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Abstract—A single server with variable speed and a finite
buffer is considered under a maximum packet drop probability
constraint. The cost of processing by the server is a convex
function of the speed of the server. If a packet arrives when
the buffer is full, it is dropped instantaneously. Given the finite
server buffer, the objective is to find the optimal dynamic server
speed to minimize the overall cost subject to the maximum
packet drop probability constraint. Finding the exact optimal
solution is known to be hard, and hence algorithms with provable
approximation bounds are considered. We show that if the
buffer size is large enough, the proposed algorithm achieves
the optimal performance. For arbitrary buffer sizes, constant
approximation guarantees are derived for a large class of packet
arrival distributions such as Bernoulli, Exponential, Poisson etc.

Index Terms—Speed Scaling, Congestion Control, Queueing

I. INTRODUCTION

In a speed scaling problem, a server with tunable speed is
considered, and the objective is to minimize an appropriate
cost function subject to a quality of service (QoS) constraint
(e.g., packet drop probability). In this paper, we consider a
single server that is equipped with a finite buffer, and any
packet that encounters a full buffer on its arrival is dropped
instantaneously. The specific speed scaling problem is to
minimize the server energy cost (convex function of the speed)
under a packet drop probability constraint. This explicit
problem was first studied in [1], where some structural results
were obtained via results on Markov decision processes. The
main analytical results were, however, derived under a slightly
simpler QoS constraint, since the hard packet drop probability
constraint is challenging to analyze.

One direction for analyzing speed scaling/job scheduling
(choosing server speed depending on queue length) with finite
but large buffers has been via large deviations exponents,
where the rate-function optimality is the objective [2], [3].
Even though this provides theoretical answers, however, the
asymptotic limits have limited scope in terms of practicality.
For infinite buffer size, the tradeoff between average server
speed and average delay can be found in [4]–[7], where the
problem is cast as a Markov decision process, and structural
results are obtained to reduce the search space for finding the
optimal policy.

The authors are listed in last name alphabetical order.

Speed scaling has been also been considered in computer
science theory literature [8]–[13], where a single/multiple
servers have to choose their speed in order to maximize
the utility (profit-service cost) subject to jobs having hard
deadlines. Most of the results in [8]–[13] are derived under
a worst case input, where arrival times and job sizes can
be chosen by an adversary rather than being drawn from a
stochastic process.

The speed scaling problem with finite buffers is also re-
lated to a more modern problem in energy harvesting (EH)
paradigm, where a transmitter harvests random amount of en-
ergy from renewable sources, and its objective is to maximize
its rate of transmission [14], [15]. The transmitter is equipped
with a finite battery, and similar to a server with a finite
buffer, any energy arriving when the battery is full is lost. The
transmission rate of the transmitter is a concave function of the
transmit power, and it has to decide the optimal rate of power
transmission to maximize its rate, subject to the finite battery
capacity and random energy arrivals. The rate maximization
problem with EH, however, does not have any energy loss
constraint. An additional constraint of limiting the probability
of battery state hitting the full or empty state is also studied
in [15].

In this paper, we consider the problem of choosing the
optimal server speed for a single server with finite buffer under
a hard packet drop probability constraint of α, with convex
server cost. Since finding the optimal policy is known to be
hard [1], we take an alternate approach of deriving algorithms
that have provable theoretical gap guarantees on their perfor-
mance compared to the unknown optimal algorithm.

We consider a slotted time system, where At packet arrive
in slot t, and At is assumed to be i.i.d. across slots t. We first
consider arbitrary buffer sizes, and propose a simple policy that
serves (1−α)At packets at time t and forcibly drops the rest of
the αAt packets. This policy trivially satisfies the packet drop
probability constraint, and we show that for large class of ar-
rival distributions, that includes, uniform, exponential etc., this
policy has at most a constant multiplicative gap in the server
cost compared to the optimal policy. This policy can be shown
to have a poor performance when the average arrival rate E[At]
is low for certain distributions such as Bernoulli. For low
E[At] regime, we propose an alternate algorithm and derive
a tighter lower bound, and show that they have a constant



multiplicative gap between them for Bernoulli distributions.
Finally, we consider the finite but large buffer regime, where
we propose an algorithm similar to [15] and show that it has
an additive gap of max{Θ

(
B−β

)
,Θ
(

(logB)2

B2

)
}1 in terms

of server cost from the optimal policy, when the packet drop
probability can be violated by Θ

(
B−β

)
, where B is the buffer

size. Thus, with a reasonably sized buffers, the performance
of the proposed policy is very close to the optimal with very
small violation of the packet drop probability constraint. Since
finding the exact optimal policy has remained open for long,
this is the closest approximation result one can expect.

