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Abstract—In this paper, we study the temporal correlation
of interference in mobile ad-hoc networks under a correlated
shadowing environment. By modeling the node locations as a
1-D Poisson point process with an i.i.d. mobility model and
considering spatially correlated shadowing that depends on the
distance between nodes, we derive a simple asymptotic expres-
sion of the temporal correlation coefficient of interference as
the variance of log-normal shadowing increases. This shows a
readable relationship between the correlation distance of log-
normal shadowing and the temporal correlation of interference
and thus can be useful for modeling general wireless systems
with spatially correlated shadowing.

Index Terms—Interference, correlated shadowing, temporal
correlation, Poisson point process, stochastic geometry

I. INTRODUCTION

Interference is an important factor in the analysis of various
wireless systems. More specifically, correlation of interference
may cause significant degradation of the performance of
wireless communications in both spatial and temporal means,
e.g., end-to-end throughput, retransmissions [1], cooperative
relaying [2], broadcast communications, multiple antennas [3],
and handovers [4]. For example, if interference at a certain
receiver is temporally correlated, quick retransmission after
a transmission failure is likely to fail again. Moreover, in
broadcast communications of vehicular networks under strong
spatial correlation of interference, outage of vehicles in a dense
cluster can be highly correlated, which leads to performance
degradation in information dissemination. Therefore, correla-
tion of interference needs to be analyzed to efficiently design
various wireless network systems or protocols.

Due to the importance of correlation of interference, many
researchers have studied them in various settings in the past
decade [4]–[10]. Basically, several major factors can cause
correlation of interference: node locations, fading, and channel
access. Indeed, Ganti and Haenggi [5] showed that interference
can be temporally correlated due to the temporal correlation
of node locations among successive times slots even when
ALOHA is used as the media access control (MAC) protocol.
In addition, the temporal correlation of traffic or channel status
and low mobility of nodes can increase the correlation of
interference [6], [7].

Although the effects of the correlation of the node locations
(including mobility) or traffic have been well studied, few

researchers have considered the impact of spatially correlated
shadowing on the correlation of interference. Most previous
work assumed spatially i.i.d. fading; however, shadowing (i.e.,
slow fading) is spatially correlated on a scale from 50 to
200 m [11] due to the effects of blockage and reflection in
transmission channels. Shadowing is commonly modeled by a
log-normal distribution, and a widely accepted model for the
correlation of shadowing was proposed by Gudmundson [12].
Typically, the distance at which the correlation of shadowing
remains depends on environments and is called a correlation
distance. However, the relationship between the correlation
distance and the correlation of interference has not been
studied. Furthermore, the impact of node mobility in the
correlated shadowing environment has not been reported.

In this paper, we study the temporal correlation of interfer-
ence in mobile ad-hoc networks under a correlated shadowing
environment. By modeling the node locations as a 1-D Poisson
point process (PPP) with an i.i.d. mobility model and the corre-
lated shadowing as Gudmundson’s model [12], we analyze the
temporal correlation coefficient of interference in a correlated
shadowing environment. Since the exact expression of the
temporal correlation coefficient is not tractable, we derive its
simple asymptotic expansion when the variance of the log-
normal shadowing increases by using Watson’s lemma (see
e.g., [13]). Our results show a readable relationship between
the correlation distance of the shadowing and the correlation
of interference and indicate that the temporal correlation of
the interference mainly depends on the probability that a node
stays in the same position. Furthermore, we found through
numerical examples that the obtained asymptotic expansion
can be used as a tight approximate formula and so is useful
for estimating the impacts of other various system parameters
on the temporal correlation of interference.

Although we consider a 1-D model, we believe that it gives
us a critical insight into the spatial correlation of shadowing
and can be applied to various network models such as vehic-
ular networks.

