
Efficient Scheduling for Synchronized Demands in
Stochastic Networks

Bin Li∗, Zai Shi† and Atilla Eryilmaz†
∗Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, USA

†Department of Electrical and Computer Engineering, The Ohio State University, USA

Email: binli@uri.edu, shi.960@osu.edu, eryilmaz.2@osu.edu

Abstract—There is a rich theory and plethora of algorithms
in the literature aiming at the efficient scheduling of stochastic
networks. These solutions are predominantly designed under the
assumption of traffic demands that are independently generated
at network nodes, without any requirement for synchronization
among their received services. In this work, we note that many
applications, including cloud computing, virtual reality, gaming,
autonomous vehicular networks and collaborative design, gen-
erate traffic simultaneously at multiple nodes when they arrive,
with possibly non-uniform file sizes, whose performance relies
on the synchronous completion of the traffic across the network.
This calls for the design of new scheduling algorithms that aims
to coordinate the service of packets of the same traffic across
the network. Towards this end, we propose a novel scheduling
algorithm that not only accounts for the heterogeneity of the
file size distributions, but also works towards synchronizing the
completion time of the same traffic stream across the network.
This is achieved by employing two insights that emanate from key
motivating examples we develop: (1) the normalization of traffic
load with respect to the non-uniform file sizes; and (2) the incor-
poration of deviation of normalized loads across network nodes
that serve synchronized traffic. After establishing the throughput-
optimality of our algorithm in general stochastic networks, we
perform extensive simulations under various (spanning both
wired and wireless) settings to reveal the potential completion
time gains that it yields over other throughput-optimal strategies
designed under the assumption of independent traffic generation.

I. INTRODUCTION

In this paper, we focus on the efficient scheduling design

that determines when and which nodes should be scheduled

in stochastic networks with synchronized traffic demands

generated at multiple network nodes. This differs from many

prior works on network scheduling (e.g., [25], [24], [10], [18],

[15], [23], [3] and [21] for an overview) that assume indepen-

dent traffic streams being served by the restrictive network

resources. Our model of synchronized demand is motivated

by recent and emerging applications such as cloud computing,

virtual reality, gaming, autonomous vehicular networks, col-

laborative design, and distributed network computation (e.g.,

[7]). For example, parallel-data computation paradigms (e.g.,

MapReduce [6], Hadoop [1], [20], and Spark [28]) are widely

used in data centers to accelerate big data processing, where

each big data application is generally divided into many differ-

ent tasks that are simultaneously distributed across computers

This work is supported in part by NSF grants: CNS-1717108, CCSS-
EARS-1444026, CNS-NeTS-1514127, CNS-NeTS-1717045, CMMI-SMOR-
1562065, CNS-WiFiUS-1456806, and CNS-ICN-WEN-1719371; the DTRA
grant HDTRA1-15-1-0003; and the QNRF Grant NPRP 7-923-2-344.

in a data center and its computation is completed only when all

its parallel tasks are processed. Another representative example

is the wireless interactive gaming, where multiple players are

required to collaboratively perform a certain task. A key char-

acteristic among all these applications is that each application

contains a certain number of parallel tasks, and its satisfactory

completion relies on whether its last task has received all

its service. This implies that it does not really speed up the

completion of a service request if some of its intermediate

tasks are served much earlier than the last. Much of prior

work on scheduling design in stochastic networks assumes that

each network node independently generates traffic demands

and thus does not apply in our considered scenario.

The most related group of works to our setting concerns the

efficient scheduling design for parallel jobs in data centers. In

[5], the authors first introduced coflow abstraction to capture

a group of parallel tasks, and developed a smallest bottleneck

first heuristic to minimize average job completion time. Ref-

erences [19], [16] developed deterministic algorithms with a

constant approximation ratio for multiple coflow scheduling

given the information of all coflows at the beginning. Subse-

quent works took either flow utility (e.g., [12], [2]) or routing

(e.g., [13]) into account. Some recent work (e.g., [4], [8], [17],

[27], [29], [16], [13]) focused on practical aspects of coflow

scheduling design. All these works either developed heuristic

coflow scheduling algorithms or studied the efficient coflow

scheduling design in the deterministic context, where all

parallel jobs are available at the beginning and the main goal

is to develop an efficient scheduling algorithm to minimize

the time required for finishing all these jobs. However, their

performance is quite unclear in the presence of dynamic job

arrivals and changing network states, where the later feature

is predominant in wireless networks. In our work, we develop

an adaptive algorithm that is well-geared towards managing

changing and random dynamics of the synchronized traffic as

well as the network resources.

Another interesting work [14] developed a delay-optimal-

scaling scheduler for homogeneous parallel jobs with optimal

delay scaling in input-queued switches in the presence of

stochastic job arrivals, and pointed out that the MaxWeight

algorithm exhibits excellent delay performance for parallel

jobs in the symmetric traffic case, where all tasks of a parallel

job have the same task size distribution. However, it can suffer

from substantial performance degradation (see our motivat-

ing examples in Section III) in heterogeneous traffic cases,

which might be possible in many scenarios with synchronized

traffic demands. In contrast, we design a network scheduler

for synchronized traffic demand under heterogeneous traffic

characteristics and time-varying network conditions.

