, it can be
seen that the computational complexity of BCD per iterate
is approximately O

(
KGMN

)
.

R

F-AP 1

F-AP 2 F-AP 3

R

R

Fig. 3: Example of BCD method deployment

IV. HYBRID BLOCK COORDINATE DESCENT METHOD

The BCD method solves our problems in a serial fashion,
and it is intuitive to extend it to a parallel method in
order to further accelerate the solving procedure. Randomized
coordinate descent methods, where multiple coordinates are
updated parallelly in each iteration, were proposed in several
recent works [25], [26] to utilize the multi-core and shared-
memory setup in one single computer. While in [27], hybrid
coordinate descent method was proposed to fit the modern
multiple distributed computer scenario.

With the distributed computing setting at the edge of F-
RAN, we propose a hybrid block coordinate descent (H-
BCD) method to solve the functional (6) in parallel. The



term “hybrid” refers to parallelism at two levels: (i) across
distributed F-APs and (ii) among independent computation
cores within each F-AP. Assume there are C + 1 F-APs and
each of the first C F-APs is equipped with E cores. The K
row-chunk coordinates are separated regularly or randomly
into C blocks, and the cth block of coordinates is labelled
as XPc. The calculation of X̂Pc is deployed to the cth F-
AP, where APc,WPc,wPc are stored locally. For dynamic
changes of users in the network, the pilot matrix of a newly
arrived user can be generated and stored in any F-AP, and
hence we can assume that |Pi| ≈ |Pj | ,∀i 6= j. The HBCD
method is described in Table II, and an example of HBCD
deployment with five F-APs is shown in Fig. 4.

F-AP 1

F-AP 3F-AP 2

F-AP 4

R

R
R

R

F-AP 5

DD

D
D

Fig. 4: Example of HBCD method deployment

We now comment on Table II. Steps 4-8 are executed
in each of the first C F-APs parallelly. In the cth F-AP, a
coordinate set Sc of cadinality τ is picked from Pc uniformly
at random and independently of other F-APs. Then, similarly
to BCD method, R−i for i ∈ Sc is obtained using equation
R−i = R + AiX̂i, where R is received from the {C + 1}th
F-AP. With data R−i, the estimation of Xi for i ∈ Sc and the
intermediate matrix Di in Steps 6 are obtained independently
and parallelly on E cores. The communication data DPc ∈
CL×GM is given by DPc =

∑
i∈Pc Di = APcX̂Pc. The

convergence is determined locally based on the comparison
between the new and old estimations of XPc, and then the
result as well as DPc is passed to the {C + 1}th F-AP.
In Step 10, the {C + 1}th F-AP confirms convergence if
converged in all the first C F-APs or other stopping criterion
met. Otherwise, in Step 18, R is calculated in the {C+1}th
F-AP and passed to all the first C F-APs.

The HBCD method is inherently synchronous, and the
computational complexity of HBCD is O

(
LGMNτ/E

)
per

iterate, which is only O
(
Lτ/(KE)

)
fold of the BCD method

for each iterate. It can be seen from (28) that HBCD adopts
the step size β = 1 as recommended in [26]. Note that subsets
of {1, ...,K} with cardinality Cτ are not chosen with equal
probability, and hence the analysis in [26] does not apply.
The HBCD method adopts the same memory-distributed
setting as in [27], which provides theoretical analysis on the
condition that β ≥ 2β∗ where β∗ ≈ 1 + Cτ . However, the
experiments in [27] admit that poor performance is achieved
when β ≥ 2β∗ and massive speedups can be obtained by
choosing step size β even hundreds of times smaller than

TABLE II: HBCD Method

Algorithm Hybrid Block Coordinate Descent Method

1: Initialize α1, α2, ε, WPc and wPc locally and identically
in each of the C F-APs. Set count← 1 and MaxCount
in the {C + 1}th F-AP.

