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Abstract—Quality of service (QoS) provisioning in next-

generation mobile communications systems entails a deep under-

standing of the delay performance. The delay in wireless networks

is strongly affected by the traffic arrival process and the service

process, which in turn depends on the medium access protocol

and the signal-to-interference-plus-noise ratio (SINR) distribu-

tion. In this work, we characterize the conditional distribution

of the service process given the point process in Poisson bipolar

networks. We then provide an upper bound on the delay violation

probability combining tools from stochastic network calculus

and stochastic geometry. Furthermore, we analyze the delay

performance under statistical queueing constraints using the

effective capacity formulation. The impact of QoS requirements,

network geometry and link distance on the delay performance

is identified. Our results provide useful insights for guaranteeing

stringent delay requirements in large wireless networks.

Index Terms—Poisson bipolar networks, stochastic geometry,

stochastic network calculus, effective capacity, delay, QoS.

I. INTRODUCTION

Data traffic has been growing tremendously over the last

decade, fueled by the ubiquity of smart devices and bandwidth-

demanding applications. Current wireless networks are con-

fronted with an avalanche of heterogeneous traffic with diverse

requirements in terms of rate, reliability and latency. Emerging

mobile communication systems will not only be designed to

provide enhanced spectral efficiency and coverage, but they

should also meet the delay requirements of new delay-sensitive

applications, such as industrial control, automated driving and

healthcare. Different applications are expected to have very di-

verse QoS requirements in terms of throughput and delay. QoS

provisioning is instrumental for next-generation low latency

networks; yet it is particularly challenging mainly due to time-

varying wireless channels and spatio-temporal randomness in

traffic arrivals and interferers locations. Ensuring deterministic

(hard) QoS guarantees would most likely result in extremely

conservative performance. As a result, providing statistical

(soft) QoS guarantees, in terms of effective bandwidth/capacity

and bounds in queue length and delay violation probability,

stands as a powerful approach to characterize delay QoS

provisioning in wireless networks [1]–[4].

There have been several attempts at quantifying delay in

wireless networks, and queueing theory has been instrumental

in providing exact backlog and delay characterization. How-

ever, queueing analysis is largely restricted to networks with

a single or few interacting queues with random arrivals and

typically provides the average delay rather than the worst-

case delay, which is of cardinal importance in mission-critical

applications. The delay in wireless networks is strongly af-

fected by the queueing process and the service process of the

packets. The latter is mainly governed by the access protocol

and the link quality, i.e., the received SINR. The SINR in turn

critically depends on the link distance and the network geom-

etry on which the path loss and the fading characteristics are

dependent upon. Although the locations of nodes in wireless

networks are traditionally modeled by regular grids, the spatial

node distribution in emerging networks (e.g. heterogeneous

cellular networks) is irregular. Stochastic geometry and point

process theory have recently proved to be powerful mathemat-

ical tools for analyzing and designing large wireless networks

with spatial randomness. These approaches have focused on

metrics such as coverage probability and spatial average rate,

and calculate spatial averages by considering a snapshot of

the network. Analyzing the delay in large spatial networks is

very challenging due to the correlation of interference [5]–

[7] and the large number of interacting queues. The local

delay, i.e., the random number of transmission attempts until

a packet is successfully transmitted to its target receiver, is

proposed in [8] and extended in [9]. Local delay assumes fully

backlogged nodes, thus it captures the transmission delay, but

not the queueing delay. Throughput maximization subject to

delay constraints in two-tier spatial networks is studied in [10].

In this paper, we investigate the delay performance of

large wireless networks in the presence of statistical QoS

constraints, which are imposed as limits on the delay violation

and buffer overflow probabilities. We start by characterizing

the distribution of the service process in Poisson bipolar

networks. The results are exploited in order to derive a bound

on the delay violation probability using tools from stochastic

network calculus [2], [11], [12] and the effective capacity.

For relevant results, we perform space-time scale separation

and consider static or low-mobility spatial networks. This

results in temporal interference correlation and the conditional

rate given the point process will vary from node to node.

Thus, both delay violation probability and effective capacity

are random variables whose statistics ought to be found.