Our novel design is motivated by the observation that

the completion time of a parallel job is determined by the

processing time of its last task, and hence it is preferable to

allocate limited resources evenly across tasks of parallel jobs.

That is, an efficient algorithm should balance workload across

network nodes processing tasks belonging to the same parallel

job. To that end, we consider a fixed number of types of

parallel jobs with different statistics and each node maintains

a separate queue for each type of jobs. We need to balance

queues at different nodes processing the same type of jobs

across the network. This requires each node to intelligently

determine how to process different types of jobs. On one

hand, each node needs to serve queues with the maximum

number of pending tasks in order to minimize their delay.

On the other hand, nodes need to balance workload across

queues associated with the same type of jobs, since it does

not speed up the job processing if some of its tasks finish

earlier. These observations form the basis of our work, whose

main contributions can be listed as follows:

• In Section III, we present two motivating examples

showing the performance deficiency of the queue-length-based

MaxWeight policy and the necessity of balancing workload

across nodes processing the same type of parallel jobs.

• Based on the observations from Section III, in Section IV,

we develop a novel MaxWeight-type algorithm, where the link

weights are composed of a combination of normalized queue-

lengths and their deviation away from the average normalized

queue-length of tasks belonging to the same type of parallel

jobs as well as its network state. We further show in Section

IV-B that the proposed algorithm achieves the maximum

system throughput through a novel Lyapunov function, which

may be interesting in its own right.

• We support our analytical results with extensive simula-

tion results, which not only confirm its throughput-optimality,

but also reveal excellent delay performance of our proposed

algorithm under various settings, encompassing data centers

and wireless networks.

II. SYSTEM MODEL

We consider a generic stochastic network composed of N
nodes with possibly time-varying and heterogeneous service

rates. We assume that there are M types of jobs (referred as

parallel jobs in the rest of the paper) that are required to be

completed collaboratively by N nodes, where tasks of each

type of jobs have different service requirements. A parallel

job completes its service request once all its parallel tasks are

served at different nodes, and thus its completion time is the

maximum service time of all its parallel tasks. We assume that

the system operates in a time-slotted manner, where correlated

jobs arrive randomly across the network at the beginning of

each time slot and service decisions are made by the central

controller at the end of each time slot. We maintain a Queue

(i, j) for type j jobs at node i, where Queue (i, j) holds type

j jobs of node i awaiting for transmission. Fig. 1 shows an

example of our system model.

Fig. 1: A stochastic network with five nodes and the link

between two nodes denoting that they interfere with each other

and cannot be served at the same time. There are three types

of jobs with “purple” jobs associated with nodes 1 2 and 3,

“red” jobs associated with nodes 2, 3 and 4, and “blue” jobs

associated with nodes 4 and 5. Each node maintains a queue

for each type of jobs.

The load (we call task size) of the same job need not

be the same at all nodes, since the same job may generate

different amount of service demands at different nodes in many

applications. Accordingly, we let Fij [t] denote the number of

packets of type j jobs of node i that need to be transmitted

in time slot t and thus measures the amount of service

requirement of tasks of type j jobs at node i. We assume

that F[t] � (Fij [t])N×M is independently and identically

distributed (i.i.d.) over time with mean η = (ηij)N×M and

�

[
(Fij [t])

2
]
< ∞, ∀i, j. Also, Aj [t] and F[t] � (Fij [t])N×M

are assumed to be independent from each other. We use Aj [t]
to denote the number of type j jobs arriving at the system in

time slot t that is i.i.d. Bernoulli distributed1 over time with

mean λj > 0. Let ρij � λjηij be the traffic intensity at Queue

(i, j).

Let S[t] � (Sij [t])N×M be a feasible service rate matrix

in time slot t, where Sij [t] denotes the service rate allocated

to Queue (i, j) in time slot t. We assume that Sij [t] ≤
Smax, ∀i, j, t, where Smax is some positive constant. The feasi-

ble service rate matrix depends on both network system state at

each time and interference constraints amongst network nodes.

Using H to denote the set of global system states (with finite

cardinality), we let S(h) denote the set of all feasible service

rate matrices when the system state is in h ∈ H. We assume

that the system state is i.i.d. over time with φh denoting the

probability of the system state being in state h. The capacity

region Λ is defined as
∑

h∈H φh × ConvexHull(S(h)), which

gives the upper bound on the system throughput that can be

supported by some scheduler that determines a feasible service

rate matrix S[t] in each time slot t.

1It can also be extended to the case with general distribution at the cost of
additional notation.

We use Qij [t] to denote the queue length (in packets) of

Queue (i, j) in time slot t. Let Uij [t] � max{Sij [t]−Qij [t]−
Aij [t], 0} denote the unused service for Queue (i, j) in time

slot t. Then, the evolution of Queue (i, j) can be described as

follows:

Qij [t+ 1] = Qij [t] +Aj [t]Fij [t]− Sij [t] + Uij [t],

for i = 1, 2, . . . , N, and j = 1, 2, . . . ,M.
We say that Queue (i, j) is stable if

lim supT→∞
1
T

∑T−1
t=0 �[Qij [t]] < ∞. The system is stable if

all its queues are stable. Accordingly, we say that a scheduler

is throughput-optimal if it achieves the stability of the system

for any arrival traffic intensity matrix ρ = (ρij)N×M that

lies strictly inside the capacity region Λ. In this work, we are

interested in developing a throughput-optimal (aka efficient)

scheduling algorithm for parallel jobs in stochastic networks

that not only achieves throughput optimality, but also exhibits

desirable performance in the completion time of parallel

jobs. Next, we provide two examples and discuss the delay

performance deficiency of the queue-length-based MaxWeight

algorithm, which will guide our design.

