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Abstract—We present results from an extensive simulation
study, conducted to understand the properties of coverage and
percolation in infrastructure-based wireless networks that com-
prise sink and relay nodes. Specifically, we compute vacancy
(complement of coverage) and percolation probabilities as func-
tions of sink and relay node densities. Further, we identify that
the vacancy probability in an alternate model that is motivated
from traditional coverage processes, referred to as independent-
disc model, constitutes a lower bound for the vacancy in the
original infrastructure-based model. For the case of percolation,
we identify a threshold boundary (in the space of sink-relay
densities pair) where the percolation probability transits rapidly
from O to 1 (i.e., from no-percolation to full-percolation).

I. INTRODUCTION

Coverage and long-distance connectivity (percolation) cru-
cially determine the QoS (Quality of Service) of a wireless
network. The properties of these quantities (i.e., coverage and
percolation) has been well understood for all-infrastructure
networks (e.g., cellular, WiFi) where every node in the network
is connected to an infrastructure backhaul [1]—[3]. For the case
of coverage, its properties are also known for infrastructure-
less networks where infrastructure support is available only
at the edge of the network (e.g., ad hoc networks, wireless
sensor networks) [4]. However, the behavior of coverage
and percolation are less understood for infrastructure-based
networks which generalizes the infrastructure-less setting by
providing more infrastructure support into the core of network;
alternatively, an infrastructure-based network can be thought
as generalizing the all-infrastructure setting by incorporating
relay nodes that can extend the network coverage by providing
multi-hop paths to the infrastructure nodes.

Although there is work in the literature on infrastructure-
based networks, this is however limited either to a one-
dimensional setting (see [5] and references therein), or con-
sider a restricted notion of connectivity model known as
the Poisson AB model [6], [7]. In this work we conduct
extensive simulations to understand the properties of coverage
and percolation in infrastructure-based networks. Through our
study we derive some valuable insights about the behavior of
these quantities. Specifically, our main contributions are:

o Coverage: We obtain a lower-bound on vacancy by com-
paring our model with a traditional coverage processes
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model. We compute vacancies for other generalizations
such as the hop-constrained model and the SINR model.
o Percolation: We generalize the algorithm in [8] to
compute percolation probability for infrastructure-based
networks. We identify a threshold boundary where rapid
transition from no-percolation to full-percolation occurs.

The paper is outlined as follows. In Section II we discuss
the considered model in detail. Coverage properties are studied
in Section III, while the percolation properties are presented
in Section IV. We finally draw our conclusions in Section V.

II. SYSTEM MODEL

We consider a wireless system comprising two types
of nodes, namely, sinks and relays (infrastructure and
infrastructure-less nodes, respectively). The sink nodes are
assumed to be connected to an infrastructure backhaul, while
the relay nodes are used to extend the network coverage by
providing multi-hop paths to the sink nodes. The sink and relay
nodes are distributed in A; = [—%,%]2 C R? according
to independent Poisson processes of intensities A\g and g,
respectively. Note that, in case L = oo we simply have
As = B2 Let A = \g + A denote the aggregate node
intensity while we use S = Ag/\ to represent the fraction of
sink nodes in the network. Let r denote the transmission range
of the nodes, both sink and relays. Thus, two nodes within
a distance of r from each other can communicate directly,
while nodes that are farther than distance r can (possibly)
communicate via. multiple hops. In general, we introduce the
following notion of connectivity (where, for simplicity, we
refer to a node located at z € Ay, as node-x).

Definition 1 (h-connectivity): Nodes (or locations) x and
y are said to be h-connected (h > 0) if there exists nodes
(relay or sink) z1,--- , zp, not necessarily distinct, such that
[z—z || <r ly—zn || <7 and || zg — 2o || <7
for ¢ = 2,--- ,h. In particular,  and y are O-connected if
|x —y| < r. We simply say x and y are connected if they are
h-connected for some h > 0.