II. SYSTEM MODEL

We consider a slotted time system, where in slot t, At packet
arrive to the buffer of the single server. The arrival process
{At, t ≥ 1} is assumed to be an ergodic stochastic process
with a long term mean given as limτ→∞

1
τ

∑τ
t=1At = µ. We

assume that the support of At is in [0, B], because otherwise it
will not be possible for any policy to be feasible for sufficiently
low values of packet drop probability. Packets are admitted
subject to the finite buffer size of B, i.e., if the buffer state
(number of packets in the buffer) at slot t is bt, then only B−bt
packets among the At packets are admitted into the buffer and
the rest (without distinguishing) are dropped instantaneously.
The server uses a policy/algorithm g = {gt}∞t=1, where
it serves gt packets in slot t, incurring a cost of fc(gt),
where fc(.) is a convex function. For most of the paper,
we will consider fc(s) = s2, a common choice in literature
[16]. We also assume that a fraction of a packet can be
served in a slot t. The packet drop probability is denoted as
PDrop = P (an arriving packet is dropped). Policy g directly
controls the overall cost and PDrop, and the objective is to
derive an optimal policy g? that minimizes the overall cost

J g = lim
n→∞

E

[
1

n

n∑
t=1

fc(gt)

]
. (1)

subject to a hard constraint of α on PDrop, where the expec-
tation is over the arrival process {At}∞t=1. Formally, we want
to solve,

minimize
g

J g = lim
n→∞

E

[
1

n

n∑
t=1

fc(gt)

]
subject to 0 ≤ gt ≤ bt, t ≥ 1,

bt = min{bt−1 +At − gt−1, B},
PDrop ≤ α.

(2)

As described in the Introduction, problem (2) is hard to
solve, and instead we seek to find policies that have a guar-
anteed multiplicative gap from the unknown optimal policy
g?. The multiplicative gap is generally referred to as the
competitive ratio of the policy g, that is defined as

CRg =
J g

J g?
. (3)

1Notation used throughout the paper: fn = Θ(gn) if fn and gn go to
zero at the same rate, fn = Ω(gn) if fn goes to zero no faster than gn,
fn = o(gn) if fn goes to zero strictly faster than gn

In the rest of the paper, we propose feasible policies g that
have constant competitive ratios. Towards that end, we first
rewrite the packet drop probability as the ratio of the expected
number of packets dropped and the expected number of packet
arrivals, i.e.,

PDrop = lim
n→∞

E [
∑n
t=1 max{0, At −B + bt}]

E [
∑n
t=1At]

. (4)

In the next subsection, we derive a lower bound on the cost
J g incurred by any feasible policy g including the optimal
policy g?.

III. GENERAL LOWER BOUND

Theorem 1. Consider any continuous, convex, non decreasing
cost function fc(.), the minimum cost incurred by any feasible
policy g under any i.i.d. packet arrival process {At, t ≥ 1} is
lower bounded as

J g ≥ fc (µ (1− α)) ,

where µ = E [At], and α is the packet drop probability
constraint

Proof. The total number of packets served by a policy g in
n slots is

∑n
t=1 gt, and the maximum number of packets

remaining in the buffer after n slots is B. Since the server is
allowed to drop at most α fraction of the arrived packets, on
average, the sum of total number of packets serviced

∑n
t=1 gt

and the number of packets left in the buffer (≤ B) at the end
of the packet arrival sequence need to be greater than (1−α)
fraction of the number of packet arrivals. Therefore, we get
the lower bound

lim
n→∞

E

[
n∑
t=1

gt +B

]
≥ (1− α)E

[
n∑
t=1

At

]
,

lim
n→∞

E
[∑n

t=1 gt
n

+
B

n

]
(a)

≥ (1− α)E
[∑n

t=1At
n

]
,

lim
n→∞

E
[∑n

t=1 gt
n

]
(b)

≥ (1− α)E
[∑n

t=1At
n

]
,

(c)
= (1− α)µ. (5)

where (a) follows from dividing both sides by n, (b) follows
since as n → ∞, B

n → 0 and, (c) follows since At is i.i.d.
and by linearity of expectation.

Since the cost function fc is convex, we next use Jensen’s
inequality to obtain a lower bound on the expected cost as
follows.

