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Abstract—We characterize the ergodic spectral efficiency of a
cooperative type of K-tier heterogeneous networks (HetNets) with
limited feedback. Specifically, a base station (BS) coordination set
is formed by using dynamic clustering across the tiers, wherein
the intra-cluster interference is mitigated by using multi-cell zero-
forcing based on limited feedback. Modeling the network based
on stochastic geometry, we derive analytical expressions for the
ergodic spectral efficiency as a function of the system parameters.
Leveraging the obtained expression, we formulate a feedback
allocation problem and obtain a solution to improve the ergodic
spectral efficiency. Simulations show the spectral efficiency im-
provement by using the proposed feedback allocation. One major
finding in the obtained solution is that allocating more feedback
to stronger intra-cluster BSs is efficient.

I. INTRODUCTION

In heterogeneous networks (HetNets), different types of
base stations (BSs) are densely deployed to aggressively reuse
the spectrum. One bottleneck in achieving the full gains of
HetNets is interference. Compared to conventional single-tier
cellular networks, a HetNet has various interference sources
including intra-tier BSs and also cross-tier BSs. As a result,
small network tiers such as femto (whose transmit power is
small) can be vulnerable to the interference. One effective
approach to control interference is multi-cell coordination. The
idea is to create BS coordination sets that share channel state
information at transmitters (CSIT), so that the BSs in the same
set remove the mutual interference. Unfortunately, in practice,
measuring CSI of multiple links increases associated over-
heads. Taking the overheads into account, it is only feasible
to form a finite-size BS coordination set where the out-of-
cluster interference is unmanageable [1]. In addition, accurate
CSIT in the same coordination set cannot be obtained due to
quantization distortion using limited feedback, resulting in that
the intra-cluster interference cannot be removed perfectly. For
this reason, it is important to investigate the performance of

BS coordination with these practical constraints to reveal the
real benefits of BS coordination applied in HetNets.

Random network models based on stochastic geometry
has been widely used because of their analytical tractability.
Beyond traditional non-cooperative cellular networks, there
is prior work that investigated the performance of multi-cell
coordination using random network models. In [1], a user
forms a BS coordination set with the closest BSs, i.e., dynamic
clustering. Once a coordination set is formed, the intra-cluster
interference is mitigated by using coordinated beamforming.
Using this way, the out-of-cluster interference is efficiently
managed. In [2], [3], the performance of joint-transmission
was analyzed in a single-tier and a HetNet, respectively and
revealed that the relative BS geometry has a significant effect
on the performance of joint transmission. In [4], a location-
aware cross-tier cooperation scheme was proposed, where
macro and small BSs can cooperate to avoid the mutual
interference if the user receives large amount of interference
from small cells. In [5], the performance of BS coordination
in spectrum-shared mmWave cellular networks was analyzed
and it was found that BS coordination is useful in mmWave
when sharing the spectrum with high power and dense network
operators. A common assumption in [1]–[5] is that they did
not consider a practical constraint in BS coordination, e.g.,
limited CSIT. Resolving this, [6], [7] assumed that the CSIT
in the same coordination set is obtained via limited feedback,
and analyzed the signal-to-interference plus noise ratio (SINR)
performance as a function of the amount of feedback. In [6],
[7], however, a single-tier cellular network was assumed.

In this paper, we characterize the ergodic spectral efficiency
of a cooperative type of K-tier downlink HetNet with limited
feedback. The locations of each tier’s BS are modeled as
mutually independent Poisson point processes (PPPs). The
BSs form a coordination set by using dynamic clustering,
and mitigate the intra-cluster interference by using multi-cell