2: loop
3: for each F-AP c ∈ {1, ..., C} in parallel do
4: Pick a random set of row chunks Sc ⊆ Pc and

|Sc| = τ .
5: for each row chunk i ∈ Sc do
6: Obtain the estimation of Xi by (28), and Di :=

AiXi.
7: end for
8: Obtain DPc :=

∑
i∈Pc Di.

9: end for
10: if convergent or stopping criterion met then
11: if count ≤MaxCount then
12: count← count+ 1.
13: Update wPc and WPc with (9) locally in each

F-AP c ∈ {1, ..., C}.
14: else
15: The estimation of X is obtained. HBCD ends.
16: end if
17: else
18: Obtain R := B−

∑C
c=1 DPc.

19: end if
20: end loop

β∗. Therefore, we fix the step size β equal to one, and
set parameter τ to a small value according to the empirical
results in [26], [27]. Furthermore, based on experiments of
[27] and ourselves, we provide Remark 1 on the choice of τ
which has great influence on the performance.

Remark 1. Large value of τ may lead to divergency in
HBCD. However, empirically, larger τ in safe range not only
accelerates the converging speed but also achieves higher
estimation accuracy. Hence, HBCD would benefit from a line-
search procedure for the selection of τ .

V. NUMERICAL RESULTS

Consider a F-RAN with G = 60 APs and K = 600 users.
The APs are distributed at grid points and users are uniformly
and randomly distributed in a rectangular region. Rayleigh
fading channel is assumed between APs and users. There are
five F-APs among APs, and each of the first C = 4 F-APs is
equipped with E = 10 cores. The number of antennas in each
AP and user are M = 3 and N = 2, respectively. The number
of active users is 60, and SNR is set at 20 dB. According
to Assumption 1, we adopt orthogonalized Gaussian random
pilot matrix Ai for each user i, which satisfies AH

i Ai =
IN . Parameters α1 and α2 in functional (6) are empirically
set equal to a small percentage of α∗1 and α∗2 in Theorem
1, respectively, that is 1%-5%. The number of re-weighting



times MaxCount is set to 2, and ε in (9) is 10−8. The
parameter τ in HBCD is set to 10.

For comparison, the method “modified Bayesian compres-
sive sensing with clustering” (“ClusterBCS” for short) in [13]
is added into the simulation. Based on the prior information
of path loss between APs and users, ClusterBCS partitions
APs into clusters and operate parallelly in each cluster.
Here we also include another case named “ClusterBCS2”
in which ClusterBCS is provided with inaccurate path-loss
values. Assuming the precise path loss parameter between
the kth user and the gth AP is γg,k, we provide ClusterBCS2
with γg,k · (1 + 0.5n) where n obeys the standard normal
distribution. APs are partitioned into 6 clusters in ClusterBCS
and ClusterBCS2. All the results are averaged over 200 runs.
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Fig. 5: Channel estimation results of respective methods
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Fig. 6: Multi-user detection results of respective methods

Figure 5 shows the CE results of respective methods,
where NMSE denotes the normalized mean squared error.
It can be seen that BCD provides the highest estimation
accuracy even without any prior information on channels.
The HBCD needs longer pilot to achieve the same estimation

accuracy as BCD. The ClusterBCS performs slightly worse
than BCD, while ClusterBCS2 has the worst performance.
In the HBCD curve, the points where pilot length equals
to 20 and 40 do not exist because too short pilots cause a
certain probability of diversity according to our simulations.
The MUD results are shown in Fig. 6 where “Error Number”
denotes the number of wrongly detected users in respective
methods. It can be seen that BCD and ClusterBCS exhibit
the best performances in MUD. After evaluating the perfor-
mance of respective methods, we turn to the computational
complexity which is shown in Fig. 7. It can be seen that
HBCD has the lowest computational complexity and thus is
more competitive when the problem size is larger.
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Fig. 7: Computation time of respective methods.