J (a)
= E

[
lim
n→∞

1

n

n∑
t=1

fc(gt)

]
,

(b)

≥ fc

(
E

[
lim
n→∞

1

n

n∑
t=1

gt

])
,

(c)

≥ fc((1− α)µ) , J ∗ . (6)

where (a) is the definition of the cost of a policy, (b) follows
from the convexity of fc and Jensen’s inequality, and (c)



follows from (5). We define the lower bound on optimal cost
J ∗.

Corollary 1. For the cost function considered in this paper
fc(s) = s2, the minimum cost incurred by any feasible policy
g under any i.i.d. packet arrival process {At, t ≥ 1} is lower
bounded as

J ≥ (µ (1− α))
2
,

where µ = E [At] and α is the packet drop probability
constraint.

In the next subsection, we propose a simple greedy policy
and bound its competitive ratio for fc(s) = s2.

IV. GREEDY POLICY

Greedy policy: Out of At newly arrived packets in slot t,
service gt = (1− α)At packets in slot t and drop the rest of
αAt packets. Greedy policy clearly transmits a (1−α) fraction
of all the packets that arrive, since no packets are accumulated
in the buffer at any time slot, and therefore satisfies the PDrop ≤
α constraint.

Theorem 2. The competitive ratio of the greedy policy for
fc(s) = s2 is

CRgreedy ≤ 1 +
var(At)
µ2

.

Proof. Let J greedy denote the cost incurred by the greedy
policy.

J greedy
(a)
= lim

n→∞
E

[
1

n

n∑
t=1

g2t

]
,

(b)
= lim

n→∞
E

[
1

n

n∑
t=1

(1− α)
2
A2
t

]
,

(c)
= (1− α)

2
lim
n→∞

1

n

n∑
t=1

E
[
A2
t

]
,

(d)
= (1− α)

2 (
µ2 + var (At)

)
. (7)

where (a) follows by definition of cost of policy (b) follows
from the definition of the greedy policy (c) follows from the
linearity of expectation (d) follows from definition of variance.

To get the competitive ratio, divide the cost incurred by
our online greedy policy J greedy by the lower bound on the
optimal cost J ∗ (Corollary 1),

CRgreedy ≤
J greedy

J ∗
= 1 +

var(At)
µ2

.

Remark 3. If fc(s) = sγ for some γ > 2, we will get a
competitive ratio for the greedy policy involving higher order
moments of At.

Next, we consider some well known distributions with a
finite support [0, B], and calculate the competitive ratio of
the greedy policy given by Theorem 2 under these arrival
distributions for fc(s) = s2.

A. Uniform Distribution

Consider a continuous uniform packet arrival distribution
{At} with a probability density function defined as:

fA(x) =

{
1
B , 0 ≤ x ≤ B,
0, otherwise.

Under the uniform distribution, the competitive ratio of the
greedy policy is

CRgreedy ≤ 1 +
var(At)
µ2

= 1 +
B2/12

(B/2)2
= 1 +

1

3
=

4

3
.

Moreover, for any Uniform[a, b] distribution where 0 ≤ a ≤
b ≤ B, it is easy to see that the competitive ratio of the greedy
policy is no greater than 4

3 .

B. Truncated Exponential Distribution

Consider a truncated exponential packet arrival distribution
{At} with a finite support on [0, B], with the probability
density function defined as

fA(x) =

{
1
µ e

−x/µ

1−e−B/µ , 0 ≤ x ≤ B,
0, otherwise.

Without loss of generality (WLOG), let B = kµ for some
k > 1, then E[X] = µ

[
1−(k+1)e−k

1−e−k

]
and E

[
X2
]

=

2µ2

[
1− 1

2 (k2+2k+2)e−k

1−e−k

]
. Hence, the competitive ratio of the

greedy policy is

CRgreedy ≤ 2

(
1− 1

2

(
k2 + 2k + 2

)
e−k
) (

1− e−k
)

(1− (k + 1)e−k)
2 ≤ 2.

C. Truncated Poisson Distribution

Consider a truncated Poisson arrival distribution {At} with
parameter ν with the support on [0, B]. Then the competitive
ratio of the greedy policy can be upper bounded by

CRgreedy ≤ 1 +
2

ν
.