ZF based on the limited feedback. Dynamic clustering is
applied across the tiers in the HetNet, so that a coordination
set can include different tiers’ BSs. Unfortunately, analyzing
the performance of the considered BS coordination is not
straightforward since the performance of the cluster can be
different depending on the tiers of the BSs included in the
cluster. For example, assuming that a cluster has L BSs in a
K-tier HetNet, there can be KL possibilities of the cluster’s
configuration. For this reason, we should consider all the
cases to completely characterize the performance of the L-
size cluster. To resolve this analytical complexity, we derive a
lemma showing that the intensity measure of received signal
power in a HetNet can be transformed to the intensity measure
of signal power in a statistically equivalent single-tier network
by rescaling each tier’s density. By exploiting this lemma, we
obtain the SIR complimentary cumulative distribution function
(CCDF) and the ergodic spectral efficiency as a function of
the relative system parameters such as the cluster size, the
transmit power, the biasing factor, the relative signal power of
the intra-cluster BSs, and the used feedback. Assuming that
each intra-cluster BS uses the same number of antennas, we
formulate and solve an optimization problem to allocate the
feedback. Numerical results show the spectral efficiency gains
obtained by using the proposed feedback allocations compared
to the equal feedback partition, where the feedback is equally
allocated to each intra-cluster BS.

II. SYSTEM MODEL

In this section, we introduce the system model assumed in
the paper.

A. Network and Cell Association Model

We consider a K-tier downlink HetNet. Focusing on the
k-th tier for k ∈ K = {1, 2, · · · K}, BSs equipped with Nk

antennas are spatially distributed according to a homogeneous
PPP, Φk =

󰀋
dk
i ∈ R2, i ∈ N

󰀌
with density λk . All the BSs in

the k-th tier use the same transmit power Pk and biasing factor
Sk . Equivalently, the k-th tier network may be represented as
a marked PPP, ΦM

k
= {dk

i , Pk, Sk, Nk, i ∈ N} with density λk
where Pk , Sk , and Nk are the same marks for all the points in
Φk . Without loss of generality, we assume that

󲷳󲷳dk
i

󲷳󲷳 ≤ 󲷳󲷳󲷳dk
j

󲷳󲷳󲷳 if

i < j; thereby dk
1 indicates the nearest BS location to the origin

in the k-th tier. Spatial locations of BSs in different tiers are
assumed to be mutually independent. Using the superposition
property of independent PPPs, we compactly represent the K-
tier HetNet as an unified marked PPP Φ̃M =

󳕐
k∈K Φ

M
k

. We
write Φ̃M = {di, π(i), Pπ(i), Sπ(i), Nπ(i), i ∈ N}, where π(i) ∈ K
is an index function indicating the tier of the corresponding
point di . Assuming that 󰀂di 󰀂 ≤

󲷳󲷳dj

󲷳󲷳 if i < j, di means the i-th
nearest BS location to the origin among all the tiers and π(i)
indicates that the tier of that BS. For example, assuming that
the nearest BS to the origin is in the k-th tier, i.e., d1 = dk

1 ,
then π(1) = k.

Single-antenna users are distributed according to a homoge-
neous PPP, ΦU = {ui, i ∈ N}, which has density λU ≫ λk for
k ∈ K. Since the user density is far larger than the BS density,

we assume that there is no empty cell with high probability,
so that all the cells are occupied. We note that in HetNets, the
BSs can be densely deployed so that empty cells can exist,
which is a topic for future work. We focus on the typical user
located on u1 = 0 per Slivnyak’s theorem [8].

We consider an open access policy wherein a user is able
to communicate with all the BSs in any tier k for k ∈ K. For
cell association, the typical user measures the biased average
received power and associates with the BS whose the measured
power is maximum. For instance, the user associates with the
BS located at dk

1 if k = arg maxk′∈K Pk′Sk′
󲷳󲷳dk′

1
󲷳󲷳−β , where β

is the path-loss exponent. Since we are interested in a HetNet
sharing the spectrum among all the tiers, we assume that the
path-loss exponent is same in all the tiers.

We note that biasing factor Sk is mainly used for offloading
in HetNets [9], [10]. For example, as Sk increases, the number
of users associated with the k-th tier BS also increases, which
relieves the number of users associated with the other tiers.
This allows other tiers to allocate more resources per one
user. Typically, a small network tier such as femto tends to
have large biasing factor to save the resources of the macro
tier. Jointly considering feedback design and offloading will
be interesting future work.