II. RELATED WORK

The spatial and temporal correlation coefficients of interfer-
ence in various settings have been studied [4]–[10]. Those in
ad-hoc networks with ALOHA were first studied by Ganti and



Haenggi [5], who modeled the node locations as a PPP under
an i.i.d. fading assumption. Schilcher et al. [6] extended this
work by considering Rayleigh block fading and temporally
correlated traffic. The impact of the node mobility on the cor-
relation of interference was studied by Gong and Haenggi [7].
For extensions of a model of node locations, Wen et al.
considered K-tier heterogeneous networks [8] and also studied
the cases when nodes are distributed with a clustered point
process and a repulsive one [9]. The correlation of interference
in cellular networks was recently studied by Krishnan and
Dhillon [4]. Many researchers also studied the performance
of wireless systems under correlated interference. Crismani
et al. [14] considered a decode-and-forward relaying system
in which consecutive transmission attempts are temporally
correlated. Afify et al. [15] presented a unified mathematical
framework for cellular networks with multiple-input-multiple-
output (MIMO) and studied the temporal correlation in retrans-
missions. The effect of the spatial correlation of interference
on opportunistic secure information transfer was analyzed
in [16]. However, the above studies considered i.i.d. fading
and did not take into account spatially correlated shadowing.

Since the shadowing is spatially correlated [11], several
analytical models have been proposed [12], [17], [18]. Gud-
mudonson [12] proposed a widely-accepted model in which
the shadowing variable of the channel between a fixed base
station (BS) and a moving user is modeled by an autore-
gressive process with exponentially decaying autocorrelation
subject to the moving distance. Several extensions of this
model have also been proposed: the case of multiple BSs [17]
and multi-hop networks [18]. The correlation distance or
other parameters of this model have also been experimentally
studied [12], [19], [20]. Baek et al. [20] recently reported that
the correlation distance for the mm-wave frequency band is
similar to that for other lower frequency bands.

A stochastic geometry based approach often gives us
tractable results in the interference analysis. However, mod-
els with (even uncorrelated) log-normal shadowing lead to
intractable results. For this problem, Baccelli and Zhang [21]
proposed a correlated shadowing model, in which correlated
log-normal shadowing is approximated by a random variable
depending on the number of buildings that a transmission
channel penetrates. In addition, Koufos et al. [10] studied
the temporal correlation of interference in MANETs with
blockage by modeling obstacles and their penetration loss. In
contrast with the above studies, we formally incorporate the
correlated log-normal shadowing into our model on the basis
of Gudmundson’s model [12]. By doing this, we obtain a sim-
ple connection between the correlation distance of shadowing
and the temporal correlation of interference.

III. MODEL DESCRIPTION

In this section, we explain our model. We consider a line
on R and a target receiver fixed at the origin. We assume that
nodes (i.e., potential transmitters) are randomly distributed on
the line and independently move in each time-slot whereas the
target receiver does not move. More precisely, we model the

node locations by a 1-D homogeneous PPP Φ with intensity
λ. Each point xi(t) ∈ Φ(t) (i ∈ Z+ ! {0, 1, 2, . . . , }) on R
represents the position of the i-th transmitter (vehicle, mobile
user, BS) at a time slot t ∈ Z+. We omit t of xi(t) and
Φi(t), such as xi and Φ, when considering a certain fixed
time-slot. For the node mobility, we assume that the moving
distance of the node i at time t, xi(t + 1) − xi(t) =: v, is
independently distributed with a p.d.f. ψ(v) (v ∈ R), which
does not depend on xi(t) and satisfies ψ(0) > 0. Due to
the displacement theorem of PPPs (see e.g., Theorem 2.33 in
[22]), the realization of Φ(t) at fixed time slot t remains a
homogeneous PPP if Φ(0) is homogeneous.

We next explain our channel model. We assume that all
nodes have the unit transmission power. The path loss model
is assumed as ℓ(r) = (1+r)α (r ∈ R+) where α > 1 is a path
loss exponent. Furthermore, we assume that each transmission
channel has the effect of shadowing and h denotes the shad-
owing variable. According to a widely-accepted assumption
for the shadowing effect, for any fixed channel, h is assumed
to be log-normally distributed, i.e.,

h = exp
(
−σ2

dB/2 + σdBZ
)
, (1)

where Z ∼ N (0, 1). Note that E[h] = 1 and E[h2] = eσ
2
dB .