Proof is omitted for lack of space, which essentially follows
from first principles. Notice that for ν ≥ 1, the greedy
algorithm is at most 3-competitive. However, in the ν → 0
regime, the competitive ratio of the greedy policy grows
unbounded. We illustrate a similar behavior for the Bernoulli
distribution next, where the competitive ratio of the greedy
policy is small when µ, the expected number of packets
arriving to the server, is moderate, but grows as µ decreases.

D. Bernoulli Distribution

Consider a class of Bernoulli arrival distribution {At} with
probability mass function defined as

At =

{
m, w.p. µ

m ,

0, w.p. 1− µ
m ,



where 0 ≤ m ≤ B, E[At] = µ and E
[
A2
t

]
= mµ. Thus, the

competitive ratio of the greedy policy is given by

CRgreedy ≤ 1 +
var[X]

µ2
=
m

µ
. (8)

When µ ≥ m
2 , (8) shows that the greedy policy is at most

2-competitive, where as if µ→ 0, we can see that competitive
ratio of the greedy policy goes unbounded. This is similar to
the truncated Poisson arrival distribution where ν → 0. To
address this question of competitive ratio going unbounded
when µ decreases, in the next section, we consider a separate
policy for Bernoulli distribution and derive a stronger lower
bound compared to Corollary 1 for any policy under Bernoulli
packet arrivals. We are unable to derive a similar lower bound
for online policy for all distributions because of technical
challenges.

V. LOW µ REGIME

To improve the competitive ratio performance in the µ→ 0
regime, in this section we restrict our attention to the extreme
Bernoulli arrival distribution

At =

{
B, w.p. p =⇒ buffer gets full,
0, w.p. 1− p,

and At are i.i.d. Thus, with the extreme Bernoulli distribution,
on each arrival, the buffer gets full, and all the left over packets
are dropped. Essentially, a new arrival is a renewal event
for the system. The motivation behind studying the extreme
Bernoulli arrival distribution follows from [14] that shows
that for a similar rate maximization problem under random
energy arrival distributions, the worst case input is the extreme
Bernoulli arrival distribution. Thus, if the competitive ratio
of any policy is bounded under the extreme Bernoulli arrival
distribution, the same bound holds for all distributions [14].
It is with similar hope that we consider the extreme Bernoulli
arrival distribution, where the server speed has to be chosen
very delicately in order to satisfy the packet drop probability
constraint, since on any arrival all the left over packets are
dropped. At this time, however, we are unable to show that
it is indeed the worst case distribution for (2), because of the
hard packet drop probability constraint, unlike the problem
considered in [14].

We first propose a λ-fraction policy that is similar to the
policy first proposed in [14], and then improve upon the lower
bound (Corollary 1) to show that the competitive ratio of
the λ-fraction policy is constant for the extreme Bernoulli
distribution even when µ→ 0.

We will now derive an alternative expression for the packet
drop probability for the extreme Bernoulli arrival distribution
that will be easier to analyse.

Lemma 1. For extreme Bernoulli arrival distribution,

PDrop =

E
[(
B −

∑N
t=1 gt

)+]
B

,

where expectation is over N , the inter-arrival time random
variable for the extreme Bernoulli distribution, which is geo-
metric with the same parameter p, and (x)+ = max{0, x}

Proof. Recall that each new arrival is a renewal event with
the extreme Bernoulli distribution, where all the left over
packets are dropped at the new arrival. WLOG assume that
two consecutive arrivals happen at slots 1 and N + 1, N is
the inter-arrival time random variable. Thus, the buffer state
b1 = B. Then from the Renewal Reward Theorem (RRT), we
have

PDrop =

EN
[(
B −

∑N
t=1 gt

)+]
EN

[∑N
t=1At

] ,

(a)
=

EN
[(
B −

∑N
t=1 gt

)+]
EN [B]

,

(b)
=

EN
[(
B −

∑N
t=1 gt

)+]
B

.

where (a) follows since the two consecutive arrivals happen at
slots 1 and N + 1, i.e., A1 = B and At = 0, ∀ 2 ≤ t ≤ N ,
and (b) follows since B is a constant.

A. λ-Fraction Policy:

Let bt be the current state of the buffer, then the λ-fraction
policy services λ-fraction of packets in the buffer, where λ
is determined by the arrival distribution and the packet drop
probability constraint α, i.e.,

gt = λbt, t ≥ 1. (9)

A necessary condition for λ-fraction policy to be feasible is
that 0 ≤ λ ≤ 1 because 0 ≤ gt ≤ bt.