III. MOTIVATING EXAMPLES

The design of throughput-optimal schedulers over networks

is a mature area with many existing solutions starting with

the seminal work [25], which exhibits excellent packet-level

delay performance. However, in this work, we are interested

in throughput-optimal schedulers with low job completion

time characteristics for parallel jobs instead of packet-level

delay. In this section, we will present two important examples

that reveal the need for a new design with such features. In

particular, the first example illustrates the delay performance

deficiency of the queue-length-based MaxWeight policy (e.g.,

[25]), which motivates us to take the normalized queue-length

as the weight. The second example inspires us to balance the

workloads across tasks belonging to the same type of jobs.

A. Benefits of Normalization in Serving Parallel Jobs

The well-known queue-length-based MaxWeight algorithm

always prioritizes a queue with the large number of packets,

and has been shown to not only achieve maximum throughput

but also exhibit excellent packet-level delay performance (e.g.,

minimizes mean delay of packets in some special cases [26]

and in heavy-traffic regimes [22], [9]). However, they can fail

in providing good delay performance in the presence of jobs

containing parallel tasks. To see this, we consider two different

type of parallel jobs containing two tasks generated at two

different nodes, as shown in Fig. 2.

The first task of type 1 job and the second task of type

2 job have the size of F , where F follows the probability

distribution: it is equal to 20 with probability 8/19, and 1
otherwise. Hence, the mean of task size F is equal to 9. Both

the second task of type 1 job and the first task of type 2 job

always have the constant task size of 1. Both two types of jobs

arrive at the system according to a Bernoulli distribution with

mean λ. Each node can independently serve one packet in each

Fig. 2: Two types of jobs with both tasks generated at two

different nodes. The number above the line corresponds to the

mean task size.

time slot. Therefore, the capacity region is {λ : 10λ ≤ 1}. To

that end, we consider the arrival rate λ = 0.1 × θ, where

θ ∈ (0, 1) represents the arrival load factor.

In this setup, we study the job delay performance of the tra-

ditional queue-length-based MaxWeight policy, and compare

it to the normalized-queue-length-based policy. In particular,

the normalized-queue-length-based policy serves a queue with

the larger ratio of queue-length and its mean task size. Fig.

3a shows the mean job delay performance of the traditional

queue-length-based policy and the normalized-queue-length-

based policy with respect to the arrival load factor θ ∈ (0, 1).
We can observe from Fig. 3a that the normalized-queue-

length-based policy outperforms the traditional queue-length-

based policy. Fig. 3b shows the delay improvement percentage

by the normalized-queue-length-based policy compared with

the traditional queue-length-based policy. We can see from

Fig. 3b that the delay improvement increases as the arrival

load factor increases, and can reach as high as 70% when the

arrival load factor θ is equal to 0.99. The reason lies in the

fact that a parallel job is completed only when both of its

tasks finish their service, and thus the delay of a parallel job

is the maximum of delay experienced by its tasks. Traditional

queue-length-based policy always serves the queue with the

larger queue-length at each node with the goal of minimizing

packet-level delay, and thus each node prefers to serve the

heavily-loaded tasks of each type of jobs. This leads to the

case that parallel jobs are rarely completed and thus experience

high job delay. In contrast, the normalized-queue-length-based

policy tries to balance the number of tasks of each type of

jobs at each node and thus makes sure that tasks belonging to

the same type of jobs finish their service almost at the same

time, which yields much better job delay performance. This
indicates the importance of incorporating normalized-queue-
length into the scheduling design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
ea

n
Jo

b
D

el
ay

Queue-Length-Based
Normalized-Queue-Length-Based

(a) Delay performance comparison

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor θ

0

10

20

30

40

50

60

70

D
el

ay
 Im

pr
ov

em
en

t (
%

)

(b) Delay improvement

Fig. 3: Delay performance in the symmetric setup

B. Benefits of Prioritization in Serving Parallel Jobs

In this subsection, we will reveal the advantage of balancing

workloads across nodes generating tasks belonging to the same

type of parallel jobs. Note that the job delay is determined

by the maximum delay of all tasks of a parallel job. On one

hand, it does not improve job delay performance if we just

accelerate the service of some of tasks belonging to the same

type of jobs. On the other hand, the extra service capacity can

be utilized to serve jobs that are going to be completed soon,

and thus the job delay performance can be improved.

To check this observation more clearly, we consider a

variant of the example in the last subsection, as shown in Fig.

4. In particular, the second type of jobs are instead served only

at the second node. To facilitate our quantitative analysis, we

assume that both types of jobs arrive at the system according

to the Poisson process with the same arrival rate of λ. Jobs

are served at nodes 1 and 2 with the exponential service time

with mean 1/μ and 1/(2μ), respectively.