Our analytical results show the effect of inter-node distances,

spatial randomness, and QoS constraints on the delay violation

and effective capacity performance of large spatial networks.

II. SYSTEM MODEL

A. Network Model

We consider a communication network in which the loca-

tions of the (potential) transmitters are modeled as a homoge-



neous Poisson point process (PPP) Φ = {xi} ⊂ R
2 of intensity

λ. Each transmitter has an associated receiver at fixed distance

r in a random direction (denoted by Rx for a transmitter

x). This model is commonly referred to as Poisson bipolar

network.

The small scale fading between two nodes is independent

and identically distributed (i.i.d.) across time and space (unless

otherwise stated) and is exponentially distributed (Rayleigh

fading). The transmit power at all nodes is fixed to 1. The

large-scale path loss function is denoted by ℓ(x) : R2 → [0,∞]
and is assumed to be a non-increasing function of ‖x‖ and
∫

B(o,d)
ℓ(x)dx < ∞, ∀d, where B(o, d) is the ball of radius d

centered around the origin o = (0, 0). In this paper, we focus

on a non-bounded model ℓ(x) = ‖x‖−α, α > 2. Time is

divided into discrete slots of equal duration and transmission

attempts are synchronized. We focus on the interference-

limited case, but our analysis can be easily extended including

background noise.

The received signal-to-interference ratio (SIR) in time slot

t is given by

SIRRx,t =
ht
xRx

ℓ(r)
∑

y∈Φt\{x} h
t
yRx

ℓ(y −Rx)
(1)

where ht
xy is the small-scale fading coefficient between nodes

x and y in time slot t, and Φt ⊂ Φ is the set of active

interferers in time slot t. The interference at time slot t can

be alternatively written as

IRx,t =
∑

y∈Φ\{x}
ht
yRx

ℓ(y −Rx)1(y ∈ Φt) (2)

where 1(·) is the indicator function.

The success probability of a typical link is given by

P
!o(SIRRo,t > ξ) = lim

δ→∞

∑

x∈Φ∩B(o,δ)

P(SIRRx,t > ξ | Φ)

λπpδ2
.

(3)

We focus on the typical link with a transmitter located at the

origin and we drop the time and node subindexes whenever

evident.

We denote Ps(ξ) , P(SIR > ξ | Φ) the success probability

given the point process (i.e., conditioned on the location of

interferers) and that the transmitter of interest is active, which

is taken over the fading and the random access scheme. The

conditional probability Ps(ξ) can be interpreted as the mark of

a virtual typical link placed at the origin, whose distribution is

given by P!o(Ps(ξ) > x), x ∈ [0, 1], where P!o is the reduced

Palm probability (for a PPP we have P!o = P) [13].

B. Traffic Model

We consider a system-theoretic stochastic model as in [14],

which involves a queueing system with stochastic arrival and

departure processes described by bivariate stochastic processes

A(τ, t) and D(τ, t), respectively. A fluid-flow traffic model is

adopted and the system starts with empty queues at t = 0.

The number of bits arriving at the queue at a discrete time

instant i is modeled by the arrival process ai. For successful

transmissions, the service process is equal to the instantaneous

capacity. In case of transmission errors, the service is con-

sidered to be zero as no data is removed from the queue.

The departure process di describes the number of bits that

arrive successfully at the destination and depends on both the

service process and the number of bits waiting in the queue.

Acknowledgments and feedback messages are assumed to be

instantaneous and error-free. To avoid data loss, data is stored

in a buffer or queue, in which it will remain for a random

time until the receiver indicates that data was successfully

decoded. At each time slot, node j ∈ Φ independently

transmits with probability pj . The steady-state probability pj ,

∀j ∈ Φ depends on the arrival process of j-th node, the

transmit probability of the other nodes pi, ∀i ∈ Φ, i 6= j,

and the channel of all nodes. A node remains idle when there

is no traffic arrival and the queue is empty due to the early

arrival and late departure assumption. The aforementioned two

events can be assumed independent under non-saturated or

light traffic conditions. Unless otherwise stated, we set pi = p,

∀i ∈ Φ \ {o}.