B. Clustering Model

Dynamic BS coordination is used to form a BS cluster. With
the cluster size L, the typical user connects to the L BSs that
provides L strongest biased average received power. Denoting
the BS coordination set C = {i1, ..., iL}, we have

Pπ(i1)Sπ(i1)
󲷳󲷳di1

󲷳󲷳−β ≥ Pπ(i2)Sπ(i2)
󲷳󲷳di2

󲷳󲷳−β ≥
... ≥ Pπ(iL )Sπ(iL )

󲷳󲷳diL

󲷳󲷳−β , (1)

where Pπ(iL )Sπ(iL )
󲷳󲷳diL

󲷳󲷳−β ≥ Pπ(j)Sπ(j)
󲷳󲷳dj

󲷳󲷳−β for all j ∈
N\C. According to the association rule, the typical user
associates with the BS located at di1 and receives the desired
signal from it.

Using the described dynamic clustering, a cooperative re-
gion is mathematically defined by using the notion of the L-th
order weighted Voronoi region, which is an extended version
of the typical Voronoi region. For example, the weighted
Voronoi region corresponding to the coordination set C =
{i1, ..., iL} is defined as

Vw
L (di1, ..., diL )

=
󰀋
d ∈ R2 | ∩L

ℓ=1
󰀋
(Pπ(iℓ )Sπ(iℓ ))

− 1
β
󲷳󲷳d − diℓ

󲷳󲷳
< (Pπ(j)Sπ(j))−

1
β
󲷳󲷳d − dj

󲷳󲷳 󰀌, j 󲧿 {i1, ..., iL}󰀌. (2)

The users located in Vw
L (di1, ..., diL ) are connected to the

coordination set C. Naturally, the typical user is also located
in Vw

L (di1, ..., diL ), i.e., o ∈ Vw
L (di1, ..., diL ). By allocating

the orthogonal time-frequency resources to adjoint Voronoi
regions, a conflict between any two different clusters can be
prevented so that each cluster can serve the connected users
simultaneously. Optimizing the resources allocated to each
Voronoi region is a challenging yet important problem, and



will be interesting future work. We note that in a simple case
K = 1 and L = 2, this problem can be solved by using
cooperative base station coloring [11].

C. Feedback Model

We explain the feedback process focusing on the typical
user. This process is applied to other users equivalently. Let us
assume that the typical user feeds back the channel information
to a BS located at di . First, the typical user estimates the
channel coefficient vector h1,i ∈ CNπ(i) , indicating a channel
coefficient vector from the BS at di to the typical user. To focus
on the effect of limited feedback, we assume that the channel
estimation is perfect. Once the typical user learns the channel
coefficient vector h1,i , it quantizes the channel direction infor-
mation h̃1,i = h1,i/

󲷳󲷳h1,i
󲷳󲷳 by using a predefined quantization

codebook Q. The codebook Q is shared with the BS at di and
the typical user. Assuming that B bits are used for quantizing
h̃1,i , the codebook Q is constructed as Q = {w1, ...,w2B },
where each codeword wj is a Nπ(i)-dimensional unit norm
vector, i.e.,

󲷳󲷳wj

󲷳󲷳 = 1 for j ∈
󰀋
1, ..., 2B

󰀌
. Then, the codeword

that has maximum inner product with h̃1,i is selected, namely

jmax = arg max
j=1,...,2B

󲷲󲷲(h̃1,i)∗wj

󲷲󲷲 . (3)

The chosen index jmax is sent to the BS at di and the BS
recovers the quantized channel direction information from this
index. We denote the quantized channel direction as ĥ1,i =
wjmax .