Fig. 4: Two types of jobs: type 1 jobs are processed at both

nodes while the type 2 jobs are served by the second node.

Therefore, the first node is an M/M/1 queue with the arrival

rate of λ and service rate of μ, and thus its mean waiting time

in the queue (see [11]) is

D1 =
λ/μ

μ− λ
. (1)

Both types of jobs have the same arrival rate, and thus they

experience almost the same waiting time under the MaxWeight

algorithm. Thus, we can approximate the mean waiting time of

both jobs at the second node under the MaxWeight algorithm

to that of an M/M/1 queue with arrival rate of 2λ and service

rate of 2μ, i.e.,

D
(1)
2 = D

(2)
2 =

λ/μ

2μ− 2λ
, (2)

where D
(i)
2 denotes the mean waiting time of type i jobs at

the second node for i = 1, 2. Fig. 5a shows that the mean

waiting time of type 1 jobs at two different nodes are quite

different, which potentially deteriorates its job delay. Indeed,

even though the second tasks of type 1 jobs finish earlier at

the second node, it does not help speed up the completion of

type 1 job whose delay is dominated by that of its first tasks.

An ideal solution will be to keep the delay of type 1 jobs

the same at two different nodes. In such a case, the second

node can allocate more service capacity to serve the second

type of jobs and improve its job delay performance without

sacrificing the performance of the first type jobs. Consider

the non-preemptive priority-based policy that gives the second

type jobs higher priority at the second node, and thus their

mean delay (see [11]) can be expressed as follows:

D̃
(1)
2 =

λ

(2μ− λ)(μ− λ)
and D̃

(2)
2 =

λ/μ

2μ− λ
, (3)

where D̃
(i)
2 represents the mean waiting time of type i job at

the second node for i = 1, 2. We can observe from Fig. 5a that

the waiting time of the first type jobs are very close at both

nodes under the priority-based policy while the second type

jobs have the significant delay improvement especially in high

arrival load factor. This indicates the advantage of balancing

workload across nodes that generate tasks belonging to the

same type of jobs.

Similar to the simulation setup in the last subsection, we

assume that both types of job arrivals follow Bernoulli distri-

bution with mean λ. We consider the arrival rate λ = 0.5× θ,

where θ ∈ (0, 1) is the arrival load factor. Each node can only

serve one packet in each time slot. In our setting, the queue-

length-based MaxWeight and the normalized-queue-length-

based MaxWeight are equivalent since the task sizes of all

jobs in the second node are equal to 1. The blue line in Fig.

5b shows the delay improvement by the priority-based policy

that gives higher priority to type 2 jobs compared with the

normalized-queue-length-based MaxWeight algorithm. We can

see from Fig. 5b that the delay improvement percentage can

be as high as 21% when the arrival load factor θ is equal

to 0.7. This is because the first node is heavily-loaded and

thus the first tasks of type 1 jobs experience high delay at

node 1. Therefore, it is not beneficial at all if the second tasks

of type 1 jobs are served fast at the second node. Instead,

the second node can give a lower priority for type 1 jobs and

higher priority for type 2 jobs without sacrificing the job delay

performance of type 1 jobs too much.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor

0

5

10

15

20

25

30

35

40

45

50

M
ea

n
Ta

sk
 D

el
ay

Delay at queue 1
Delay at queues 2 and 3 under MaxWeight
Delay at queue 2 under priority-based policy
Delay at queue 3 under priority-based policy

(a) Delay performance comparison

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor θ

-10

-5

0

5

10

15

20

25

D
el

ay
 Im

pr
ov

em
en

t (
%

)

High priority for type 2 jobs
High priority for type 1 jobs

(b) Delay improvement

Fig. 5: Delay performance in the asymmetric setup

However, if we give higher priority to type 1 jobs at the

second node, then the delay performance would be worse

than the queue-length-based MaxWeight, especially when the

arrival load factor is high as shown in the red line in Fig.

5b. This indicates the importance of assigning appropriate

priority for parallel jobs. This may require the structure of

parallel jobs as well as arrival load conditions, which is not

feasible in practical stochastic networks. This demonstrates
the importance of assigning appropriate priority to different
types of jobs, and motivates us to develop an algorithm that

can intelligently adapt the parallel job structure and traffic
and exhibit excellent capability in balancing workloads across
tasks belonging to the same type of jobs.

IV. EFFICIENT JOB-SYNCHRONIZED SCHEDULER DESIGN

The two examples from the last section motivate us to

develop a novel scheduler for synchronized traffic that pos-

sesses the following characteristics: (1) normalizing the queue-

lengths with task sizes in order to keep the task completion

time of the same job close to each other; and (2) balancing

the task workload of the same type jobs. In this section, we

use these insights to develop a new scheduling algorithm, and

show that it achieves maximum system throughput.