The cumulative arrival and departure processes for any 0 ≤
τ ≤ t, measured in bits of the flow during time interval [τ, t),
are defined as

A(τ, t) =
t−1
∑

i=τ

ai, and D(τ, t) =
t−1
∑

i=τ

di. (4)

For lossless first-in first-out (FIFO) queueing systems, the

delay W (t) at time t, i.e., the number of slots it takes for

an information bit arriving at time t to be received at the

destination, is defined as

W (t) = inf{u > 0 : A(0, t)/D(0, t+ u) ≤ 1}. (5)

and the delay violation probability is given by

Λ(w, t) = sup
t≥0

P [W (t) > w] .

III. SERVICE PROCESS CHARACTERIZATION

The instantaneous rate or capacity Ct of the channel at

time t can be expressed as a function of the instantaneous

SNR or SIR at this time. Assuming flat-fading, Gaussian

codebooks and ideal link adaptation, the instantaneous rate

can be expressed as

Ct = N log(1 + SIRt) (nats/s) (6)

where N is the number of transmitted symbols per time slot.

The symbol rate is usually related to the bandwidth W as

N = 2W (Shannon-Harltley theorem). In the remainder, we

assume N = 1 to simplify notation and we reincorporate this

parameter into the equations in the numerical results.

The service process (or cumulative capacity) through period

(τ, t] is defined as

S(τ, t) ,

t−1
∑

i=τ

Ci, (7)



and is a random variable with cumulative distribution function

(cdf) FS(τ,t)(x) = P(S(τ, t) ≤ x), x > 0.

If Ci and Cj , i 6= j, are independent, then fS(τ,t) = fCτ+1 ∗
. . .∗ fCt , where ∗ denotes the convolution operation, i.e., (f ∗
g)(x) =

∫ +∞
−∞ f(x− y)g(y)dy. Hence,

FS(τ,t)(x) =

∫ x

−∞
fS(τ,t)(y)dy. (8)

An upper bound can be derived using Young’s inequality,

which states ‖f ∗ g‖r ≤ ‖f‖p‖g‖q for 1/p+ 1/q = 1/r + 1,

f ∈ Lp(Rd) and g ∈ Lq(Rd). When all marginal distributions

are identical (FCi ∼ FC , ∀i), the probability density function

(pdf) of the service process is given by the n-fold convolution

with n = t− τ , i.e., fS(τ,t) = f∗n
C .

When the length of the period t − τ is large, FS(τ,t)(x)
converges to a normal distribution (Central Limit Theorem)

FS(τ,t)(x) ≈ Q

(

x− E[S(τ, t)]

σ2[S(τ, t)]

)

, (9)

with mean E[S(τ, t)] =
t
∑

i=τ+1

E[Ci] and variance

σ2[S(τ, t)] =
t
∑

i=τ+1

σ2[Ci], where Q(x) ,

∫ x

−∞
1√
2π

e−y2/2dy.

If Ci and Cj , i 6= j, are not independent, the exact

calculation of the service rate distribution seems to be highly

involved. For that, we resort to the Fréchet-Hoeffding bounds

on copulas [15], [16], which give that cdf of the cumulative

capacity satisfies

F l
S(τ,t)(z) ≤ FS(τ,t)(z) ≤ Fu

S(τ,t)(z) (10)

where

Fu
S(τ,t)(z) , inf

t∑

i=τ+1

zi=z

[

t
∑

i=τ+1

FCi(zi)

]

1

,

F l
S(τ,t)(z) , sup

t∑

i=τ+1

zi=z

[

t
∑

i=τ+1

FCi(zi)− (t− τ − 1)

]+

.

where [f ]+ = max(f, 0), [f ]1 = min(f, 1), and FCi(z) =
P(SIRi ≤ ez − 1) = FSIRi

(ez − 1) = 1− Ps(e
z − 1), z > 0.

A. Moment Generating Function

The service rate distribution can also be characterized via

the moment generating function (MGF) MS(τ,t)(θ), θ ∈ R,

which is given by

MS(τ,t)(θ) , E

[

eθS(τ,t)
]

=

∫ ∞

−∞
eθzdFS(τ,t)(z).

For the independent case, we have M
ind

S(τ,t)(θ) =
∏t−1

i=τ MCi(θ) and for the i.i.d. case, we have M
iid

S(τ,t)(θ) =

(MCi(θ))
t−τ , where MS(τ,t)(θ) = MS(τ,t)(−θ).

