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Abstract—The characterization of topological uncertainty in
wireless networks using the formalism of graph entropy has
received interest in the spatial networks community. In this paper,
we develop lower bounds on the entropy of a wireless network
by conditioning on potential network observables. Two approaches
are considered: 1) conditioning on subgraphs, and 2) conditioning
on node positions. The first approach is shown to yield a relatively
tight bound on the network entropy. The second yields a loose
bound, in general, but it provides insight into the dependence
between node positions (modelled using a homogenous binomial
point process in this work) and the network topology.

Index Terms—Graph entropy, random geometric graphs, con-
ditional entropy, network topology.

I. INTRODUCTION

Uncertainty is pervasive in modern wireless networks. The
sources of this uncertainty range from the humans that interact
with the networks and the locations of the nodes in space down
to the transmission protocols and the underlying scattering
processes that affect signal propagation. Over the past decade,
tremendous progress has been made towards characterizing
how uncertain device locations (transmit/receive pairs as well
as interferers) and random propagation conditions affect the
distribution of pairwise node connectivity [1], [2]. However,
little has been done to develop an understanding of how spatial
randomness influences uncertainty in the topological sense.

The topological structure of networks has been studied for
many years in various scientific contexts through the lens of
graph entropy [3]. This formalism is deeply rooted in statistical
physics and information theory, and it allows one to quantita-
tively characterize the uncertainty or inherent information con-
tent of systems that can be described by a graphical model [4]–
[9]. Applications of entropy-based methods to the study of
networked systems are abundant and include problems related
to molecular structure classification [10], social networks [11],
[12], data compression [13], and quantum entanglement [14],
[15]. With regard to communication networks, graph entropy
has been used to quantify node and route stability [16] with
the aim of improving link prediction [17] and routing proto-
cols [18], [19]. Topological uncertainty in dynamic mobile ad
hoc networks was investigated in [20] from a network layer
perspective, and [21] treated self-organization in networks using
a basic graph entropy framework. Crucially, those investigations
did not facilitate quantitative analysis of wireless systems that

experience fading and interference, nor did they account for the
spatial embedding of the network.

Very recently, an analytical approach for studying topological
uncertainty in wireless networks was proposed in [22]–[24].
This initial work was focused on analyzing network entropy
through an upper bound based on the assumption that pairwise
connections between devices are statistically independent. In
this work, we leverage two different conditioning strategies to
obtain lower bounds on network entropy. To this end, we offer
the following contributions to the body of knowledge on the
subject of wireless network entropy:
• we provide two tight lower bounds on network entropy by

conditioning on subgraphs of the network;
• we present an exact analytical framework for studying

the network entropy conditioned on the node positions in
space;

• we further give a lower bound for the entropy conditioned
on positions, which can be useful for estimating network
entropy in practice.

The remainder of the paper is organized as follows. In the
next section, we give details of the model and assumptions used
in this study. In section III, we briefly review recent results
on network entropy, before moving on to discuss conditional
entropy in section IV. We then discuss the implications of
the conditional entropy framework and provide conclusions in
section V.

II. MODEL AND ASSUMPTIONS

We model a wireless network as a random geometric graph
(RGG) with a probabilistic pair connection rule [25], [26].
Consider a set Vn = {1, . . . , n} of n nodes that are randomly
located in a space K ⊂ Rd of finite volume and diameter
D := supu,v∈K ‖u−v‖. We assume that the locations {Zi}i∈Vn
of the nodes are independently and uniformly distributed in K.
The existence of an (undirected) edge between nodes i and
j depends on the Euclidean distance between the two nodes
and is indicated by the binary random variable Xij being one.
Specifically, given the node locations, the variables {Xij} are
independent and, each edge (i, j) exists with probability

P(Xij = 1|zi, zj) = p(‖zi − zj‖), (1)

where p : [0,∞) → [0, 1] is the pair connection function.
For example, in the hard disk model, p(·) is an indicator



function that equals one when its argument is less than r0

and zero otherwise, where r0 denotes the maximum connection
range. We define the binary vector Xn to include all the
n(n − 1)/2 edge variables, i.e., Xn = (Xij)i<j . The RGG
Gn := G(Vn, En) with edge set En = {(i, j) | Xij = 1} is
distributed in the set Gn of all 2n(n−1)/2 possible graphs.