A. Job-Synchronized Scheduler Design

In order to characterize the task-level dynamics, we intro-

duce the following notations. We use Wij [t] � Qij [t]/ηij to

denote the normalized queue-length at Queue (i, j) in time

slot t, which captures the average number of tasks at Queue

(i, j) in time slot t. Similarly, let νij [t] � Aj [t]Fij [t]/ηij ,

μij [t] � Sij [t]/ηij and uij [t] � Uij [t]/ηij be the normalized

arrivals, service and unused service at Queue (i, j) in time slot

t, respectively. Then, the normalized queue-length of Queue

(i, j) evolves as follows:

Wij [t+ 1] = Wij [t] + νij [t]− μij [t] + uij [t]. (4)

An effective and systematic way to balance the task work-

load of the same type jobs is through incorporating its

deviation away from the average task workload into the

scheduling decisions. To that end, we define the average task

workload of type j jobs in time slot t denoted by W j [t] as

W j [t] =
1
N

∑N
i=1 Wij [t]. According to (4), the dynamic of

the average task workload can be described as follows:

W j [t+ 1] = W j [t] + νj [t]− μj [t] + uj [t], (5)

where νj [t], μj [t] and uj [t] denotes the average normalized

arrivals of type j jobs, the average normalized service rate

provided for type j jobs, and the average normalized unused

service in time slot t, respectively, and xj � 1
N

∑N
i=1 xij for

any N ×M matrix x = (xij)N×M .

Next, we propose the following job-synchronized schedul-

ing algorithm.

Job-Synchronized Scheduling (JSS) Algorithm: In each

time slot, given the normalized queue-length matrix W[t],
select a normalized schedule μ̂[t] � (μ̂ij [t])N×M such that

μ̂[t] ∈ max
μ∈U(h[t])

N∑
i=1

M∑
j=1

(
Wij [t] + γ

(
Wij [t]−W j [t]

))
μij ,

where γ is some non-negative parameter, h[t] is the system

state in time slot t, and U (h[t]) � {S/η : S ∈ S(h[t])} denotes2

the collection of normalized feasible schedules in system state

h[t] in time slot t.

2The matrix division operator is coordinate-wise.

The JSS Algorithm incorporates both the normalized queue-

length of each task queue of parallel jobs and its deviation

away from the average normalized queue-length of all tasks of

parallel jobs into the scheduling decisions. Note that the nor-

malized queue-length captures the congestion level of tasks,

while its deviation characterizes the different task congestion

levels of the same type of parallel jobs. Therefore, on one

hand, the JSS Algorithm tries to serve the task queue that is

heavily loaded in order to minimize the task delay. On the

other hand, it also gives higher priority to the task queue that

is far away from its average congestion level and attempts to

balance the workloads of tasks belonging to the same type

of jobs. Next, we show that our proposed JSS Algorithm can

achieve maximum throughput.

B. Analysis of our Job-Synchronized Scheduler

In this subsection, we prove the throughput-optimality of

the proposed JSS algorithm using a novel Lyapunov function.

Proposition 1: The JSS Algorithm is throughput-optimal,

i.e., it stabilizes the system for any arrival traffic intensity

matrix ρ that is strictly within the capacity region Λ.

Proof: Choose Lyapunov function

V (W) = V1(W) + V2(W), (6)

where V1(W) and V2(W) are defined as follows:

V1(W) � 1

2

N∑
i=1

M∑
j=1

W 2
ijand V2(W) � γ

2

N∑
i=1

M∑
j=1

(
Wij −W j

)2
.

In the rest of the proof, we use
∑

i,j to denote
∑N

i=1

∑M
j=1

for conciseness and omit time index without causing any

confusion. Next, we will consider the conditional expected

drift of V1(W) and V2(W), which are defined as follows:

ΔVi(W[t]) � Vi(W[t+ 1])− Vi(W[t]), ∀i = 1, 2.

We first focus on the conditional expected ΔV1(W[t]).

� [ΔV1(W[t])|W[t] = W]

=� [V1(W[t+ 1])− V1(W[t])|W]

≤1

2

∑
i,j

�

[
(Wij + νij − μ̂ij)

2 −W 2
ij

∣∣∣W]
(a)

≤
∑
i,j

� [Wij (νij − μ̂ij)|W] +B1

(b)
=

∑
i,j

Wijλj − �
⎡⎣∑

i,j

Wij μ̂ij

∣∣∣∣∣∣W
⎤⎦+B1, (7)

where step (a) is true for B1 �
1
2

∑
i,j �

[(
A2

jF
2
ij + 1

)
/η2ij

]
< ∞; (b) follows from

the fact that the arrivals are independently from the current

queue-lengths and the fact that � [νij] = λj .

Next, we consider the conditional expectation of

ΔV2(W[t]) given W[t] = W.