The distribution of the service process can be calculated

using Gil-Pelaez theorem [17]

FS(τ,t)(z) =
1

2
−

1

π

∫ ∞

0

ℑ[e−jtxMS(τ,t)(jt)]
dt

t

=
1

2πj

∫ c+j∞

c−j∞
elogMS(τ,t)(t)−txdt

t

with c ∈ R>0 in the convergence strip of the cumulant

generating function logMS(τ,t)(t). The distribution can be

conveniently evaluated numerically using Lévy’s inversion

theorem [18].

B. Mellin transform

For calculating the delay violation probability using stochas-

tic network calculus, the service process is characterized in

terms of its Mellin transform (MT).

The MT of a nonnegative random variable X is defined as

MX(s) , E
[

Xs−1
]

= M logX(s − 1) for any s ∈ C for

which the expectation exists. For the service process, we have

MS(τ,t)(s) , E[(S(τ, t))s−1 ] =

∫ ∞

−∞
zs−1dFS(τ,t)(z).

According to (9) and (10), the MT of the service process for

the independent and dependent case is given by, respectively

Mind
S(τ,t)(s) ≈

∫ ∞

−∞
zs−1dQ

(

z − E[S(τ, t)]

σ2[S(τ, t)]

)

,

Mdep,l
S(τ,t)(s) =

∫ ∞

−∞
zs−1dF l

S(τ,t)(z) ≤ Mdep
S(τ,t)(s)

≤

∫ ∞

−∞
zs−1dFu

S(τ,t)(z) = Mdep,u
S(τ,t)(s)

where the upper and lower bounds hold for s < 1.

IV. DELAY PERFORMANCE IN STATIC NETWORKS

In this section, we analyze the QoS performance in terms of

delay violation probability and effective capacity. We consider

a static network, where the random locations of nodes do not

vary with time, and perform the analysis given the locations

of the nodes, i.e., conditioned on Φ. The conditional success

probability Ps(ξ) is a random variable that depends on the

spatial distribution, which implies that the conditional service

rate varies from node to node. This means that some nodes

have an arbitrarily small service rate and consequently an

arbitrarily large delay. Instead of deriving spatial averages for

the delay metrics, we aim at obtaining the spatial distribution

of the delay violation probability and of the effective capacity.

For that, we derive the conditional service rate and calculate

the delay metrics for each draw of points in the space. As a

result, the delay violation probability and the effective capacity

are random variables and we are interested in deriving their

distribution.

A. Delay Violation Probability

In this section, we obtain an upper bound on the delay

violation probability using a statistical characterization of the

arrival and service processes in the exponential (or SIR)

domain [14]. First, we convert the cumulative processes in



the bit domain to the SIR domain (denoted by calligraphic

letters) through the exponential function, i.e.,

A(τ, t) = eA(τ,t), D(τ, t) = eD(τ,t), S(τ, t) = eS(τ,t).

An upper bound on the delay violation probability can be

computed by means of the Mellin transforms of A(τ, t) and

S(τ, t) [14]:

pv(w) = inf
s>0

{K(s,−w)} ≥ Λ(w) (11)

where K(s,−w) is the steady-state kernel, defined as

K(s,−w) = lim
t→∞

t
∑

u=0

MA(1 + s, u, t)MS(1− s, u, t+ w).

(12)

For the arrival process, assuming that A(τ, t) has stationary

and independent increments, the MT becomes independent of

the time instance, i.e.,

MA(s, τ, t) = E





(

t
∏

i=τ+1

eai

)s−1




= E

[

ea(s−1)
]t−τ

= Mα(s)
t−τ

where α = ea denotes the non-cumulative arrival process in

the SIR domain. Using Chang’s traffic characterization [2],

we consider the traffic class of (σ(s), ρ(s))-bounded arrivals,

whose MGF in the bit domain is bounded by

1

s
logE[esA(τ,t)] ≤ ρ(s) · (t− τ) + σ(s) (13)

for some s > 0. Restricting ourselves to the case where ρ is

independent of s and σ(s) = 0, we have

Mα(s) = eρ(s−1). (14)

For the service process, as said before, we consider a static

network and condition on Φ (random but static over time).