III. NETWORK ENTROPY: A PRIMER

The topic of wireless network entropy is fairly new. Thus,
a brief overview of the fundamental theory is provided in
this section for the convenience of the reader and in order to
provide context for the main contribution of the paper, which
is detailed in section IV. For further details of recent results
with application to wireless networks, the interested reader may
wish to consult [22]–[24], [27].

Wireless network entropy is typically defined as the Shannon
entropy of the RGG Gn, which models the network topology.
We write the entropy as

H(Gn) = −E[log2 P(Gn)]. (2)

Characterized in this way, network entropy can be interpreted as
the minimum description length of the network topology (i.e.,
Kolmogorov complexity) or the logarithm of the number of
typical networks [8]1. The distribution of Gn is determined by
both the distribution of locations {Zi}i∈Vn and the probabilistic
connection model specified by p(·). The graph Gn is uniquely
determined by Xn, which has a multivariate Bernoulli distribu-
tion. Therefore, we require the pmf fXn

(xn) := P(Xn = xn),
for each xn ∈ {0, 1}n(n−1)/2. The correspondence between
Gn and Xn suggests the more explicit formula

H(Gn) = H(Xn)

= −
∑

xn∈{0,1}n(n−1)/2

fXn
(xn) log2 fXn

(xn). (3)

Since the conditional probability of edge existence depends
on distance, it is more convenient to work with inter-node
distances instead of node locations. Let Rn := (Rij)i<j

denote the random vector collecting the pair distances Rij :=
‖Zi − Zj‖, and let fRn : [0, D]n(n−1)/2 → [0,∞) be its pdf2.
We now write

fXn(xn)

=

∫
R
fRn

(rn)

n∏
i,j=1
i<j

pxij (rij) [1− p(rij)]1−xij drij . (4)

where the integration domain is R = [0, D]n(n−1)/2. The
distribution of Xn is symmetric, since the node locations are
identically distributed and the pair connection function is the
same for all edges.

1In fact, this interpretation is intuitive, but only a conjecture in the case of
spatial networks confined within a finite domain, such as wireless networks,
where the lack of stationarity must be considered to develop a rigorous result.
Such a study has not yet been reported in the literature.

2We consider a simple point process to model the node locations in this
work. Hence, the pdf fRn exists.

According to (3) and (4), the calculation of the graph entropy
requires the joint pdf of pair distances fRn . Obtaining the joint
density is very challenging for n > 2, and thus the entropy of
Gn cannot be calculated easily in general. To make progress,
a simple independence assumption was invoked in [22] to
develop a simple bound on entropy

H(Gn) ≤
(
n

2

)
H(G2) =

(
n

2

)
H2(p) (5)

where

H2(x) = −x log2 x− (1− x) log2(1− x) (6)

is the binary entropy function, and

p = E[p(‖Z1 − Z2‖)] (7)

is the average probability that two nodes located at the random
positions Z1 and Z2 are connected.

The upper bound (5) is obtained by assuming that {Xij} (or,
equivalently, the inter-node distances {Rij}) are independent.
Clearly, this is not the case, and hence the bound is potentially
loose. The recent work [27] obtains a series of tighter upper
bounds on graph entropy by aiming to preserve the dependency
between inter-node distances. To that end, the graph entropy is
related to the entropy of graphs with smaller numbers of nodes,
and it is established that the entropy of an RGG normalized by
the number of potential edges decreases with the number of
nodes, i.e.,

H(Gn)(
n
2

) ≤ H(Gn−1)(
n−1

2

) ≤ . . . ≤ H(G3)

3
≤ H(G2). (8)

In [27], the joint pdf of inter-node distances is obtained for n =
3 nodes randomly located in a disk; this enables the evaluation
of H(G3), which can be used as a tighter upper bound, i.e.,
H(Gn) ≤

(
n
2

)
1
3H(G3) ≤

(
n
2

)
H(G2).