� [ΔV2(W[t])|W[t] = W]

=� [V2(W[t+ 1])− V2(W[t])|W[t] = W]

=
γ

2

∑
i,j

�

[(
Wij [t+ 1]−W j [t+ 1]

)2
− (

Wij [t]−W j [t]
)2 ∣∣∣∣∣W

]

=
γ

2

∑
i,j

�

[((
Wij −W j

)
+ (νij − νj)

− (
μ̂ij − μ̂j

)
+ (uij − uj)

)2

− (
Wij −W j

)2 ∣∣∣∣∣W
]

(a)

≤ B2 + γ
∑
i,j

�
[(
Wij −W j

)
(νij − νj)

∣∣W]
− γ

∑
i,j

�
[(
Wij −W j

) (
μ̂ij − μ̂j

)∣∣W]
+ γ

∑
i,j

�
[(
Wij −W j

)
(uij − uj)

∣∣W]
(b)

≤ B2 − γ
∑
i,j

�
[(
Wij −W j

) (
μ̂ij − μ̂j

)∣∣W]
+ γ

∑
i,j

�
[(
Wij −W j

)
(uij − uj)

∣∣W]
, (8)

where step (a) is true for B2 � 1
2

∑
i,j �

[(
(νij−νj)−(μ̂ij−

μj)+ (uij −uj)
)2∣∣W]

and can be shown that B2 < ∞ since

the boundedness of the service rates and unused services as

well as the fact that �[F 2
ij] < ∞; (b) uses the fact that

�
[(
Wij −W j

)
(νij − νj)

∣∣W]
=

(
Wij −W j

)(
λj − 1

N

N∑
i=1

λj

)
= 0.

Realizing the fact that
∑

i,j

(
Wij −W j

)
μ̂j =∑

j

(
Nμ̂jW j −Nμ̂jW j

)
= 0, and the fact that∑

i,j

(
Wij −W j

)
uj = 0 using similar argument, (8)

becomes

� [ΔV2(W[t])|W[t] = W]

≤B2 − γ�

⎡⎣∑
i,j

(
Wij −W j

)
μ̂ij

∣∣∣∣∣∣W
⎤⎦+ γ

∑
i,j

Wijuij

≤B2 +B3 − γ�

⎡⎣∑
i,j

(
Wij −W j

)
μ̂ij

∣∣∣∣∣∣W
⎤⎦ , (9)

where the last step is true for B3 � γS2
max

∑
i,j 1/η

2
ij follows

from the fact that Wijuij = QijUij/η
2
ij and the fact that

Uij = 0 if Qij ≥ Smax, and Uij ≤ Smax otherwise. Here,

we recall that Smax is the maximum service rate that can be

allocated to each queue in each time slot.

Hence, we have

� [ΔV (W[t])|W[t] = W]

=� [V (W[t+ 1])− V (W[t])|W[t] = W]

=� [ΔV1(W)|W] + � [ΔV2(W)|W]

≤
∑
i,j

Wijλj +B

− �
⎡⎣∑

i,j

(
Wij + γ

(
Wij −W j

))
μ̂ij

∣∣∣∣∣∣W
⎤⎦ , (10)

where the last step is true for B � B1+B2+B3, and combines

inequalities (7) and (9).

Since the traffic intensity matrix ρ = (ρij) strictly lies in

the capacity region Λ, there exists an ε > 0 and (αh(s))s∈S
with

∑
s∈S(h) αh(s) = 1, ∀h ∈ H, such that

ρij = λjηij ≤
∑
h∈H

φh

∑
s∈S(h)

αh(s)sij − εηij , ∀i, j. (11)

This implies that

λj ≤ −ε+min
i

∑
h∈H

φh

∑
μ∈U(h)

αh(μ)μij , ∀j, (12)

where
∑

μ∈U(h) αh(μ) = 1 and we recall that U (h) � {S/η :

S ∈ S(h)}.

Therefore, we have∑
i,j

Wijλj ≤ −ε
∑
i,j

Wij

+
∑
j

⎛⎝min
i′

∑
h∈H

φh

∑
μ∈U(h)

αh(s)μi′j

⎞⎠∑
i

Wij . (13)

Next, we consider the second term on the right-hand-side
of (13).

∑
j

⎛
⎝min

i′

∑
h∈H

φh

∑
μ∈U(h)

αh(μ)μi′j

⎞
⎠∑

i

Wij

(a)
=

∑
j

⎛
⎝min

i′

∑
h∈H

φh

∑
μ∈U(h)

αh(μ)μi′j

⎞
⎠∑

i

(
Wij + γ

(
Wij −W j

))

≤
∑
i,j

(
Wij + γ

(
Wij −W j

)) ∑
h∈H

φh

∑
μ∈U(h)

αh(μ)μi,j

=
∑
h∈H

φh

∑
μ∈U(h)

αh(μ)
∑
i,j

(
Wij + γ

(
Wij −W j

))
μij

(b)

≤�
[∑

i,j

(
Wij + γ

(
Wij −W j

))
μ̂ij

∣∣∣∣∣W
]
, (14)

where step (a) uses the fact that
∑

i Wij =
∑

i W j ;

(b) follows from the definition of μ̂, i.e., μ̂ ∈
maxμ∈U(h[t])

∑
i,j

(
Wij + γ

(
Wij −W j

))
μij given the sys-

tem state h[t] in time slot t.
By combining (13) and (14) and substituting them into (10),

we have

� [ΔV (W[t])|W[t] = W] ≤ −ε
∑
i,j

Wij +B. (15)

Summing over t = 0, 1, . . . , T − 1, and taking T → ∞, we

have the desired result.