At last, we illustrate the influence of parameter τ on the
performance of HBCD. By fixing the value of pilot length
at L = 70, HBCD with different values of τ and BCD are
executed for one time and the normalized square error (NSE)
of respective methods versus iteration number are shown in
Fig. 8. The “weight-updated point” denotes the point where
the weight vector w and matrix W are updated by (9). As
the number of re-weighting times MaxCount is set to two,
there is only one weight-updated point in each curve. The
weight-updated points in HBCD-class methods are all at 600
because the maximum iteration number for each loop in Table
II is set to 600. The BCD needs much less iteration number
to converge than HBCD, in part because all the row chunks
are updated in one iterate of BCD while only a small portion
are updated in one iterate of HBCD. For HBCD, a value of
τ larger than 10 leads to a certain probability of divergency
according to our simulations. While a larger τ which is less
than or equal to 10 achieves higher estimation accuracy and
needs less iteration numbers to converge, which agrees with
the discussion in Remark 1.

VI. CONCLUSION

To provide flexible solutions for CE and MUD problems in
F-RAN, we propose two methods named BCD and HBCD,
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respectively, both of which can operate with distributed com-
putation and storage setting. Moreover, these two methods
can both be deployed at the BBU pool as well as the edges
of F-RAN composed of F-APs and local links. The BCD
operates in a serial fashion and is guaranteed to converge
while HBCD works in parallel and under empirical guidance.
Deployment details are also provided. Simulation results
show that BCD can provide the state-of-art performance even
without any prior information on channels, while HBCD
performs a little worse but owns the lowest computational
complexity.

APPENDIX A
DEFINITION OF CHUNK-WISE SHRINKAGE OPERATION

To simplify expressions in Appendices B and C, we de-
note the chunk-wise shrinkage operation for complex matrix
as Shrink(·), which is an extension of the basic one-
dimensional soft thresholding method or shrinkage in, e.g.,
[28]. Assume that Y,X ∈ CKN×GM and C ∈ RK×G

+ , and
then Y = Shrink(N,M)

(
X,C

)
represents that (N,M) is

the dimension of shrinkage operation in the objective matrix
X, and

Yi,j =
Xi,j

‖Xi,j‖F

(
‖Xi,j‖F −C[i,j]

)
+
,

where C[i,j] ∈ R+ stands for the {i, j}th element in R, and
Xi,j ,Yi,j ∈ CN×M denote the {i, j}th submatrix in X and
Y respectively.

APPENDIX B
BCD METHOD FOR FUNCTIONAL IN (7)

The functional (7) is convex in x. As a direct consequence
of Karush-Kuhn-Tucker (KKT) condition, for the kth group
in the optimal solution x̂, x̂(k) should satisfy the subgradient
equation as follows:

−Ā(k)H(r(−k) − Ā(k)x̂(k)) + α1u + α2v = 0, (10)

where r(−k) = b − Āx̂(−k), and x̂(−k) =
(x̂(1)T , ..., x̂(k−1)T ,0, x̂(k+1)T , ..., x̂(K)T )T . u and v
are the subgradients of

∥∥x̂(k)
∥∥
F

and
∥∥x̂(k)

∥∥
1

with regard to
x̂(k), respectively, and are given by

u =


x̂(k)

‖x̂(k)‖
F

iff x̂(k) 6= 0,

∈ {u : ‖u‖F ≤ 1} iff x̂(k) = 0,
(11)

vj =


x̂
(k)
j∥∥∥x̂(k)

j

∥∥∥
F

iff x̂
(k)
j 6= 0,

∈ {vj :
∥∥∥x̂(k)

j

∥∥∥
F
≤ 1} iff x̂

(k)
j = 0,

(12)

where vj is the jth element in v, and x̂
(k)
j is the jth element

in x̂(k).
With the assumption Ā(k)HĀ(k) = I, we get the following

solution from (10) as follows:

−Ā(k)Hr(−k) + x̂(k) + α1u + α2v = 0. (13)

It can be seen that x̂(k) = 0 if and only if∥∥∥Shrink(1,1)(Ā(k)T r(−k), α2)
∥∥∥
F
≤ α1. (14)