Thus, we can consider a stationary marked point process
Φ̂ = {(xi, hi); i ∈ Z+} with the mark distribution of a typical
point as (1). We also assume that the shadowing variables are
correlated depending on the distance between nodes. More
precisely, if we consider two nodes i and j, the corresponding
shadowing variables hi and hj have the following correlation
coefficient in the logarithmic sense:

ρdB ! E[lnhi lnhj ]

σ2
dB

= e−
|xi−xj |

dcor
ln 2, (2)

where dcor, called a correlation (decorrelation) distance, de-
pends on environments and represents the distance at which
the correlation coefficient ρdB is equal to 0.5. For simplicity,
we write d0 ! dcor/ ln 2 hereafter. This is the widely-
accepted model proposed by Gudmundson [12] for the spatial
correlation of shadowing. In this paper, we only consider the
shadowing effect and do not take into account the multi-path
fading, such as Rayleigh fading. In addition, the shadowing
variable is assumed to be time-invariant, i.e., the value of the
shadowing variable at a fixed node location does not change
over time.

By definition, the received power from the node i at time
slot t can be represented as hi(t)/ℓ(xi(t)). Thus, the total
interference power received at the origin equals

I(t) =
∑

xi(t)∈Φ(t)

hi(t)Si(t)

ℓ(xi(t))
, (3)

where Si(t) denotes an indicator that equals 1 when the node
i is transmitting radio waves at the beginning of time slot t
and 0 otherwise.

We assume that all nodes use slotted-ALOHA as the MAC.
Thus, each node transmits radio waves or not with probability



p in each transmission time-slot. Note that the transmission
time slot is different from the mobility time-slot. We assume
that the transmission time-slot is fixed and smaller than the
mobility time-slot. In other words, the transmission of each
vehicle at time t does not continue until time t+ 1, and thus
Si(t) and Si(t+ 1) are independent for all i.

IV. MAIN RESULTS

In this section, we present our main results, the temporal
correlation of interference, i.e., the correlation between in-
terferences at different two time slots. Due to the spatially
correlated shadowing, the interference received at the same
receiver is expected to be more correlated in a lower mobility
environment. In what follows, we first derive the first and
second moments of interference, which will be used for the
derivation of the temporal correlation coefficient. Although the
mean interference can be easily obtained, the second moment
does not have an explicit form due to the cross correlation of
shadowing variables. Therefore, by using Watson’s lemma (see
e.g., [13]), we derive a simple but useful asymptotic expansion
of the second moment of interference for sufficiently large
σdB. We then derive an asymptotic expansion of the temporal
correlation coefficient of interference that is valid for general
i.i.d. mobility models. Finally, we give several mobility models
as examples and derive the corresponding temporal correlation
coefficient for each model.

A. First and second moments of interference
Since the marked point process Φ̂ is stationary, the mean

interference can be easily obtained by applying Campbell’s
theorem (see e.g., [22]) to (3) as follows:

E[I] = E
[
∑

xi∈Φ

hiSi

ℓ(xi)

]
=

∫

R

λpE0[h]

(1 + |x|)α dx =
2λp

α− 1
, (4)

where E0 denotes the expectation with the distribution of
a typical point. We next consider the second moment of
interference, E[I2]. By definition, this can be rewritten as

E[I2] = E

⎡

⎢⎣
∑

xi,xj∈Φ(2)
̸=

hihjSiSj

ℓ(xi)ℓ(xj)

⎤

⎥⎦+ E
[
∑

xi∈Φ

h2
iSi

(ℓ(xi))2

]
,

where Φ(2)
̸= denotes all the set of the distinct pairs in Φ. By

applying Campbell’s theorem (e.g., [22]) to the above and
using (2), we obtain

E[I2] =
∫∫

(R)2

λ2p2Eij [hihj ]

ℓ(xi)ℓ(xj)
dxidxj +

∫

R

λpE0[h2]

(1 + |x|)2α dx

=

∫∫

(R)2

λ2p2eσ
2
dBe

−|xi−xj |
d0

ℓ(xi)ℓ(xj)
dxidxj +

2λpeσ
2
dB

2α− 1
. (5)

The first term in the above equation can be numerically
computed, but it does not have a closed-form. However, when
the variance of shadowing (i.e., σdB) is large, we have the
following simple asymptotic expansion. The proof of the
lemma is given in Appendix B.