V. SIMULATION RESULTS

In the previous section, we established the throughput-

optimality of our Job-Synchronized Scheduler (JSS). However,

our design, as motivated by the examples from Section III, was

not only aimed at efficiency but also achieving good job delay

performance. In this section, we present simulation results for

both switch and wireless scenarios that investigate job delay

performance gains compared to the traditional MaxWeight

policy. In the remaining part, “delay” is referred to as “job

delay” for simplicity, which is different from packet-level

delay as mentioned before. We will observe that under both

scenarios significant delay improvements are achieved through

our JSS algorithm.

A. Switch Scenario

In this subsection we consider the case where two types

of jobs arrive at a 6 × 6 switch with a Bernoulli distribution

with arrival rates of λ(1) and λ(2) respectively. We assume that

each type of flows generates 36 tasks, and each task is routed

between a unique pair of one input port i and one output port

j. The task size generated by the job at link (i, j) is a random

number that is equal to Mij with the probability
ηij−1
Mij−1 and 1

otherwise. Accordingly, ηij is the mean task size at link (i, j)
and Mij measures the task’s burstiness. We assume that for the

first type of jobs the mean task sizes η
(1)
ij at links (1, 1), (2, 2)

and (3, 3) are 20 while the others are 2. For the second type

of jobs the mean file sizes η
(2)
ij at links (4, 4), (5, 5) and (6, 6)

are 20 while the others are 2. In this case, the first type of jobs

dominate the first three input ports while the second type of

jobs dominate the remaining ones. Assuming symmetric arrival

rates λ(1) = λ(2) = λ, the range of stabilizable arrival rates

of the two types of jobs satisfies λ = θ
20+11×2 = θ × 0.024,

where θ ∈ [0, 1). The values of Mi,j for each link are equal

to 25 for each job type. Here we define the mean job delay

as the delay averaged over both types of jobs.

First we present the simulation results of delay improvement

percentage versus the arrival load factor θ under different γ,

the parameter of JSS, compared with the traditional queue-

length-based MaxWeight algorithm in Fig. 6a. We see from

Fig. 6a that, under different γ, our algorithm can achieve a

better delay performance than the MaxWeight algorithm. In

the meanwhile, too low or too high values of γ can deteriorate

the performance when arrival load factor θ is high enough, and

γ = 5 gives the best result for most arrival load factors. The

delay improvement percentage can be as high as 48% when

γ = 5. In all these three cases the ratio increases first and

then decreases with respect to the arrival load factor, but they

have different turning points. Obviously, γ = 5 has the best

performance in the heavily-loaded condition while γ = 0 gives

the best result in light traffic case.

The impact of the algorithm parameter γ on the job delay

performance for different arrival load factor is shown in

Fig. 6b. For the low arrival rate, the delay improvement does

not change too much for different choices of γ. This is because

in the light-traffic case, tasks do not need to wait for service

in most of the time. So the different scheduling algorithm

designs do not have a great impact on the job delay. For the

high arrival rate, however, we can see that the improvement

has a substantial increase when γ goes from 0 to 10, and

then decreases slightly afterwards. These results suggest that

choosing values of γ at the higher end, although suboptimal,

can yield large gains with nearly 40% improvement.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor

0

5

10

15

20

25

30

35

40

45

50

D
el

ay
 Im

pr
ov

em
en

t (
%

)

JSS with =5
JSS with =0
JSS with =100

(a) Delay improvement versus θ

0 10 20 30 40 50 60 70 80 90 100

Algorithm Parameter

0

5

10

15

20

25

30

35

40

45

50

D
el

ay
 Im

pr
ov

em
en

t (
%

)

Arrival load factor =0.9
Arrival load factor =0.1

(b) Delay improvement versus γ

Fig. 6: Job delay improvement ratio of JSS algorithm

B. Wireless Scenario

In this subsection, we consider a wireless scenario as shown

in Fig. 7a, which is an extension of the second example

in Section III-B. In particular, there are six types of jobs

arriving at six different nodes. For the first five types of

jobs, each type of jobs generates two tasks arriving at two

different nodes. The last type of jobs generates one task only

arriving at the last node. Each node maintains a queue for

each type of jobs. In the meanwhile, each node can serve

packets simultaneously without any interference (e.g., FDMA).

We assume that each node suffers from i.i.d. channel fading

with a Bernoulli distribution, meaning that one packet can be

successfully served with probability p and cannot be served

with probability 1− p. Here we set p = 0.9 for all nodes and

constant task sizes. Specifically, the task of the first type of

jobs at the first node has a task size of 2 while the others

have a task size of 1. Obviously in this case, the tradition

MaxWeight algorithm is equivalent to our algorithm with

γ = 0. Assuming equal arrival rates for all types of jobs,

the range of stabilizable arrival rates of any job can be written

as 0.45θ, where θ ∈ [0, 1). Here we assume that each type of

jobs arrives according to a Bernoulli distribution with mean

0.45θ.