If x̂(k) 6= 0, then for a particular x̂
(k)
j ,

−Ā
(k)T
j r(−k) + x̂

(k)
j + α1

x̂
(k)
j∥∥x̂(k)
∥∥
F

+ α2vj = 0. (15)

And then x̂
(k)
j = 0 if and only if∥∥∥Ā(k)T

j r(−k)
∥∥∥
F

= ‖α2vj‖F ≤ α2. (16)

If non-zero, x̂
(k)
j should satisfy

(1 +
α1∥∥x̂(k)
∥∥
F

)x̂
(k)
j = Ā

(k)T
j r(−k) − α2

x̂
(k)
j∥∥∥x̂(k)
j

∥∥∥
F

. (17)

By combining (16) and (17), we get

(1 +
α1∥∥x̂(k)
∥∥
F

)x̂(k) = Shrink(1,1)
(
Ā(k)T r(−k), α2

)
. (18)

We further combine (18) and (14), and get the estimation of
x(k) as follows:

x̂(k) =
(
1− α1∥∥Shrink(1,1)(Ā(k)T r(−k), α2

)∥∥
F

)
+
·

Shrink(1,1)
(
Ā(k)T r(−k), α2

)
.

(19)

APPENDIX C
BCD METHOD FOR FUNCTIONAL IN (6)

The functional (6) is convex in X. Combined with As-
sumption 1, the ith row-chunk block in the optimal solution
X̂ should satisfy

−AT
i R−i+X̂i+α1wiU+α2

(
diag(Wi)⊗IN

)
V = 0, (20)

where R−i = B − AX̂−i, and X̂−i =
(X̂T

1 , ..., X̂
T
i−1,0, X̂

T
i+1, ..., X̂

T
K)T . U and V are the



subgradients of
∥∥∥X̂i

∥∥∥
F

and
∑G

j=1

∥∥∥X̂i,j

∥∥∥
F

with regard to

X̂i, respectively, and are given by

U =


X̂i

‖X̂i‖
F

iff X̂i 6= 0

∈ {U : ‖U‖F ≤ 1} iff X̂i = 0
(21)

Vj =


X̂i,j

‖X̂i,j‖
F

iff X̂i,j 6= 0

∈ {Vj : ‖Vj‖F ≤ 1} iff X̂i,j = 0
(22)

where Vj ∈ CM×N is the jth element chunk in V.
It can be seen that X̂i = 0 if and only if∥∥∥Shrink(N,M)

(
AT

i R−i, α2Wi

)∥∥∥
F
≤ α1wi (23)

If X̂(i) 6= 0, then for the {i, j}th element chunk X̂i,j , we
have

−AT
i (R−i)j+X̂i,j+α1wi

X̂i,j∥∥∥X̂i

∥∥∥
F

+α2Wi,jVj = 0, (24)

where (R−i)j ∈ CL×M is the jth element chunk in R−i.
Then, we have X̂i,j = 0 if and only if∥∥AT

i (R−i)j
∥∥
F
≤ α2Wi,j , (25)

and X̂i,j 6= 0 if and only if

AT
i (R−i)j − α2Wi,j

AT
i (R−i)j∥∥AT
i (R−i)j

∥∥
F

= (
α1wi∥∥∥X̂i

∥∥∥
F

+ 1)X̂i,j .

(26)
By combining (25) and (26), we obtain

(
α1wi∥∥∥X̂i

∥∥∥
F

+1)X̂i,j = max
{

1− α2Wi,j∥∥AT
i (R−i)j

∥∥
F

, 0
}
AT

i (R−i)j .

(27)
We further combine (27) and (23), and get the estimation of
Xi as follows:

X̂i =
(
1− α1wi∥∥Shrink(N,M)(A

T
i R−i, α2Wi)

∥∥
2

)
+
·

Shrink(N,M)(A
T
i R−i, α2Wi).

(28)
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