For analytical tractability, we adopt the quantization cell
approximation [12]–[14] instead of using a specific limited
feedback strategy. This approximates each quantization cell as
a Voronoi region of a spherical cap [15]. In this technique,
assuming that B-bits feedback is used, the area of the quanti-
zation cell is 2−B and this leads to an expression of the CDF
of quantization error

Fsin2θi (x) =
󰀝

2BxNπ(i)−1, 0 ≤ x ≤ δ
1, δ ≤ x , (4)

where sin2θi = 1−
󲷲󲷲(h̃1,i)∗ĥ1,i

󲷲󲷲2 and δ = 2−
B

Nπ(i)−1 . In isotropic
channel distribution, this approximation technique provides an
upper bound of the quantization performance, while the gap
to a lower bound provided by random vector quantization is
reasonably small [14].

D. Performance Metrics

Since cellular systems are usually interference limited [16],
we focus on the SIR. The beamforming vector is designed
as multi-cell ZF to mitigate the intra-cluster interference.
Specifically, the beamforming vector used in the BS at di1 ,
denoted as vi1 , satisfies

(ĥℓ,i1 )∗vi1 = 0,
󲷳󲷳vi1󲷳󲷳 = 1, ℓ ∈ C\1, (5)

where ĥℓ,i1 is the quantized channel coefficient vector from
the BS at di1 to the user ℓ associated with the BS diℓ . The
solution of (5) always exists if L ≤ miniℓ ∈C Nπ(iℓ ). We denote
that the feedback used for iℓ-th BS in the coordination set as

Biℓ . Since the feedback information is only used for managing
the intra-cluster interference, the typical user does not send
the feedback to its associated BS, i.e., Bi1 = 0. The total
feedback used in one coordination set is Btotal =

󳕐L
ℓ=2 Biℓ . For

analytical simplicity, we assume that all the BSs in the same
coordination set C use only L antennas for multi-cell ZF, so
that effectively the typical user has L-dimensional channel to
each intra-cluster BS.

Due to the inaccurate channel feedback, the intra-cluster in-
terference is not perfectly nullified. Considering the remaining
intra-cluster interference, the instantaneous SIR is

SIR =
Pπ(i1)

󲷳󲷳di1

󲷳󲷳−β 󲷲󲷲(h1,i1 )∗vi1
󲷲󲷲2

IIn + IOut
, (6)

where IIn =
󳕐

iℓ ∈C\i1 Pπ(iℓ )
󲷳󲷳diℓ

󲷳󲷳−β 󲷲󲷲(h1,iℓ )∗viℓ
󲷲󲷲2, IOut =󳕐

j∈N\C Pπ(j)
󲷳󲷳dj

󲷳󲷳−β 󲷲󲷲(h1, j)∗vj

󲷲󲷲2, each of which indicates the
remaining intra-cluster interference and the out-of-cluster in-
terference, respectively. Each entry of the channel coefficient
vector h1,i ∈ CL is drawn from independent and identi-
cally distributed (IID) complex Gaussian random variables
CN (0, 1) indicating Rayleigh fading We assume that the
typical user is associated with a BS in the m-th tier, i.e.,
π(i1) = m. Then the CCDF of the conditioned SIR is defined
as

Fc
SIR|m

󰀃
β, λ̄K, N̄K, B̄L, P̄K, S̄K ; γ

󰀄
= P

󰀅
SIR |m ≥ γ

󰀆
, (7)

where a set of the feedback B̄L = {Bi2, ..., BiL }. The ergodic
spectral efficiency is defined as

R |m
󰀃
β, λ̄K, N̄K, B̄L, P̄K, S̄K

󰀄
= E

󰀅
log2

󰀃
1 + SIR |m

󰀄 󰀆
. (8)

III. PERFORMANCE ANALYSIS

In this section, we analyze the performance of BS coordi-
nation in a HetNet as a function of relative system parameters.
In the performance characterization, a challenging part is
obtaining the distribution of the distance to the BS at diL (the
PDF of

󲷳󲷳diL

󲷳󲷳). This indicates the distance of the BS located
furthest from the typical user in the coordination set C. It is
important because it determines a boundary between the intra-
cluster interference and the out-of-cluster interference, which
is necessary for the feedback allocation. The main source
of the difficulty is that each tier uses a different transmit
power and biasing factor, so that the intensity measure of
aggregated signal power of each tier has different features.
Due to this heterogeneity, ordering the BSs according to their
biased power across the tiers is complicated. To resolve this,
we first derive the following lemma that transforms a K-tier
HetNet to a statistically equivalent single-tier network.