In Fig. 7b, we show the delay improvement percentage

compared with the traditional MaxWeight algorithm under

different arrival load factors θ. When γ = 1, our algorithm

can achieve as high as 8% delay improvement ratio, while a

comparable performance with MaxWeight is observed when

γ = 4. For γ = 100, we can see a large negative gain in

(a) Wireless setup

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Load Factor

-25

-20

-15

-10

-5

0

5

10

D
el

ay
 Im

pr
ov

em
en

t (
%

)

JSS with =1
JSS with =4
JSS with =100

(b) Job delay improvement of JSS

Fig. 7: Job delay w.r.t. arrival load factor θ : wireless scenario

heavy load. This implies that inappropriate choices of γ will

deteriorate the job delay performance in this case, especially

in heavy load. We can also observe that in this case the delay

improvement first increases with respect to (w.r.t.) θ and then

decreases w.r.t. θ. Neither too light nor too heavy load is good

for the effectiveness of the JSS algorithm, which aligns with

our observations in the switch scenario.

VI. CONCLUSIONS

In this paper, we studied the scheduling design for multiple

types of jobs containing parallel tasks in stochastic networks

with changing system states. We revealed two important

observations via motivating examples: (1) normalizing queue-

length to characterize the task-level delay; (2) balancing

the latency of all tasks belonging to a parallel job. Then,

we proposed a MaxWeight-type algorithm, where its weight

not only considers the normalized queue-length but also its

deviation away from the average normalized queue-length

of tasks belonging to the same type of jobs. We showed

that our proposed algorithm achieves throughput optimality

through a novel Lyapunov function, and exhibits desirable job

delay performance improvements over traditional MaxWeight

strategies through extensive simulations.

REFERENCES

[1] D. Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 11(2007):21, 2007.

[2] L. Chen, W. Cui, B. Li, and B. Li. Optimizing coflow completion
times with utility max-min fairness. In Computer Communications, IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on,
pages 1–9. IEEE, 2016.

[3] M. Chiang. Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE
Journal on Selected Areas in Communications, special issue on Nonlin-
ear Optimization of Communication Systems, 23(1):104 – 116, January
2005.

[4] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior
knowledge. In ACM SIGCOMM Computer Communication Review,
volume 45, pages 393–406. ACM, 2015.

[5] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling
with varys. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 443–454. ACM, 2014.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[7] A. Destounis, G. S. Paschos, and I. Koutsopoulos. Streaming big data
meets backpressure in distributed network computation. In INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, IEEE, pages 1–9. IEEE, 2016.

[8] F. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized
task-aware scheduling for data center networks. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 431–442. ACM,
2014.

[9] A. Eryilmaz and R. Srikant. Asymptotically tight steady-state queue
length bounds implied by drift conditions. Queueing Systems, 72(3–
4):311–359, 2012.

[10] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless
networks using queue-length based scheduling and congestion control.
In Proc. IEEE International Conference on Computer Communications
(INFOCOM), Miami, FL, March 2005.

[11] M. Harchol-Balter. Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[12] J. Jiang, S. Ma, B. Li, and B. Li. Adia: Achieving high link utilization
with coflow-aware scheduling in data center networks. IEEE Transac-
tions on Cloud Computing, 2016.

[13] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. Lau.
Efficient online coflow routing and scheduling. In Proceedings of the
17th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pages 161–170. ACM, 2016.

[14] Q. Liang and E. Modiano. Coflow scheduling in input-queued switches:
Optimal delay scaling and algorithms. In Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2017.

[15] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-layer
rate control in multihop wireless networks. In Proc. IEEE International
Conference on Computer Communications (INFOCOM), Miami, FL,
March 2005.

[16] S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li. Towards practical
and near-optimal coflow scheduling for data center networks. IEEE
Transactions on Parallel and Distributed Systems, 27(11):3366–3380,
2016.

[17] S. Luo, H. Yu, Y. Zhao, B. Wu, S. Wang, et al. Minimizing average
coflow completion time with decentralized scheduling. In Communica-
tions (ICC), 2015 IEEE International Conference on, pages 307–312.
IEEE, 2015.

[18] M. J. Neely. Energy optimal control for time varying wireless networks.
In Proc. IEEE International Conference on Computer Communications
(INFOCOM), Miami, FL, March 2005.

[19] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted
completion time of coflows in datacenter networks. In Proceedings of the
27th ACM symposium on Parallelism in Algorithms and Architectures,
pages 294–303. ACM, 2015.

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on, pages 1–10. IEEE, 2010.

[21] R. Srikant and L. Ying. Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University
Press, 2013.

[22] A. L. Stolyar. Maxweight scheduling in a generalized switch: State
space collapse and workload minimization in heavy traffic. Annals of
Applied Probability, pages 1–53, 2004.

[23] A. L. Stolyar. Maximizing queueing network utility subject to stabil-
ity: Greedy primal-dual algorithm. Queueing Systems, 50(4):401–457,
August 2005.

[24] L. Tassiulas. Scheduling and performance limits of networks with
constantly varying topology. IEEE Transactions on Information Theory,
43:1067–1073, May 1997.

[25] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks. IEEE transactions on automatic control,
37(12):1936–1948, 1992.

[26] L. Tassiulas and A. Ephremides. Dynamic scheduling for minimum
delay in tandem and parallel constrained queueing models. Annals of
Operations Research, 48(4):333–355, 1994.

[27] R. Yu, G. Xue, X. Zhang, and J. Tang. Non-preemptive coflow
scheduling and routing.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[29] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng.
Coda: Toward automatically identifying and scheduling coflows in the
dark. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 160–173. ACM, 2016.