For the λ-fraction policy, the number of packets in the buffer
after n time slots since the last arrival will be B(1−λ)n, which
get dropped when a new arrival happens with inter-arrival time
N = n. Therefore, to compute the packet drop probability via
Lemma 1, we calculate

E

(B − N∑
t=1

gt

)+

|N = n

 = B(1− λ)n,

E

(B − N∑
t=1

gt

)+
 (a)

= EN

E
(B − N∑

t=1

gt

)+

|N

 ,
= Σ∞n=1B(1− λ)np(1− p)n−1,
(b)
=

Bp(1− λ)

λ+ p− λp
. (10)

where (a) follows from taking the conditional expectation,
and (b) follows by taking the expectation with respect to N .
Thus, using Lemma 1 and (10), the packet drop probability is
PDrop = p(1−λ)

λ+p−λp . Setting PDrop = α, we get a feasible

λ =
p(1− α)

p+ α(1− p)
, (11)



for the λ-fraction policy. Note, in (11), λ ≤ 1. Next, we
compute the cost incurred by the λ-fraction policy when λ
is given by (11).

B. Cost Incurred by the λ-Fraction Policy

Lemma 2. The cost incurred by the λ-fraction policy (where
λ satisfies (11)) is J λ = µ2(1−α)2

1−(1−p)(1−α)2 for the extreme
Bernoulli distribution.

Proof. Under the extreme Bernoulli, using the fact that each
arrival is a renewal event, using RRT, the expected cost of the
λ-fraction policy is

J λ =
E
[∑N

t=1 g
2
t

]
E [N ]

,

(a)
=

B2λ2 EN
[
1 + (1− λ)2 + · · ·+ (1− λ)2(N−1)

]
E [N ]

,

(b)
=
pB2λ2 EN [1− (1− λ)2N ]

1− (1− λ)2
,

(c)
=

pB2λ2

1− (1− p)(1− λ)2
,

(d)
=

B2p2(1− α)2

1− (1− p)(1− α)2
,

(e)
=

µ2(1− α)2

1− (1− p)(1− α)2
. (12)

where (a) follows from (9) and expanding the summation, (b)
follows from the fact that E[N ] = 1

p , and summing up the
geometric series in (b), (c) follows from taking expectation
with respect to N , (d) follows from substituting (11), and (e)
follows from the fact that µ = Bp from the extreme Bernoulli
arrival process.

Corollary 2. The competitive ratio of the λ-fraction policy is
at most 1

1−(1−p)(1−α)2 .

Proof. From Corollary 1, we have the lower bound J ≥
µ2(1−α)2. Thus, from Lemma 2, we get the following bound
on the competitive ratio of the λ-fraction policy,

CRλ ≤
J λ
J ∗

=
1

1− (1− p)(1− α)2
. (13)

For the case of small α and small p, the competitive ratio
of the λ-fraction policy can be approximated using binomial
approximation as

CRλ ≈
1

2α+ p
. (14)

From (14), as α → 0 and p → 0, the competitive ratio of
the λ-fraction policy also becomes unbounded similar to the
greedy policy, even though the cost of λ-fraction policy is
always lower than the greedy policy.

Lemma 3. Given p and α, J greedy ≥ J λ.

Proof.

J greedy−J λ
(a)
= (1− α)

2

[
B2p− B2p2

1− (1− p)(1− α)2

]
,

= (1− α)
2
B2p

[
(1− p)(1− α)2

1− (1− p)(1− α)2

]
,

(b)

≥ 0. (15)

where (a) follows from (12) and (7) and the fact that for
extreme Bernoulli distribution µ = Bp and var[At] = B2p(1−
p); (b) follows from the fact that 1−p ≥ 0 and 1−α ≥ 0.

The reason for the large competitive ratio λ-fraction policy
when α → 0 and p → 0, is that the lower bound derived in
Corollary 1 is weak, as we show next, via tightening the lower
bound for extreme Bernoulli arrival distribution.

C. Improved Lower Bound for small α and p

Proposition 1. For α << 1, p << 1, the cost of any online
policy is Ω

(
B2p2

p+α

)
for the extreme Bernoulli packet arrival

process with parameter p.