Thus, x and y are h-connected if they can communicate by
multi-hopping via. at most h other nodes in the network. Also,
note that since it is not necessary for the nodes z1, 29, - - , 2,
to be distinct, it follows that if z and y are h-connected then
they are also ¢-connected for all ¢ > h.



Remark: The motivation for choosing a constant transmis-
sion range comes from the SNR model, according to which r
represents the maximum distance (from a transmitting node)
beyond which the SNR (Signal to Noise Ratio) falls below a
threshold of I". Formally,

P
Nyg —

where P denotes the transmission power, 7 > 2 is the path-
loss coefficient, and Ny is the noise variance. The SNR model
is applicable in scenarios where the transmissions from other
nodes do not interfere with the intended signal at the receiver.
We however note that a more realistic model is the SINR
model where SINR (Signal to Interference plus Noise Ratio)
is used to compute the transmission region around a node.
For simplicity, we assume SNR model in our subsequent
development; for the case of coverage, we however present
results corresponding to the SINR case as well.
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A. Coverage

We introduce a general notion of coverage by incorporating
hop-counts into the defintion.

Definition 2 (h-Coverage): We say that a location x € Ap,
is h-covered if there exists a sink node y such that (a node
placed at) x and y are h-connected; otherwise we say that x
is h-vacant. We say that x is covered if z is h-covered for
some h > 0; otherwise x is said to be vacant.

Thus, if a location x is covered then, from z it is possible to
communicate with some sink node in the network. In particu-
lar, we are interested in characterizing the probability that the
origin O = (0, 0) is covered, or alternatively that O is vacant.
Formally, for a given A and /3, we introduce the notation vy g
to denote the probability that O is vacant (vacancy probability
or simply vacancy), i.e., vy g = P(O is vacant). In general, we
have vy g, = P(O is h-vacant).

Note that in the case of A, vz represents the fraction
of vacant region in the network (this follows from ergodicity).
The above conclusion is however not applicable for Ay, (where
L is finite) due to boundary effects. Nevertheless, for large L,
vy, 1s a good approximation for the fraction of vacant region
in the network.

In Section III we study the properties of the average vacancy
vy,g by varying A and 3. We derive a lower bound on vy g by
drawing a comparison with an independent-disk model, studied
in traditional coverage processes [9]. We also investigate the
properties of vacancy in more general models such as the hop-
constrained model (i.e., vy g,) and the SINR model.

B. Percolation

Percolation deals with the macroscopic property of whether
long-distance communication is possible among far-off nodes
in the network. This is in contrast to coverage which inves-
tigates the microscopic property of connectivity of the origin
with the network.

Before proceeding further, for simplicity, we first introduce
the following notation: Let B(LL) denote the left boundary of

Ap,ie., B(LL) ={-%} x[-%, L]. The right, top and bottom
boundaries of Aj,, denoted B LR), B(LT) and BE-JB), respectively,
can be similarly defined. We then introduce the following

notions of percolation:
Definition 3 (H,V, A and B Percolations):

o Foragiven Ag, Ar and h > 0, we say that H-percolation
occurs (H for Horizontal) if there exists sink nodes
T1,%o, - ,xn € A and locations zg € B(LL) and
Tnt1 € B(LR) such that x; and x;4; are h-connected for
all ¢ = 0,1,--- ,n. Thus, H-percolation occurs if and
only if there exists a horizontal path of h-connected sink
nodes that connects the left and right boundaries.

o Replacing the left and right boundaries in the above defi-
nition by the top and bottom boundaries (BET) and B(LB),
respectively) we obtain the definition of V -percolation (V/
for vertical)

o we say that A-percolation occurs (A for Any) if either
H-percolation or V-percolation occurs.

o In contrast to A-percolation, we say that B-percolation
occurs (B for Both) if both H-percolation and V-
percolation occurs.

Although the above definitions are applicable for a general
h > 0, in this work, unless mentioned otherwise, we restrict
our study of percolation to the case h = 1 (we defer the
study of the general case to the future). Thus, for h = 1 the
above definitions reduce to the setting where the successive
sink nodes in the path x1, x5, - - - ,z, (including the locations
xo and z,41) are connected by at most one relay node.