Lemma 1 (Transformation lemma). Consider the ℓ-th tier
network for ℓ ∈ K denoted as ΦM

ℓ = {dℓ
i , Pℓ, Sℓ, i ∈ N} with

density λℓ . The intensity measure of biased signal power of ΦM
ℓ

received by the typical user, i.e., PℓSℓ
󲷳󲷳dℓ

i

󲷳󲷳−β , is statistically



equivalent to that of ΦM
ℓ→k
= {dℓ→k

i , Pk, Sk, i ∈ N} with density
λ̃ℓ , provided that the density λ̃ℓ is scaled to

λ̃ℓ = λℓ

󰀕
PℓSℓ
PkSk

󰀖 2
β

. (9)

Proof. By the displacement theorem [8], the intensity measure
of biased signal power of ΦM

ℓ experienced by the typical user
is

Λℓ((0, t]) = E
󰀵󰀹󰀹󰀹󰀹󰀷
󳕗

dℓ
i ∈ΦM

ℓ

1
󰀣 󲷳󲷳dℓ

i

󲷳󲷳β
PℓSℓ

< t

󰀤󰀶󰀺󰀺󰀺󰀺󰀸
(a)
= 2πλℓ

󳔾 (PℓSℓ t)
1
β

0
rdr

= πλℓ (PℓSℓ)2/β t2/β (10)

where (a) follows Campbell’s theorem [8]. Similarly, the
intensity measure of biased signal power of ΦM

ℓ→k
is

Λℓ→k((0, t]) = πλ̃ℓ (PkSk)2/β t2/β . (11)

For this reason, if λ̃ℓ = λℓ
󰀓
PℓSℓ
PkSk

󰀔 2
β

, the two biased signal
power becomes equivalent. This completes the proof. □

The implication of Lemma 1 is that by rescaling each

density as λ̃ℓ = λℓ
󰀓
PℓSℓ
PkSk

󰀔 2
β

for ℓ ∈ K, a K-tier HetNet can
be transformed to a statistically equivalent network where the
transmit power and the biasing factor are same as Pk and Sk .
Leveraging this, we obtain the PDF of

󲷳󲷳diL

󲷳󲷳 in the following
lemma.

Lemma 2. Assume that the furthest BS of the coordination
set C belongs to the k-th tier, i.e., π(iL) = k. Then the PDF
of the distance

󲷳󲷳diL

󲷳󲷳 is

f󰀂diL 󰀂 (r)

=

2
󰀕
π
󳕐K

i=1 λi

󰀓
PiSi
PkSk

󰀔2/β
r2
󰀖L

rΓ(L) exp

󰀣
−π

K󳕗
i=1
λi

󰀕
PiSi
PkSk

󰀖2/β
r2

󰀤
.

(12)

Proof. We first transform a K-tier HetNet to a single-tier
network whose transmit power and biasing factor are equal to
Pk and Sk . By exploiting Lemma 1, we rescale the density
as λℓ ((PℓSℓ) /(PkSk))2/β . By doing this, we transform the
ℓ-th tier network to ΦM

ℓ→k
= {dℓ→k

i , Pk, Sk, i ∈ N} with
density λℓ ((PℓSℓ) /(PkSk))2/β . Note that the original ℓ-th tier
network ΦM

ℓ and the transformed ℓ-th tier network ΦM
ℓ→k

are
statistically equivalent as shown in Lemma 1. Then, by the
superposition theorem [8], the aggregated network

󳕐
ℓ∈K Φ

M
ℓ→k

is a homogeneous network with transmit power Pk , biasing

factor Sk , and density
󳕐K

i=1 λi

󰀓
PiSi
PkSk

󰀔2/β
. Since

󳕐
ℓ∈K Φ

M
ℓ→k

is
a homogeneous network, we can use the conventional PDF of

the distance presented in [17]. In a homogeneous PPP with
density λ, the PDF of the L-th closest point to the origin is

f (r) = 2(λπr2)L
rΓ (L) e−λπr

2
. (13)

Plugging
󳕐K

i=1 λi

󰀓
PiSi
PkSk

󰀔2/β
into λ completes the proof.