Proof. We consider two cases for the proof as follows:
Case 1: α, p << 1 and α ≤ p

2 . From Lemma 1, because of
packet drop probability constraint of α, we have

E

(B − N∑
t=1

gt

)+
 ≤ Bα,

∞∑
i=1

P (N = i)

(
B −

i∑
t=1

gt

)+
(a)

≤ Bα,

P (N = 1) (B − g1)
(b)

≤ Bα,

g1
(c)

≥ B

(
1− α

p

)
,

(d)

≥ B

2
. (16)

where (a) follows from expanding the expectation, (b) follows
from taking only the first term of the series in the LHS, (c) is
a rearrangement of terms, and (d) follows from the fact that
α
p ≤

1
2 . Thus, using the RRT again, the cost of any policy g

J g =
E
[∑N

t=1 g
2
t

]
E [N ]

,

(a)
=

g21 + P (N ≥ 2)g22 + P (N ≥ 3)g23 + · · ·
E [N ]

,

(b)

≥ g21
E [N ]

,

(c)

≥ B2p

4
,

(d)
= Ω

(
B2p2

p+ α

)
. (17)

where (a) follows from expanding the expectation into sum-
mation, (b) follows from considering only the first term of the



series, (c) follows from the fact that E [N ] = 1
p and (16), and

(d) follows from the fact that p > p2

p+α .
Case 2: α, p << 1 and α > p

2 . Once again from Lemma 1,
because of packet drop probability constraint of α,

E

(B − N∑
t=1

gt

)+
 ≤ Bα,

∞∑
i=1

P (N = i)

(
B −

i∑
t=1

gt

)+
(a)

≤ Bα,

P (N ≤ k)

(
B −

k∑
t=1

gt

)
(b)

≤ Bα,

k∑
t=1

gt
(c)

≥ B

(
1− α

pk

)
,

k∑
t=1

gt
(d)

≥ B/2. (18)

where (a) is expansion of expectation into summation, (b)
follows from considering only the first k terms and taking the
smallest drop (B −

∑k
t=1 gt), (c) follows from the approxi-

mation we make for P (N ≤ k) = 1− (1−p)k ≈ pk which is
a reasonable approximation for the choice of k =

⌈
2α
p

⌉
, and

(d) follows since α > p
2 .

Thus, the cost for any policy g

J g
(a)
=

E
[∑N

t=1 g
2
t

]
E [N ]

,

(b)

≥ p · P (N ≥ k)[g21 + g22 + · · ·+ g2k],

(c)

≥ p(1− pk)[g21 + g22 + · · ·+ g2k],

(d)

≥ p(1− pk) · B
2

4k
,

(e)
= Ω

(
B2p2

α+ p

)
. (19)

where (a) follows from the RRT, (b) follows since E [N ] = 1/p
and from taking terms corresponding to N ≥ k (we choose
k =

⌈
2α
p

⌉
as taken above) and within each of them only con-

sidering the
∑k
i=1 g

2
i term, (c) follows from the approximation

P (N ≤ k) = 1−(1−p)k ≈ pk as described above, (d) follows
from Lemma 4 since

∑k
t=1 gt ≥ B/2 from (18), finally, (e)

follows from the choice of k =
⌈
2α
p

⌉
since the lower bound

is valid for all k, and the fact that p2

α > p2

p+α .

From (17) and (19), J g = Ω
(
B2p2

α+p

)
, ∀α, p << 1.

Lemma 4. Minimum of
∑k
i=1 g

2
i subject to the constraint that∑k

i=1 gi ≥
B
2 is achieved for gi = B

2k , 1 ≤ i ≤ k.

Proof. The Lagrangian for the convex optimization program
is L =

∑k
i=1 g

2
i −γ

(∑k
i=1 gi −

B
2

)
, which on differentiating

and equating to zero, we get ∂L
∂gi

= 2gi − γ
(b)
= 0. Using the

constraint,
∑k
i=1 gi ≥

B
2 , we get γ = B/k, and the optimal

g?i = B
2k .

Combining the lower bound Proposition 1 and the upper
bound for the λ-fraction policy (Lemma 2) for the small α, p
regime, we get the following result.

Theorem 4. For any α << 1, p << 1, the competitive ratio
cost of the λ-fraction policy is constant under the extreme
Bernoulli packet arrival process with parameter p.

We can generalize the stronger lower bound that we derived
in Proposition 1 that is valid only for extreme Bernoulli
distribution to distributions that have significant mass to the
right of B

2 as follows.

Proposition 2. Let the arrival distribution be such that
P
(
At ≥ B

2 + Θ (B)
)

= Ω
(
µ
B

)
. Then, for α << 1 and

µ
B << 1, the cost of any online algorithm is Ω

(
µ2

µ
B+α

)
.