Now, percolation probability is simply defined as the prob-
ability that the respective percolation occurs. Formally, for
X € {H,V, A, B} we define

px(As,Ar) = P(X-percolation occurs). (1)

In Section IV we propose an algorithm to efficiently
compute the above percolation probabilities as functions of
(As, AR); our algorithm is based on the technique proposed
by Mertens and Moore in [8]. We then demonstrate a thresh-
old boundary where sharp transition from no-percolation to
percolation occurs.

ITI. COVERAGE PROPERTIES

The results from our simulation experiments are reported in
Fig. 1; all plots in the figure correspond to L = 10 and r = 1.
In Fig. 1(a) we plot vy g as a function of ) for different values
of 5. We immediately identify the following properties:

Property Cl: vy g is decreasing in A for a given . In
particular, lim vy g = 0.

A—00

Discussion: The above property can be understood directly
from the definition of vacancy in Section II-A: As the node
density increases the probability that O is connected to a sink
node improves so that vy g decreases. It is possible to formally
derive this result via. a coupling argument as follows. The
process with node density A; can be randomly thinned to
reduce the density to Ao < A; (note that random thinning
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Fig. 1. (a) Vacancy vs. node density (b) Illustration of lower bound wy, g obtained from the independent-disc model (c) Hop-constrained vacancy.

leaves 3 unchanged). Then, since vacancy in the first process
implies vacancy in the second as well, we have vy, g < vy, 3.

Property C2: vy g is decreasing in 8 for a given A.

Discussion: Recall that 5 denotes the fraction of sink nodes
in the network. Hence, a larger 8 implies a higher probability
for O to be covered. Thus, vy g decreases with 3. As in the
discussion of Property C1, a formal proof can be derived via.
a coupling argument.

A. Independent-disc Model

In Fig. 1(b) we demonstrate a lower bound on v g. In
order to understand this result we need to introduce an
alternate independent-disc model, and compare it with our
model, referred to as the dependent-disc model. For this, we
first modify Definition 1 to introduce a stringent notion of
connectivity where only relays are used for multi-hopping:

Definition 4 (h-relay-connectivity): We say that x and y are
h-relay-connected if there exists relay nodes z1,z2,- -, 2p,
not necessarily distinct, such that ||z — 21 || <7, || y — 21 ||
<r,and || z; — z;—1 || <rfori=2,--- h. We simply say
that = and y are relay-connected if they are h-relay-connected
for some h > 0.

For each sink z € A;, define

B, = {y € Ap, : x and y are relay—connected}.

Thus, B, denotes the set of locations (referred to as the disc)
around x that are connected to x via. relay nodes.

Now, note that in our original model the collection of discs
B = {B, : © € Apg isasink} around all sink nodes in
Ay are dependent since these are generated by the same
realization of relay-node locations. Hence we refer to our
model as the dependent-disc model. The above development
yields the following alternate definition for vacancy: vy g =
P(O ¢ B, V sink nodes = € Ay,).

In contrast to the above model, consider an alternate sce-
nario where the discs are independent, while still being statis-
tically identical to the discs in the original model. Formally,
let B = {B, : = € Apisasink} denote a collection
of independent discs such that B, is statistically identical
to B, for each sink © € Ap. Then, the independent-disc

model is obtained by replacing B, by B, for each sink
x € Ar. One way to realize the independent-disc model
is by obtaining discs B, by generating independent Poisson
process of relay-node locations for each sink node z. We use
wy,s to denote the vacancy in the independent-disk model,
ie., wyg =P(O ¢ B, V sink nodes = € Ap).

In Fig. 1(b) we have plotted vy g and wy g as functions
of )\, for different values of 3. We observe that wy g serves
as a lower bound for vy g, i.e., wyg < vy g. A proof of
this result is known for one-dimensional networks in A, [5].
We conjecture a similar result for the general case of two-
dimensional networks in Ay, (proof is deferred to the future):

Property C3: The vacancy v) g in the dependent-disc model
is lower bounded by the vacancy w) g in the independent-disc
model, i.e., wy g < vy g for all (A, 5).