□

Next, we define the intra-cluster BS geometry parame-
ter δ1,ℓ , ℓ ∈ {2, ..., L} to characterize the relative intra-
cluster interference power. We define the geometric param-
eter δ1,ℓ as the ratio between the path-loss of the home
BS and the ℓ-th closest BS for ℓ ∈ {2, ..., L}, i.e., δ1,ℓ =󰀓
Pπ(iℓ )

󲷳󲷳diℓ

󲷳󲷳−β󰀔 /󰀓Pπ(i1)
󲷳󲷳di1

󲷳󲷳−β󰀔 . We note that the geometric
parameter δ1,ℓ is originally introduced in [1], and is gener-
alized for HetNets in our work. As explained in [1], δ1,ℓ
measures the relative intra-cluster interference power coming
from diℓ , so that a large value of δ1,ℓ means large amount of
intra-cluster interference. When each biasing factor is same,
i.e., S1 = ... = SK , δ1,ℓ1 > δ1,ℓ2 if ℓ1 < ℓ2 by the definition.
For general biasing factors, however, this is not necessarily
guaranteed. We denote a set of the geometric parameters as
δ̄1,L = {δ1,2, ..., δ1,L}, and analyze the performance under the
assumption that the relative intra-cluster interference power is
fixed, while out-of-cluster interference is random as in [1].

By using Lemma 2 and the intra-cluster BS geometry, we
derive the following theorem that presents the SIR CCDF.

Theorem 1. Assume that δ̄1,L , B̄L is given, and also π(i1) = m,
π(iL) = k. Then, the conditioned SIR CCDF of a K-tier HetNet
is

Fc
SIR|m

󰀃
β, λ̄K, N̄K, B̄L, P̄K, S̄K, δ̄1,L; γ

󰀄
=

󳕘
iℓ ∈C\i1

󳔑󳔕
󳔓

1

1 + γδ1,ℓ2−
Biℓ
L−1

󳔒󳔖
󳔔
·

󳔑󳔕󳔕
󳔓

󳕐K
i=1 λi

󰀓
PiSi
PkSk

󰀔2/β

󳕐K
i=1 λi

󰀓
PiSi
PkSk

󰀔2/β 󰁫
1 +D

󰀓
γδ1,L ·

󰀓
Sk

Si

󰀔
, β

󰀔󰁬 󳔒󳔖󳔖
󳔔

L

, (14)

where

D(x, y) = 2x
y − 2 2F1

󰀕
1, 1 − 2

y
, 2 − 2

y
,−x

󰀖
, (15)

with 2F1 (·, ·, ·, ·) is the Gaussian hypergeometric function.

Proof. We omit this due to space limitation. Please see the
proof of Theorem 2 in [18]. □

For the perfect CSIT case, the conditioned SIR CCDF is
obtained by Biℓ → ∞ for iℓ ∈ C.

We summarize the conditions presented in Theorem 1. The
SIR CCDF is derived under the conditions that (i) π(i1) is
fixed as m, (ii) π(iL) is fixed as k, and (iii) δ̄1,L is fixed, so
that the relative intra-cluster interference power is given. Now
the ergodic spectral efficiency is derived as an integral form
in Corollary 1.