The proof is omitted for lack of space, which is sim-
ilar to proof of Proposition 1. Thus, comparing Proposi-
tion 2 and Lemma 2 it follows that the competitive ratio
of the λ-fraction policy is constant for distributions where
P
(
At ≥ B

2 + Θ (B)
)

= Ω
(
µ
B

)
.

After deriving limited results for arbitrary buffer size B,
we next turn to finite but large buffer capacities, for which we
can derive universal results independent of the packet arrival
distributions, when the packet drop probability is violated by
a small margin.

VI. CASE OF LARGE BUFFER CAPACITY

In this section, we consider that the buffer size is finite but
large, and propose algorithms that are shown to achieve the
optimal cost as the buffer size is increased. Towards that end,
we will make some mild assumptions about the arrival process
At. We assume that the asymptotic semi-invariant log moment
generating function,

ΛA(s) = lim
τ→∞

1

τ
logE

[
es

∑τ
t=1 At

]
(20)

of {At} exists for s ∈ (−∞, smax) for some smax > 0 and the
asymptotic variance σ2

A = limτ→∞
1
τ var (

∑τ
t=1At) of {At}

exists as assumed in [15].

Remark 5. For the extreme Bernoulli distribution, asymptotic
semi-invariant log moment generating function does not exist.

Our policy is motivated by the energy management policy
for an energy-harvesting node to maximise utility that was
proposed in [15]. The policy that we propose is as follows:
At each time slot, where At packets arrive, we immediately
drop αAt number of those packets. The remaining (1−α)At
number of packets are added to the buffer, i.e., buffer state
evolves as bt = min{bt−1 + (1−α)At− gt−1, B}. Following
which, gt number of packets are served at time slot t according
to the following rule:

gt =

{
min{µ(1− α)− δ, bt} if bt < B/2,

µ(1− α) + δ if bt ≥ B/2,
(21)



where δ = βσ2
A

logB
B , and σ2

A is the variance of At.

Theorem 6. For an arrival process {At}∞t=1 for which the
semi-invariant log moment generating function and the asymp-
totic variance exist, policy (21) ensures the following:

J ≤ J ∗+Θ
(
B−β

)
+ Θ

(
(logB)2

B2

)
, and

PDrop ≤ α+ Θ(B−β),

for any β ≥ 1, where J ∗ is the lower bound as derived in
Theorem 1.

Theorem 6 states that if packet drop probability of α is
violated by a margin of Θ(B−β), then the proposed policy
can achieve a cost that is very close to the optimal. Note that
it is tempting to make β arbitrarily large so that the packet
drop probability violation is negligible, however, higher value
of β leads to slower rate of convergence of the cost of the
proposed policy to the optimal cost. Clearly, from Theorem 6
β = 2 gives the best performance in terms of cost.

Proof. Buffer overflow is said to occur if at time t on the
arrival of At packets, bt−1 + (1− α)At > B, where bt−1 are
the number of packets in the buffer in the time slot t− 1. The
buffer is said to be empty at time slot t if bt = 0. Let Poverflow
and Pempty be the probability of buffer overflow and buffer is
empty, respectively. It has been shown in [15] that for policy
(21), Poverflow = Θ(B−β) and Pempty = Θ(B−β) using tools
from large deviations theory and stochastic process limits. For
a proof of these claims, refer [15].

A packet drop event occurs when either of the two events
happen : (a) the α fraction of packets that get dropped
immediately upon arrival by the definition of the policy, (b)
the packets that get dropped because of an overflow in the
buffer, i.e., bt−1 + (1−α)At > B. Therefore, the packet drop
probability can be upper bounded as:

PDrop

(a)

≤ α+ Poverflow E[At],

(b)
= α+ µPoverflow,

(c)
= α+ Θ(B−β). (22)

where (a) follows from the union bound over the two disjoint
events that lead to packet drop, (b) follows from the fact that
E[At] = µ, and (c) follows from Poverflow = Θ

(
B−β

)
and the

fact that µ is constant since the arrival distribution is fixed.
Let J + be the cost incurred by our policy when bt ≥ B/2

by serving µ(1−α)+δ packets, i.e. J + = fc (µ (1− α) + δ).
Similarly, when bt < B/2, the policy serves at most µ(1 −
α) − δ packets, and let J− = fc(µ(1 − α) − δ). Since fc(.)

is an analytic function, the Taylor series expansion of the cost
function (J + and J−) about µ(1− α) can be written as