Lemma 1 The second moment of interference has the follow-
ing asymptotic expansion as σdB → ∞:

E[I2] ∼ 2λpeσ
2
dB

2α− 1

[
1 +

2λpd0
σ2
dB

+
2λpd0
σ4
dB

+O

(
1

σ6
dB

)]

+
2λ2p2d20e

σ2
dB

σ4
dB

. (6)

B. Temporal correlation coefficient
On the basis of the previous results, we next aim to derive

the temporal correlation coefficient of interference, which for
time interval τ slots (τ ∈ Z+) is defined as,

ρτ ! Cov[I(t), I(t+ τ)]√
Var[I(t)]Var[I(t+ τ)]

=
E[I(t)I(t+ τ)]− (E[I])2

E[I2]− (E[I])2 .

Here, we call Cov[I(t), I(t + τ)] the temporal covariance of
interference. Recall that the moving distance of the node i
during one time-slot is independently distributed in accordance
with the p.d.f. ψ(v). Therefore, the moving distance of the
node i in τ time-slots, i.e., vi(τ) ! xi(t+ τ)− xi(t), follows
the p.d.f. ψτ (v), which is the τ -th convolution of ψ(v) and
independent of xi(t). The cross-correlation of I(t) and I(t+τ)
can be represented as

E[I(t)I(t+ τ)]

= E

⎡

⎢⎣
∑

xi(t),xj(t)∈Φ(2)
̸= (t)

hi(t)hj(t+ τ)Si(t)Sj(t+ τ)

ℓ(xi(t))ℓ(xj(t) + vj(τ))

⎤

⎥⎦

+E

⎡

⎣
∑

xi(t)∈Φ(t)

hi(t)hi(t+ τ)Si(t)Si(t+ τ)

ℓ(xi(t))ℓ(xi(t) + vi(τ))

⎤

⎦ . (7)

The following is an asymptotic expression of the temporal
covariance of interference.

Lemma 2 Suppose that ψτ (0) > 0 and ψ′
τ (0) exists. The

temporal covariance of interference for time interval τ has
the following asymptotic expansion as σdB → ∞:

Cov[I(t), I(t+ τ)] ∼ 2λp2d0e
σ2
dB

[
2

2α− 1

{
(λ+ ψτ (0))

σ2
dB

+
λ+ ψτ (0) + d0ψ′

τ (0)

σ4
dB

}
+

d0(λ+ ψτ (0))

σ4
dB

+O

(
1

σ6
dB

)]
.

Proof. The proof of this lemma is given in Appendix C. ✷

By applying Lemmas 1 and 2 to the definition of ρτ , we can
immediately obtain our main result below.

Theorem 1 Suppose that ψτ (0) > 0 and ψ′
τ (0) exists. The

temporal correlation coefficient of interference of time interval
τ is asymptotically equivalent to, when σdB → ∞,

ρτ ∼ 1
1

2α−1

(
1

d0p
+ 2λ

σ2
dB

+ 2λ
σ4
dB

)
+ d0λ

σ4
dB

×
[

2

2α− 1

{
λ+ ψτ (0)

σ2
dB

+
λ+ ψτ (0) + d0ψ′

τ (0)

σ4
dB

}

+
d0(λ+ ψτ (0))

σ4
dB

]
. (8)



Theorem 1 indicates that ρτ depends only on ψτ (0) and
ψ′
τ (0) when σdB → ∞. In other words, the probability that the

nodes do not move has the dominant impact on the asymptotic
behavior of the temporal correlation coefficient of interference.