Corollary 1. Assume that δ̄1,L , B̄L is given and π(iL) = k.
Then, the ergodic spectral efficiency of a K-tier HetNet is

R |m
󰀃
β, λ̄K, N̄K, B̄L, P̄K, S̄K, δ̄1,L

󰀄
=

log2(e)
󳔾 ∞

0

1
1 + z

󳕘
iℓ ∈C\i1

󳔑󳔕
󳔓

1

1 + zδ1,ℓ2−
Biℓ
L−1

󳔒󳔖
󳔔
·

󳔑󳔕󳔕
󳔓

󳕐K
i=1 λi

󰀓
PiSi
PkSk

󰀔2/β

󳕐K
i=1 λi

󰀓
PiSi
PkSk

󰀔2/β 󰁫
1 +D

󰀓
zδ1,L ·

󰀓
Sk

Si

󰀔
, β

󰀔󰁬 󳔒󳔖󳔖
󳔔

L

dz, (16)

where D(x, y) is defined as (15).

Proof. See the proof of Corollary 2 in [18]. □

IV. FEEDBACK ALLOCATION

In this section, we determine Biℓ for ℓ ∈ {2, ..., L} to
maximize the ergodic spectral efficiency (16).

Proposition 1. The feedback partition that maximizes the
ergodic spectral efficiency R |m

󰀃
β, λ̄K, N̄K, B̄L, P̄K, S̄K, δ̄1,L

󰀄
is

B󰂏
iℓ
=

Btotal
L − 1

+ (L − 1) log2

󳔑󳔕󳔕󳔕
󳔓

δ1,ℓ󰀓󳕑L
ℓ=2 δ1,ℓ

󰀔 1
L−1

󳔒󳔖󳔖󳔖
󳔔
. (17)

Proof. We first formulate the optimization problem for max-
imizing the SIR CCDF (14). Since the Laplace transform of
the out-of-cluster interference is independent to the feedback,
we can treat this as a constant and omit it in the problem.
Then the problem is

maximize
Biℓ

∈Z+,ℓ∈{2,...,L }

󳕘
iℓ ∈C\i1

󳔑󳔕
󳔓

1

1 + γδ1,ℓ2−
Biℓ
L−1

󳔒󳔖
󳔔
,

subject to
L󳕗

ℓ=2
Biℓ ≤ Btotal. (18)

Since (18) is integer programming which is hard to solve, we
first relax the feasible field of Bℓ to R+ and apply the floor
function to the solution later. We rewrite (18) as

minimize
Biℓ

∈R+,ℓ∈{2,...,L }

L󳕗
ℓ=2

ln
󰀕
1 + γδ1,ℓ2−

Biℓ
L−1

󰀖
,

subject to
L󳕗

ℓ=2
Biℓ ≤ Btotal. (19)

Since the function f (B) = ln(1 + C2− B
L−1 ) is monotonically

increasing function and convex for any positive C, we apply
a convex optimization technique to solve (19). At first, the
corresponding Lagrangian function of the objective function
in (19) is

L(B̄L, µ) =
L󳕗

ℓ=2
ln

󰀕
1 + γδ1,ℓ2−

Biℓ
L−1

󰀖
+ µ

󰀣
L󳕗

ℓ=2
Biℓ − Btotal

󰀤
,

(20)

where µ denotes the Lagrangian multiplier. Solving the KKT
conditions for (20) leads to

B󰂏
iℓ
=

Btotal
L − 1

+ (L − 1) log2

󳔑󳔕󳔕󳔕
󳔓

δ1,ℓ󰀓󳕑L
ℓ=2 δ1,ℓ

󰀔 1
L−1

󳔒󳔖󳔖󳔖
󳔔
. (21)

Since the obtained feedback partition (21) is not a function
of a specific threshold γ, this is optimal for any threshold,
which means it is optimal for maximizing the ergodic spectral
efficiency. This completes the proof. □

Remark 1. Since the feedback has an positive integer value in
practice, we have to perform further processes to the solution
B󰂏
iℓ

. We introduce two possible methods. First, we can use
the round function ⌊B󰂏

iℓ
⌉. With the round function, however,

it is possible that
󳕐L

ℓ=2⌊B󰂏
iℓ
⌉ ≥ Btotal, therefore the manual

feedback adjustment is necessary after applying the round
function. Second, we can iteratively add a feedback bit to
each intra-cluster BS. For example, starting with the floored
solution ⌊B󰂏

iℓ
⌋, we iteratively find which BS is the best choice

for adding a remaining feedback bit by computing the sum
ergodic spectral efficiency. Subsequently, we add a feedback
bit to the selected tier. We repeat this until the used feedback
equals to Btotal. Due to space limitation we do not explore
these methods in this paper.