B. Hop-constrained Coverage

In Fig. 1(c) we show results from our study on hop-
constrained vacancy. In particular, for § = 0.01 and 8 = 0.1
we plot vy g as a function of X for different values of the
hop constraint h. The solid curves in the figure correspond to
the unconstrained vacancy vy g. From Fig. 1(c) we identify
the following property.

Property C4: For a fixed (A, 8), va,g,, is decreasing in h.
Moreover, hli_{](r)lov,\ﬁﬁ = Uy 8-

Discussion: From Definition 1 we know that if z and y
are h-connected then they are also ¢-connected for ¢ > h. In
terms of vacancy of the origin, the above observation can be
expressed as {O is h-vacant} D {O is {-vacant}, for £ > h
which yields the first part of the above property. Second part
follows by noting that Ng° ,{O is h-vacant} = {O is vacant}.

From Fig. 1(c) we also observe that the value of & for which
UA,8,n = Ux g is larger for 8 = 0.01 than for 3 =0.1 (h =9
and h = 5, respectively). This is because a smaller 5 implies a
sparser density of sink nodes, so that (on an average) a larger
number of hops are required to reach a sink node from O.

C. The SINR Model

We have also conducted simulations to understand the prop-
erties of coverage in the more general SINR model [2], where
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Fig. 2. SINR model (a) Vacancy vs. node density (b) Lower bound on vacancy.

the interference due to other transmissions in the network
are taken into account while establishing connectivity among
the nodes. Formally, in the SINR model the power received
at y due to transmission from x, denoted P, ,, is given by
(assuming P to be the transmit power of all nodes)

. Pd;n
oY NO +72z;ﬁz,y Pd;z

2

where the summation in the denomination is over all other
nodes z € Ay, and thus represents the interference power. In
the above expression, d, , denotes the distance between x and
y, Np is the noise variance, 7 > 2 is the path-loss exponent,
and v € [0,1] is a factor that determines the fraction of
interference power that is received (see [2] for details). When
v = 0 expression (2) reduces to the earlier SNR model; in this
sense the SINR model can be thought as a generalization.

We say that x can communicate with y if P, , > T" where
I' denotes the SINR constraint. However, for bidirectional
communication to occur, it is necessary for x and y to
communicate with each other. Thus, we say that « and y are
connected if P, , > I' and P,, > I'. With this definition
of connectivity among two nodes, we extend the notion of
coverage to the SINR model by saying that O is covered
if there exists a path to some sink node in Ay; otherwise
O is said to be vacant (for simplicity, we are not concerned
about the number of hops taken). Analogously, we let vy g
to denote the probability that O is vacant.

In Fig. 2(a) we depict vy g, as a function of A for different
value of v. The plots correspond to 5 = 0.5, while the model
parameter values are fixed at L = 10, P =2, n =4, Ny =5,
and I' = 0.4. As before, we see that v g decreases with \.
However, interestingly for v > 0 we find that vy g , converges
to a non-zero value as A increase. This is possibly because of
the increase in interference, which reduces the connectivity
among nodes in the network. Thus, unlike in the SNR model,
here it is not possible to achieve 100% by increasing \.

Finally, we also compute w g~ which denotes the vacancy
created in the independent-disc model (analogous to the one
discussed in Section III-A). In Fig. 2(b) we compare vy g
against wy g~ for different values of 3; we have fixed v =1
which represents the scenario where the interference power
is maximum. As for the SNR model, we find that wy g
constitutes a lower bound for vy g .

IV. PERCOLATION PROPERTIES

First, recalling Definition 3 and the expression for per-
colation probability from (1), we immediately identify the
following properties:

Property P1: pr(As,Ar) = pv(As, AR).