Remark 1 By removing the terms of O(1/σ4
dB), we can

obtain a simpler asymptotic expression of ρτ , as σdB → ∞:

ρτ ∼ 2d0p(λ+ ψτ (0))

2λd0p+ σ2
dB

. (9)

C. Mobility models
We next consider several commonly used mobility models

as examples and show the temporal correlation coefficients
corresponding to each model. In this paper, we choose three
models: (i) constrained i.i.d. mobility (CIM) model; (ii) ran-
dom walk (RW) model; and (iii) discrete-time Brownian motion
(BM) model. The same models are considered by Gong and
Haenggi [7]. We describe the details of each model below.

(i) constrained i.i.d. mobility (CIM) model: In the CIM model,
the location xi(t+1) ∈ Φ(t+1) of the node i at the time slot
(t+ 1) is determined independently of xi(t) such that

xi(t+ 1) := xi(0) + vi(t), t ∈ Z+.

Here, vi(t)’s are drawn from a uniform distribution with range
[−Vmax, Vmax]. Clearly, ψτ (0) = 1/2Vmax and ψ′

τ (0) = 0.
(ii) random walk (RW) model: In the RW model, the location
of the node i at time (t+ 1) is determined as follows:

xi(t+ 1) := xi(t) + vi(t), t ∈ Z+, (10)

where vi(t)’s are drawn from a uniform distribution with range
[−Vmax, Vmax]. Note that the RW model differs from the CIM
model because the location of the node i at time (t+1) depends
on that at time t. Under the RW model, ψτ (0) becomes (see
e.g., [23])

ψτ (0) =
1

2Vmax

⌊ τ
2 ⌋∑

i=0

(−1)i
τ

τ !(τ − i)!

(τ
2
− i

)τ−1
.

Note also that ψτ (v) is not differentiable at v = 0 when τ is
an even number. Thus, to utilize (8), τ must be an odd number.
(iii) discrete-time Brownian motion model (BM): In the random
walk model, the location of the node i at time (t + 1) is
determined by (10) with vi(t) ∼ N (0,σ2

V ). In this model, the
p.d.f. ψτ (v) is simply equal to N (0, τσ2

V ) due to a property
of a normal distribution; and thus ψτ (0) = 1/

√
2πτσ2

V and
ψ′
τ (0) = 0.

V. NUMERICAL EXAMPLES

In this section, we present several numerical examples.
We compared the exact values of the temporal correlation
coefficient computed by numerical integration with those
approximated by using the asymptotic expansions provided
in Section IV. By doing this, we show how the correlated
shadowing affects the correlation of the interference under var-
ious parameter settings and also that the temporal correlation

can be well approximated by our simple asymptotic formulas.
In our numerical examples, we set dcor = 100 [m], i.e.,
d0 = 100/ ln 2 according to [11] and α = 4 unless otherwise
noted. Furthermore, we chose the best parameters for all
numerical integrations after several numerical calculations.

A. Impacts of various parameters

We first investigate the impacts of various parameters on
the temporal correlation coefficient. Fig. 1 shows ρτ from
numerical computation (plotted as ‘exact’) and approximation
based on (8) (plotted as ‘approx’) with different σdB and τ in
the CIM, RW, and BM models. Since the positions of nodes
do not depend on τ under the CIM model, we set Vmax to the
x-axis in the left graph. In addition, we set λ = 10 [1/km].
We can see from the graphs that the temporal correlation
coefficient decreases as the elapsed time slots increase or the
mobility increases, but it does not converge to zero because
the mobility effect is averaged out in the calculation of an
integral term in the temporal covariance (see (16), (17)). This
indicates that the temporal correlation of interference may
remain for a long time. We can also see that if σdB increases,
the temporal correlation coefficient decreases. Furthermore,
the approximate values based on (8) well fit to the exact values
in all cases.