A large number of open problems remain on the topic of
wireless network entropy. A discussion of these is included in
section V for the reader’s interest.

IV. CONDITIONAL ENTROPY OF WIRELESS NETWORKS

While the fundamental study of RGG entropy, as described
in the previous section, is a worthwhile pursuit, it is natural
to assume that network designers may, in some cases, have
knowledge of particular network properties a priori. This leads
us to consider the notion of conditional RGG entropy. The
sources of randomness in the networks under consideration are
plentiful. Hence, we can extract different insights by condition-
ing on different network features. We explore two approaches:
1) conditioning on subgraphs and 2) conditioning on the node
positions. The first approach yields useful lower bounds on the
entropy of Gn, while the second provides information about the
mutual information between the node locations and the network
topology.



A. Graph Entropy Conditioned on Subgraphs

The following scenario might be of interest. Let us imagine
that information about the local topology (i.e., incident edges)
of a subset of the nodes was available. For example, the network
designer could interrogate a random subset of the nodes about
which nodes they can connect to. In this case, how much
uncertainty about the topology of the whole network is still
left? The answer is given by the entropy conditioned on the
knowledge about whether some of the n(n − 1)/2 potential
edges exist or not.

To be more specific, let us denote a subset of the binary
edge variables by XS = (Xij)ij∈S , where S ⊂ {ij|i, j ∈
Vn, i < j}; by XS̄ we denote the rest of the edge variables,
i.e., those with indices in S̄, the complement of S. Assuming
XS̄ is observed, the relevant conditional entropy is given by

H(XS |XS̄)

= −
∑

xn∈{0,1}n(n−1)/2

fXn(xn) log2 fXS |XS̄ (xS |xS̄). (9)

Since partial information reduces uncertainty, conditional
entropy gives a lower bound on the graph entropy, i.e.,
H(Gn) = H(Xn) ≥ H(XS |XS̄) for any choice of S. This
bound tends to be rather loose in general. In the following, we
provide tighter lower bounds on H(Gn) by applying generic
inequalities for the joint entropy of a collection of random
variables [28] and exploiting the symmetry of the system.

For illustration, we first consider the case when n = 3. We
consider a collection C of subsets of {ij|i, j ∈ Vn, i < j}.
Choosing C = {{12}, {13}, {23}} such that each pair index
has multiplicity one with respect to C, we have that [28]

H(X3) ≥
∑
S∈C

H(XS |XS̄) = 3H(X12|X13, X23)

where the last equality is due to symmetry. The inequality is
equivalent to

H(G3) ≥ 3H(G2|Ĝ3), (10)

where Ĝ3 stands for the “broken triangle” graph (has only
two potential edges), i.e., Ĝ3 := G(V3, Ê3) with Ê3 :=
{(i, j) ∈ {(1, 3), (2, 3)}|Xij = 1}. Similarly, by considering
C = {{12, 13}, {12, 23}, {13, 23}} (each pair index now has
multiplicity two in C), we obtain

H(G3) ≥ 1

2

∑
S∈C

H(XS |XS̄) =
3

2
H(Ĝ3|G2). (11)

Using the joint pdf fR3
calculated in [27], we can evaluate

the pmf fX3
given by (4), and then obtain the conditional

probabilities required to compute the conditional entropies
involved in the lower bounds (10) and (11). Fig. 1 shows the
entropy of a three-node graph, the conditional entropies based
on (9) and the two lower bounds (10) and (11) as functions
of the maximum connection range. The hard disk connection
model is assumed, i.e., p(r) = 1 if r ≤ r0 and p(r) = 0
otherwise.

We now generalize for any n ≥ 3. We construct the
collection C such that each set of pair indices included in C
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Fig. 1. Entropy of an RGG, conditional entropies, and lower bounds; the n = 3
nodes are randomly located inside a circle with diameter one; the maximum
connection range is r0.

corresponds to one of the
(
n
m

)
subgraphs determined by m

nodes, where 2 ≤ m < n.
Proposition 1: Let Gn be a random graph, where n ≥ 3.