Property P2: pp(As, Ar) < pu(As, Ar) < pa(As, ARr).
Property P1 simply follows because the horizontal
and vertical directions are statistically identical. To
deduce Property P2, note that {B-percolation occurs} C
{ H-percolation occurs} C {A-percolation occurs}.

We next proceed to numerically-compute the various per-
colation probabilities. For this, we employ the technique
proposed by Mertens and Moore in [8]. In fact, we generalize
their approach to the current setting where nodes of two types
(i.e., sink and relays) are involved (in contrast, the original
procedure in [8] is applicable for a network comprising all
sink nodes). The details are discussed in the following.

A. Computation of Percolation Probabilities

In Algorithm 1 we present the simulation procedure to com-
pute the minimum number of nodes required for percolation to
occur. The output from Algorithm 1 will be used to compute
percolation probabilities.

The algorithm begins by adding a new node into the
network. The added node is designated either a sink or a
relay with probability 5 and (1— ), respectively. The network
is then checked for whether X-percolation occurs (for X =
A, H, B). Note that, we do not explicitly report the occurrence
of V-percolation as it is statistically identical to H-percolation



(Property P1). Also, from Property P2 we know that A, H and
B-percolations occur in the same order as mentioned. Hence,
it is not necessary to check for H-percolation if A-percolation
has not occurred, and so on (for simplicity of exposition, we
have not embedded this observation into the pseudocode of
Algorithm 1). To efficiently check for percolation, we use the
union-find algorithm [8] which keeps track of the clusters in
the network, while simultaneously checking for horizontal and
vertical crossing of these clusters.

When X-percolation occurs (indicated by Xprag = 1),
the number of sink and relay nodes present in the network
at that instant are reported in the matrix Ny. The procedure
(of adding a new node and checking for the occurrence of the
various percolations) is continued until all three percolations
occur, at which instant the current simulation run ends. The
algorithm conducts similar simulation experiment for a total
of N iterations. Thus, at the end of IV iterations, the value
Nx (i, ) (for any (i,j) € N?) represents the total number of
times X -percolation occurred with ¢ sink and j relay nodes in
the network. The output Fx(ng,ng) (for (ng,ng) € N?) is
thus an estimate of the probability that X -percolation occurs
whenever the network contains ng sink and ny relay nodes.

Define Ag =
(As,Ar) € Ap, various percolation probabilities can be

estimated numerically using the output from Algorithm 1 as
follows: for X € {A, H, B} we have

{()\S,)\R) : >\s)\+7s>\12 = f¢. Then, for any

px(As, Ar) = (3)
—  (AsL?)"s (AgL2)ne
Z AsL)™ ArL) e~ Qs AL P (ng, ng).
’I’LS! nR!
ns,nR=O

Note that, for 5 = 1 (in which case A = 0) the above
procedure reduces to the all-infrastructure setting considered
in [8] where each node is a sink, so that percolation occurs
whenever there is a horizontal/vertical path of sink nodes
crossing the boundaries.

B. Simulation Results

We first consider the case 5 = 1, where the percolation
probabilities px (Ag,0) (X € {A, H, B}) are simply functions

1

Algorithm 1: Percolation Probability Computation

1 Input: L, 7, 3, and N;

2 Initialization:

3 Nx(i,j) = 0V(i,j) € N? and X € {A, H, B};
4 fori=1:N do

5 ig =1r = 0;
6
7
8
9

Xrrag =0 for X € {A, H, B},
while BFLAG =0do
Place a new node randomly in Ap;
X ~ Ber(p);

10 if X=1 then
11 Designate the new node as sink;
12 is =15 + 1;
13 else
14 Designate the new node as relay;
15 tg =1tr + 1;
16 end
17 for X = A, H, B do
18 % Check for X-percolation
19 if Xprag == 0 & X-percolation occurs then
20 Nx(is,ir) = Nx(is,ir) + 1;
21 Xrrag =1
22 end
23 end
24 end
25 end

26 Output: Fx(ns,ngr) = =5 > 75, w
(ns,ngr) € N? and X € {A, H, B}

for all

of the sink density Ag. In Fig. 3(a), 3(b) and 3(c) we
plot A, H and B-percolation probabilities, respectively, as
functions of sink density Ag for different values of L. For
simplicity, we have fixed the transmission radius r = 1.
From the plots in Fig. 3 we identify percolation thresholds,
MX) (X € {A, H,B}), around which transition from no-
percolation to percolation occurs. We also notice that the
steepness of the curves around these thresholds increases with

1
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Fig. 3. Illustration of the percolation threshold A(X) for the case where 8 = 1 (a) Any percolation (b) Horizontal percolation (c) Both percolation.