Figs. 2 and 3 compare results of the temporal correlation
coefficients under the RW model with different σdB when
varying dcor and λ, respectively. Clearly, when the density of
nodes increases, the correlation also increases. In addition, the
temporal correlation becomes higher when correlation distance
becomes longer.

B. Accuracy as approximate formulas

We next evaluate accuracy as an approximate formula for
the temporal correlation coefficient. We compare the approxi-
mated values when using (8) and its simpler version (9). Fig. 4
compares ρτ from numerical computation and approximate
formulas based on (8) (corresponding to app(A) in the graph)
and (9) (corresponding to app(B)). We can see from the figure
that in all cases, both asymptotic formulas well fitted to the re-
sults from numerical computation although the simpler version
(app(B)) has larger errors than the original one (app(A)) when
σdB is small. However, since σdB typically takes the values
in 4–13 dB in a realistic situation [11], we can say that the
simpler version of the asymptotic formula is also sufficiently
accurate to roughly estimate how the interference is temporally
correlated under a correlated shadowing environment.

VI. CONCLUSION

In this paper, we studied the temporal correlation of in-
terference in a correlated shadowing environment. On the
basis of Gudmundson’s model [12], we derived a simple
asymptotic expansion of the temporal correlation coefficients
of interference. We also showed in numerical results that
the asymptotic expansion can be used as tight approximate
formulas.
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Our future work includes an extension to two-dimensional
space. More general mobility models are also our future work.
In addition, the correlation of outage in a correlated log-
normal shadowing environment needs to be considered for the
performance evaluation of wireless communications.

APPENDIX A: WATSON’S LEMMA

In this appendix, we explain a useful mathematical tool,
known as Watson’s lemma, which gives an asymptotic ex-
pression of the following form of an exponential integral:

F̃ (λ) =

∫ a+δ

a
eλR(t)g(t)dt =

∫ δ

0
eλR(a+τ)g(a+ τ)dτ,

where R(t) has its maximum at t = a.
Watson’s lemma (Miller [13] (Section 3.3)): Suppose that

R(t) and g(t) have an infinite number of continuous deriva-
tives for a ≤ t < a + δ and R′(a) < 0. We then have the
following asymptotic expansion as λ→ ∞1:

1In the original version of Watson’s lemma, asymptotic expansions with
arbitrary terms O(1/λn) (n ∈ N) can be obtained (for details, see [13]).

F̃ (λ) = eλR(a)

(
− g(a)

R′(a)

1

λ

+
g′(a)R′(a)− g(a)R′′(a)

(R′(a))3
1

λ2
+O

(
1

λ3

))
. (11)

APPENDIX B: PROOF OF LEMMA 1
The first term in (5) can be rewritten as

∫∫

(R)2

eσ
2
dBe

−|xi−xj |
d0

ℓ(xi)ℓ(xj)
dxidxj =

∫

R

1

ℓ(x)

∫

R

eσ
2
dBe

−|s|
d0

ℓ(x+ s)
dsdx.

(12)
The above integral does not have an explicit form and requires
numerical integration for its calculation. However, as proven in
Lemma 3 below, we can obtain a simple asymptotic expansion
for this integral as σdB → ∞.

Lemma 3 Let f(s) denote an arbitrary function on R such
that f(0) ̸= 0 and f ′(0) exits. We then have, as σ → ∞,

∫∫

(R)2

eσ
2e

−|s|
d0 f(s)

ℓ(x)ℓ(x+ s)
dsdx ∼ 2d0e

σ2

[
2

2α− 1

×
(
f(0)

σ2
+

f(0) + d0f ′(0)

σ4

)
+
d0f(0)

σ4
+O

(
1

σ6

)]
, (13)

Proof of Lemma 3. By definition, we have, for any x ∈ R+,
∫

R

eσ
2e

− |s|
d0 f(s)

ℓ(x+ s)
ds =

∫ ∞

0

eσ
2e

− s
d0 f(s)

(1 + x+ s)α
ds

︸ ︷︷ ︸
A1

+

∫ x

0

eσ
2e

− s
d0 f(s)

(1 + x− s)α
ds

︸ ︷︷ ︸
A2

+

∫ ∞

x

eσ
2e

− s
d0 f(s)

(1 + s− x)α
ds.