Therefore, the SIRs are conditionally independent and the

random variations come from independent block fading for

all active links. The MT of the (conditional) service process

is given by

MS(s, τ, t) = E





(

t−1
∏

i=τ

(1 + SIRi)

)s−1

| Φ





= E
[

(1 + SIR)s−1 | Φ
]t−τ

= (Mγ(s))
t−τ

.(15)

Plugging (14) and (15) into (12) and following [14], the

steady-state kernel can be finally rewritten as

K(s,−w) =
(Mγ(1 − s))

w

1−Mα(1 + s)Mγ(1− s)
, (16)

for any s > 0 under the stability condition Mα(1+s)Mγ(1−
s) < 1. The upper bound on the conditional delay violation

probability (11) is thus reduced to

pv(w) = inf
s>0

{

(Mγ(1− s))
w

1−Mα(1 + s)Mγ(1− s)

}

. (17)

The above delay bound can be calculated using the follow-

ing result.

Proposition 1. The MT of the service process in static

networks is given by MS(τ,t)(s) = (Mγ(s))
t−τ where

Mγ(s) = 1 + (s− 1)

∫ ∞

0

Ps(y)(1 + y)s−2dy, for s < 1

where Ps(ξ) =
∏

x∈Φ\{o}

( p

1 + ξrα‖x−Ro‖−α
+ 1− p

)

.

Proof: See Appendix I.

The above semi-closed form expression requires numerical

integration. For easier numerical evaluation and in order to

gain insights, we provide the following upper bound on

Mγ(s), which in turn provides an upper bound on the

delay violation probability. Taking into account only the

interference from the nearest interfering transmitter xmin =
argminx∈Φ\{o} ‖x−Ro‖, we have

Mu1
γ (s) ≤ 1 + (s− 1)

∫ ∞

0

(1 + y)s−2

1 + yrα‖xmin −Ro‖−α
dy

= 1 +
(s− 1)2F1 (2− s, 2− s; 1− s; 1− Z)

Zs−1(2− s)
(a)

≤ 1 + (s− 1)[(3− 2s)Z]−1/2 = Mu2
γ (s)

where 2F1(a, b; c;x) is the Gauss hypergeometric function,

Z = rα‖xmin − Ro‖
−α and (a) follows applying Cauchy-

Schwarz inequality.

Calculating the the distribution of the (conditional) delay

violation probability P
!o(pv(w) > x), x ∈ [0, 1] is complex.

The distribution of the upper bound based on nearest neighbor

can be calculated as follows. Since the delay violation prob-

ability pv(w) is a decreasing function (say g) of the random

variable ‖xmin‖, we have

P
!o(pv(w) > x) ≤ P

!o(puv(w) > x) = P
!o(g(‖xmin‖) > x)

= P
!o(‖xmin‖ > g−1(x)) = e−λπ(g−1(x))2 .

B. Effective Capacity

The effective capacity is defined as the maximum constant

arrival rate at a buffer that can be supported by the service

process while satisfying statistical QoS requirements specified

by the QoS exponent θ [3]. For time-varying arrival rates,

effective capacity specifies the effective bandwidth of the

arrival process that can be supported by the channel.

Let Q be the the stationary queue length, then θ is the decay

rate of the tail distribution of the queue length Q

lim
q→∞

logP(Q ≥ q)

q
= −θ (18)

and from Gärtner-Ellis Theorem the buffer violation probabil-

ity for large qmax is approximated as P(Q ≥ qmax) ≈ e−θqmax .

Therefore, larger θ corresponds to more strict QoS constraints,

while smaller θ implies looser constraints.

In block fading channels with coherence time T , the effec-



tive capacity simplifies to

R(θT ) , −
1

θT
logE

[

e−θTCt
]

= −
1

θT
logMγ(1− θT )

= −
1

θT
logE

[

(1 + SIRt)
−θT

]

Using that for a positive random variable X , E[X ] =
∫∞
0 P(X ≥ t)dt, we can have the following alternative

expression for Ψ(θT ) = E
[

(1 + SIRt)
−θT

]

Ψ(θT ) = 1−

∫ 1

0

Ps(t
− 1

θT − 1)dt.