L, implying that the ideal percolation behaviour (of strictly O
and 1 probability of percolation, respectively, below and above
a threshold) is approached as L increases. We note this result
as a property:

Property P3: For large L, there exists a threshold A(X) (X e
{A, H, B}) such that

0 if Ag <A
pX(’\S’O)”{ 1 if)\§>)\(x). “)
We also see that the thresholds in Fig. 3 satisfy \(4) <
AU < A(B) which is in accordance with the observation
made in Property P2. However, the difference in the values
of these thresholds are negligable; indeed, in A, = N2
the different notions of percolations (i.e., H,V, A and B-
percolations) coincide, in the sense that an unbounded cluster
of connected nodes in 2 extends in all directions. Thus, as
L increases we expect these different thresholds to coincide.
We next proceed to study the general case of infrastructure-
based network where both sink and relay nodes are present.
We fix L = 16 and (as before) » = 1. In Fig. 4 we depict H-
percolation probability! pg(As, Ar) as a heat-map obtained
by varying Ag and Ap. Analogous to the earlier (6 = 1)
case where percolation was characterized by a threshold,
here we see that there exists a boundary beyond which
percolation probability starts transiting from O to 1. In Fig. 4
we have (approximately marked and) shown using solid line
a 60% threshold-boundary where the percolation probability
starts exceeding 0.6; similarly, the dashed line indicates an
85% threshold-boundary. We expect the transitions to become
steeper as the value of L is increased, so that for a large
L we obtain a well defined percolation boundary where the
percolation probability jumps from 0 to 1. Based on the
observations made from Fig. 4, we infer the following property
about the percolation boundary.
Property P4: For large L, there exists thresholds A(lH) <

)\éH) on sink density, and p(#) on relay density such that
(H)

e For A\g < A;"’ the network does not percolate (even
for any large value of relay node density). Thus, relays
cannot cause percolation to occur when the sink density
is below the critical threshold of )\gH)

e For \g > )\éH) the network percolates (even when the
relay density is 0). Thus, relays are not necessary for
percolation to occur when the sink density is above the
critical threshold of /\éH).

« For )\gH) < As < )\éH), percolation occurs if and only

if Ap > A = Ag) /AW — A Thus, in this

regime, along with the sink nodes a critical density of
relay nodes are required to ensure percolation.

See Fig. 4 for an illustration of the above thresholds. Finally,
a careful investigation of Fig. 3(b) and Fig. 4 suggests that

'Due to space constraint we restrict our attention to H-percolation hereafter.
However, we note that the properties of A and B-percolations are very similar
to those exhibited by H -percolation (as was the case with the all-infrastructure
setting studied in Fig. 3).
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Fig. 4. Heat-map of the percolation probability prr (As, AR).

/\§H> = M) this should not be surprising as the plot in
Fig. 3(b) is identical to the data along Arp = 0 line of Fig. 4.

V. CONCLUSION

Through our simulation work we established some valuable
properties of coverage and percolation in infrastructure-based
networks. Specifically, we identified that the vacancy proba-
bility is lower bounded by its counterpart in an independent-
disc model studied in coverage processes. For the SINR
model, due to interference the vacancy probability does not
reduce to zero as the node density increases (which is in
contrast to that observed for the SNR model). For the case
of percolation, we identified a boundary where the percolation
probability undergoes a sharp transition from 0 to 1. We finally
characterized the structure of the percolation boundary by
using certain thresholds on sink and relay node densities.
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