︸ ︷︷ ︸
A3

(14)

By applying (11), the first and second integrals in (14) lead
to the following asymptotic expansions as σ2 → ∞:

A1 ∼ d0e
σ2

[
f(0)

(1 + x)α
1
σ2

+

(
f(0) + d0f

′(0)
(1 + x)α

− αd0f(0)
(1 + x)α+1

)
1
σ4

+O

(
1

(1 + x)ασ6

)]
,

A2 ∼ d0e
σ2

[
f(0)

(1 + x)α
1
σ2

+

(
f(0) + d0f

′(0)
(1 + x)α

+
αd0f(0)

(1 + x)α+1

)
1
σ4

+O

(
1

(1 + x)ασ6

)]
.



Thus, combining the above yields
∫

R+

A1 +A2

ℓ(x)
dx ∼ 2d0e

σ2
∫

R+

[
f(0)

(1 + x)2ασ2

+
f(0) + d0f ′(0)

(1 + x)2ασ4
+O

(
1

(1 + x)2ασ6

)]
dx

=
2d0eσ

2

2α− 1

[
f(0)

σ2
+

f(0) + d0f ′(0)

σ4
+O

(
1

σ6

)]
. (15)

By changing the variables, the last integral in (14) can be
rewritten as
∫

R+

A3

ℓ(x)
dx =

∫

R+

∫

R+

f(s+ x)eσ
2e

− s+x
d0

(1 + x)α(1 + s)α
dsdx

(a)
=

∫

R+

∫ 1

−1

yf(y)eσ
2e

− y
d0

2(1 + y+yz
2 )α(1 + y−yz

2 )α
dzdy,

where we use y = x+ s and z = x−s
x+s in (a). Furthermore, it

follows from (11) that
∫

R+

A3

ℓ(x)
dx ∼

∫ 1

−1
eσ

2

[
d20f(0)

2σ4
+O

(
1

σ6

)]
dz

= eσ
2

[
d20f(0)

σ4
+O

(
1

σ6

)]
.

As a result, combining this and (15) with (14) leads to (13).
✷

Substituting f(s) ≡ 1 into (13) and using (12) and (5), we
obtain (6).

APPENDIX C: PROOF OF LEMMA 2
Since the shadowing variable is assumed to be time-

invariant, by using Campbell’s theorem, the first term in (7)
can be rewritten as

E

⎡

⎢⎣
∑

xi(t),xj(t)∈Φ(2)
̸= (t)

hi(t)hj(t+ τ)Si(t)Sj(t+ τ)

ℓ(xi(t))ℓ(xj(t+ τ))

⎤

⎥⎦

= λ2p2
∫

R

∫

R
Ev

⎡

⎣eσ
2
dBe

− |x−(y+v)|
d0

ℓ(x)ℓ(y + v)

⎤

⎦ dxdy

= λ2p2
∫

R

∫

R

eσ
2
dBe

− |s|
d0

ℓ(x)ℓ(x+ s)
dxds, (16)

which can be calculated by (13). The second term in (7) can
be also rewritten as

E

⎡

⎣
∑

xi(t)∈Φ(t)

hi(t)hi(t+ τ)Si(t)Si(t+ τ))

ℓ(xi(t))ℓ(xi(t+ τ)

⎤

⎦

= λp2
∫

R
Ev

⎡

⎣ eσ
2
dBe

− |v|
d0

ℓ(x)ℓ(x+ v)

⎤

⎦ dx

= λp2
∫∫

(R)2

eσ
2
dBe

− |v|
d0 ψτ (v)

ℓ(x)ℓ(x+ v)
dvdx, (17)

which can be also evaluated by using (13). Therefore, by
applying Lemma 3 to (16) and (17) and combining them with
(7), the proof is completed.
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