The entropy of Gn satisfies the inequality

H(Gn) ≥ n(n− 1)

m(m− 1)
H(Gm|G+

n−m) (12)

for n > m ≥ 2, where G+
n−m represents the (n − m)-node

complement of Gm augmented by the edges that bridge the
two subgraphs3.

We obtain a similar result for the alternative decomposition
in which each set of pair indices included in C corresponds to
one of the

(
n
m

)
subgraphs determined by m nodes augmented

by the bridging links to the remaining n−m nodes.
Proposition 2: Let Gn be a random graph, where n ≥ 3.

The entropy of Gn satisfies the inequality

H(Gn) ≥ n(n− 1)

m(2n−m− 1)
H(G+

m|Gn−m) (13)

for n > m ≥ 1.
The proof of each proposition follows from a combinatorial

argument, application of the generic lower bound developed
in [28], and the system’s symmetry.

B. Graph Entropy Conditioned on Node Positions

The upper bound of (5) provides some useful insight into
how complexity scales in wireless networks as the number
of devices increases or the physical parameters (e.g., transmit
power) of the network change [22]–[24]. However, the bound is
only relevant to the case where knowledge of the node positions

3Note that in (10) and (11), we used the notation Ĝ3 to denote the single-
node complement of G2 augmented by the bridging edges. Here, we choose
the notation G+

n−m since it is slightly more general. Re-expressing the broken
triangle graph in this more general notation gives Ĝ3 ≡ G+

1 .



is unavailable. If node positions were static (and known a pri-
ori), the task of quantifying the network entropy would be made
easier, since all edges would be conditionally independent4.
Indeed, the conditional entropy of general spatial networks
was investigated under this assumption in [29]. On the other
hand, it is more practical in wireless applications to assume that
node locations may be static for a period of time before they
change, thus altering the connectivity of the network. Such an
assumption gives rise to a different formulation of conditional
network entropy to that presented in [29], one that is more
familiar to information and communication theorists.

Specifically, let Φn ⊂ K denote a homogeneous binomial
point process that describes the node positions in K, i.e., there
is a one-to-one correspondence between each point in Φn and
each node in Vn. We formulate the conditional entropy of the
network topology given the node positions as

H(Gn|Φn) = H(Gn|Z1, . . . , Zn) (14)

where the expectation is taken with respect to the node positions
{Zi}. Since connectivity in a homogeneous medium depends
only on the distance between the nodes, we can express the
conditional entropy in the following more convenient form:

H(Gn|Φn) = H(Gn|Rn). (15)

The edge states in the network are statistically independent
given the pairwise distances {Rij}. Hence, (15) simplifies to

H(Gn|Φn) =
∑
i<j

H(Xij |Rij) =

(
n

2

)
E[H2(p(R))]. (16)

Eq. (16) is a functional of the pair distance pdf fR(·) and the
pair connection function p(·). Analytic expressions for fR(·)
are known for spherically symmetric geometries [30], regular
polygons [31], and various other elementary domains. An
appropriate choice for the connection function follows from the
application under consideration. Note, however, that choosing
p(·) according to a hard connection model, as was done in
the previous section, will lead to H(Gn|Φn) = 0, since node
locations exactly describe connectivity in this scenario. Instead,
we might choose the canonical wireless connection function
given by

p(r) = e−(r/r0)η (17)

where, in this context, r0 signifies the typical connection range
(rather than the maximum), which encompasses physical system
characteristics, such as the transmit power, wavelength, and
the noise figure [22], [23], [25]. The parameter η is the path
loss exponent in this model, and thus it typically takes on
values in the range 2 ≤ η ≤ 5; mathematically, it simply
controls the stretch of the decaying exponential, and by letting
η →∞, we recover the hard connection model. In Fig. 2, the
conditional entropy of a ten-node RGG is plotted for circular
and square bounding domains of unit area for the cases where
η = 2, 3, 4. The reduction in entropy for increasing “hardness”

4The underlying assumption here is that the fading processes that give rise
to uncertainty would be independent for each link.
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Fig. 2. Conditional entropy of a ten-node RGG with canonical wireless pair
connection function in two dimensions; confining geometries: circle of radius
1/
√
π and square of unit side length; path loss exponent values are η = 2, 3, 4;

maximum possible entropy is 45 bits.

in the connection function is apparent in the figure. Also, it
is observed that the exact geometry of the bounding region
does not significantly affect the entropy in this two-dimensional
example.