J + = fc (µ (1− α)) + f (1)c (µ (1− α)) δ

+ f (2)c (µ (1− α)) δ2 + o(δ2),
(23)

J− = fc (µ (1− α))− f (1)c (µ (1− α)) δ

+ f (2)c (µ (1− α)) δ2 + o(δ2).
(24)

where f (i)c is the ith derivative of fc. Let J denote the average
cost incurred by policy (21). Define ρ+ as the fraction of time
that bt > B

2 and ρ− as the fraction of time that bt ≤ B
2 . Then

the average cost function can be written as

J
(a)

≤ ρ+ J + +
(
ρ− − Pempty

)
J−,

(b)
= fc(µ(1− α)) + f (1)c (µ(1− α))(ρ+δ − ρ−δ)

+ Θ

(
(logB)2

B2

)
,

(25)

where (a) follows from the fact that at most µ(1 − α) − δ
packets are served when bt < B/2 and J− is overestimated,
(b) follows from (23) and (24) and the fact that Pempty =

Θ
(
B−β

)
, δ = Θ

(
logB
B

)
, ρ+ + ρ− = 1, and f (2)c (µ(1− α))

is constant.
Using the fact that the number of serviced packets is

equal to the number of packet arrivals except for the pack-
ets that get dropped, we get ρ+ (µ(1− α) + δ) + (ρ− −
Pempty) (µ(1− α)− δ) = µ(1−α)(1−Poverflow). Rearranging
this, and substituting expressions for Poverflow and Pempty, and
considering µ as a constant we get

ρ+δ − ρ−δ = Θ
(
B−β

)
. (26)

Thus, the average cost of the policy can be written as

J
(a)

≤ fc(µ(1− α)) + Θ
(
B−β

)
+ Θ

(
(logB)2

B2

)
,

(b)
= J ∗+Θ

(
B−β

)
+ Θ

(
(logB)2

B2

)
, (27)

where (a) follows from (25), (26) and the fact that f (1)c (µ(1−
α)) is a constant, and (b) follows from Theorem 1.

VII. SIMULATIONS

In this section, we present some simulations results on the
competitive ratio of the proposed policies. We first consider
the arbitrary buffer size B case, and plot the competitive ratio
of the λ-fraction policy in Fig. 1 with respect to the two
lower bounds (Corollary 1 and Proposition 1) for extreme
Bernoulli distribution with small p and small packet drop
probability constraint α. We see that the competitive ratio of
the λ-fraction policy is extremely large with the loose lower
bound (Corollary 1), while it is ∼ 4 with the improved lower
bound Proposition 1. Next, we consider, large B case, and
plot in Fig. 2, the competitive ratio of the policy (21) together
with packet drop probability violation (sub-figure on top right
corner) for Poisson distribution with average packet arrival
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Fig. 1. Competitive ratio performance of the λ-fraction policy with extreme
Bernoulli distribution as a function of p with B = 100.
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Fig. 2. Competitive Ratio Performance of the large B policy for truncated
Poisson distribution with parameter ν = 10 and β = 2.

parameter ν = 10 and β = 2. We see that as B increases,
the policy rapidly approaches the optimal performance, with
negligible packet drop probability violation.

VIII. CONCLUSIONS

In this paper, we considered a classical but challenging re-
source allocation problem, of finding optimal dynamic service
speed of a server equipped with a finite buffer, under a hard
constraint on the probability of dropping an arriving packet.
This problem has been studied in literature before, however,
with limited success and most useful results are available only
in asymptotic regimes. In this paper, we considered a different
approach and sought policies with provable guarantees on their
gap from the optimal performance. We proposed a simple
greedy policy and show that its competitive ratio is a small
constant for large class of distributions. One limitation of the

greedy policy is that its competitive ratio is unbounded when
the expected rate of arrival is very small. To address this
issue, we then proposed a λ-fraction policy, that services a
fixed fraction of the number of existing packets. We showed
that the competitive ratio of the λ-fraction policy is bounded
even when the expected rate of arrival is very small, when
the arrival distribution is extreme Bernoulli. It is expected that
the similar result will be applicable for other distributions,
however, it remains open at this time. Finally, we considered
the finite but large buffer case, where the tradeoff between
packet drop probability violation versus the cost is studied.
We showed that a policy inspired from [15], can achieve close
to optimal performance when small packet drop probability
violation is allowed, for all arrival distribution that satisfy a
technical condition.
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