Remark 2. Proposition 1 implies that the feedback is allo-
cated proportional to the intra-cluster interference power, i.e.,
Biℓ ∝ δ1,ℓ . Note that this is similar to the previous results
[6], in which adaptive feedback allocation is proposed in a
homogeneous cooperative network for minimizing the rate gap
to perfect CSIT case. One noticeable point is that Proposition
1 only depends on relative intra-cluster BS power while it does
not change depending on instantaneous SIR.

Remark 3. Since we only use a part of the antennas, our
result may indicate a lower bound on the spectral efficiency
that can be achieved by using the full antennas. Using the
full antennas, the BSs in the coordination set can mitigate the
intra-cluster interference and also increase the desired signal
power by coordinated beamforming. In this case, B1 > 0 unlike
the case that we consider in this paper. For this reason, in
the full antenna case, feedback allocation should be different
from Proposition 1. This case is covered in [18] in detail.
As observed in [18], the full antenna increases the spectral
efficiency compared to the reduced antenna case.

V. NUMERICAL RESULTS

In this section, we demonstrate the proposed feedback al-
location with numerical simulations. Specifically, we compare
the ergodic spectral efficiency of Proposition 1 and the baseline
method in Fig. 1, whose caption includes the simulation
setting. The baseline method is the equal partition, where the
feedback is equally partitioned to each of intra-cluster BS, i.e.,
Bi2 = .. = BiL = Btotal/(L − 1). In Fig. 1-(a), we have 38.2%
spectral efficiency gain by using Proposition 1 at Btotal = 10,
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Fig. 1. The ergodic spectral efficiency comparison in a cooperative HetNet.
A 3-tier HetNet is assumed. The simulation parameters are as follows: In (a),
N̄K = {L, L, L }, L = 4, λ̄K = {1λref, 10λref, 20λref } where λref = 10−4/π,
P̄K = {20, 15, 10}dBm, S̄K = {0, 3, 5}dB, δ̄1,L = {0.1, 0.01, 0.001},
π(i1) = 1, π(iL ) = 2, and β = 4. In (b), the other parameters are same
except that L = 5 and δ̄1,L = {0.2, 0.04, 0.008, 0.0016}.

and in Fig. 1-(b), we have 56.2% gain at Btotal = 10. We
observe that Proposition 1 provides more gains when 1)
L increases or 2) Btotal decreases. This is because, when
L increases or Btotal decreases, the equal partition allocates
smaller amount of feedback to the strong BSs whose δ1,ℓ is
large. Then, due to lack of sufficient feedback, the interference
from those strong BSs is not mitigated well, resulting in
significant spectral efficient loss. On the contrary, by using
Proposition 1, the appropriate amount of feedback is allocated
to each BS proportional to δ1,ℓ , so that considerable spectral
efficiency gain is obtained even when L increases or Btotal
decreases.

VI. CONCLUSIONS

In this paper, we studied BS coordination in HetNets and
proposed feedback allocation methods to improve the spectral
efficiency. We considered that the BSs form a coordination

set using dynamic clustering applied across the tiers. Using
stochastic geometry, we characterized the SIR CCDF and the
ergodic spectral efficiency mainly as functions of the feedback
and other relevant system parameters. To do this, we derived
a lemma that transforms a HetNet to a statistically equivalent
single-tier network where characterizing the performance of
BS coordination is much simple. Leveraging the obtained
expressions, we formulated a feedback allocate problem and
proposed a solution. The simulation results showed that the
proposed feedback partitions bring gains in the spectral effi-
ciency compared to the equal partition. One observation in the
proposed feedback allocation is that using more feedback to
strong BSs is efficient for improving the spectral efficiency.
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