In general, it may be useful to estimate the conditional
network entropy using only simple statistics of p(·). To this
end, we present the following result that gives a lower bound
on H(Gn|Φn).

Proposition 3: Define the qth moment of the pair connection
function as

µq =

∫ D

0

fR(r)p(r)q dr, q ≥ 0 (18)

where fR(r) is the pair distance pdf for two points in Φn. The
entropy of the RGG Gn conditioned on Φn satisfies

H(Gn|Φn) ≥ 2n(n− 1)(µ1 − µ2) ≥ 0. (19)

Proof: See the appendix.
Fig. 3 illustrates the bound of Proposition 3 for the canonical

wireless pair connection function and η = 2, 3, 4. The bound
is observed to be a relatively good approximation to the actual
entropy.

V. DISCUSSION AND CONCLUSIONS

The two approaches to characterizing network entropy de-
tailed above yield interesting observations and conclusions.
Here, we attempt to summarize some of these and to provide
motivation for developing this interesting field of spatial net-
work research further.

Conditioning on subgraphs appears to give tight bounds on
the network entropy H(Gn), as illustrated in section IV-B.
Unfortunately, it is difficult to calculate these bounds since they
rely on knowledge of the joint pdf fRn(·), about which little is
known in general. Nevertheless, Propositions 1 and 2 provide an
important first step to uncovering a more tractable and scalable
way to estimate the network entropy.
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Fig. 3. Conditional entropy of a ten-node RGG with canonical wireless
pair connection function in a circle of radius 1/

√
π; the lower bound of

Proposition 3 is shown; path loss exponent values are η = 2, 3, 4.

In contrast, conditioning on node positions does not neces-
sarily yield a tight bound on the entropy H(Gn) in general,
since relatively hard connection rules (e.g., large η in (17))
lead to small conditional entropy. Yet, we are able to derive
scaling results through this formalism when the connection
rule is probabilistic. Conditioning on Φn clearly illustrates the
O(n2) scaling behavior of network entropy5, since(

n

2

)
E[H2(p(R))] = H(Gn|Φn) ≤ H(Gn) ≤

(
n

2

)
H2(p).

(20)
Pair connection functions that are relatively constant over the
interval (0, D) lead to fairly tight bounds. Intuitively, one can
explain this behavior by observing that a constant connection
function implies that connectivity does not depend on the
spatial embedding, and hence H(Gn|Φn) = H(Gn).

A number of further open questions exist. For example,
(how) can we calculate or simulate entropy efficiently in large
networks? Can this theory be generalized to other entropy
measures (e.g., Rényi entropy), and what purpose would this
generalization serve in a practical context? Can we characterize
the dynamics of a temporal network by calculating the entropy
rate? Can we use entropy to develop a cost or utility in order
to enhance network performance? We hope the contributions
given in this paper will motivate some readers to search for
answers to some of these questions in their own fields of study.

APPENDIX

PROOF OF PROPOSITION 3

The proof relies on the following lemma.
Lemma 1: The binary entropy function is lower bounded by

H2(x) ≥ 4x(1− x), 0 ≤ x ≤ 1. (21)

Proof: It can be shown that h(x) = H2(x)/(x(1 − x))
is a decreasing function of x in the interval (0, 1/2). Hence,

5This scaling can also be conjectured from Proposition 1 by letting m = 2.

h(x) ≥ 4 on the interval. The result follows from the symmetry
of h(x) for x ∈ (0, 1).

Now we have

E[H2(p(R))] =

∫ D

0

fR(r)H2(p(r)) dr

≥ 4

∫ D

0

fR(r)p(r)(1− p(r)) dr

= 4(µ1 − µ2). (22)

The inequalities stated in the proposition follow from (16) and
by recognizing that µa ≥ µb for 0 ≤ a ≤ b, with equality
occurring when p(·) models the hard connection rule.
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