The distribution of the effective capacity can be calculated

using Gil-Pelaez theorem, which involves numerical integra-

tion and does not provide much insight on the behavior of

the effective capacity. For that, we establish below bounds on

the distribution using classical concentration inequalities. The

simplest upper bound on the complementary cdf (ccdf) follows

from Markov’s inequality:

P
!0(R(θT ) > x) ≤

E[R(θT )]

x
(19)

where the first moment can be upper bounded as follows:

E[R(θT )] = −
1

θT
E[logΨ(θT )]

(a)

≤ −
1

θ
logE[Ψ(θT )]

(b)
= −

1

θT
log

(

1−

∫ 1

0

E
!o[Ps(t

− 1
θT − 1)]dt

)

(c)
= −

1

θT
log

(

1−

∫ 1

0

e−λIdt

)

= −
1

θT
log

(

1−

∫ 1

0

e−λπpr2C(α)(t−
1

θT −1)2/αdt

)

= −
1

θT
log

(

1− θT

∫ ∞

0

e−λπpr2C(α)y2/α

(1 + y)1+θT
dy

)

where I =

∫

R2

(

1−
1

1 + (t−
1

θT − 1)rα‖x−Ro‖−α

)

dx,

and C(α) = 2
αB(1 − 2/α, 2/α) with B(a, b) denoting the

beta function. Step (a) follows using Jensen’s inequality, (b) by

exchanging expectation and integration order (Fubini-Tonelli’s

Theorem), (c) from the probability generating functional of

the PPP. The first moment can be further bounded applying

Cauchy-Schwarz inequality in the integral inside the loga-

rithm.

A lower bound on the ccdf of the effective capacity can

be found using the Paley-Zygmund or the reverse Markov

inequality, which however involves the calculation of the

mean and the variance of R(θT ). Using the upper bound on

the Mellin transform based on the nearest interferer, we can

establish the following lower bound on the ccdf:

P
!0(R(θT ) > x) = P

!0(Mγ(1− θT ) < e−xθT )

≥ P
!0(Mu2

γ (1− θT ) < e−xθT )

= P
!0
(

Z−1/2 < ζ
)

= 1− e−λπr2ζ
4
α

where ζ = e−xθT −1
θT (1+2θT )−1/2 .

V. NUMERICAL RESULTS

In this section, we validate the above analysis and provide

numerical evaluation of the delay performance. The duration

of a slot is set to T = 1 ms and the blocklength is N = 100.

For the Poisson bipolar network we have a density of λ = 1
node/km2 and pathloss exponent α = 3.5.

We start by validating the upper bound on the delay viola-

tion probability with Monte Carlo simulations. In Figure 1, we

compare the delay violation probability and its bound for link

distance r = 0.3 km. We corroborate that the analytical bound

follow the trend of the simulated curve, having a difference

of about 1− 2 ms (equivalent to one to two slots).
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Figure 1. Delay violation probability and associated bound as a function of
the target delay for ρ = 32 kbps and ρ = 64 kbps.

In Figure 2, we compare the distribution of the delay

violation probability and that of the analytical bound for

ρ = 64 kbps r = 0.2 km. We observe that the analytical

bound becomes tighter for ω increasing.
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Finally, in Figure 3, we plot the delay violation probability

and its analytical bound as a function of the inter-node distance

r for two different values of ω. As expected, the more



stringent the delay constraint is, the closer the transmitter and

its intended receiver should be. Alternatively, for fixed link

distance, tighter delay constraints can be guaranteed for lower

density of interferers λ.
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Figure 3. Delay violation probability and associated bound as a function of
the link distance r for ρ = 64 kbps.

VI. CONCLUSIONS

We have investigated the delay performance of large wire-

less networks in the presence of statistical QoS constraints.

We have characterized the distribution of the conditional delay

violation probability and effective capacity in Poisson bipolar

networks. Our results provide useful insight into providing

delay guarantees in random spatial networks. From a broader

perspective, this paper is a first attempt to combine stochastic

network calculus with stochastic geometry as a means to quan-

tify the delay in wireless networks with spatial randomness.
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APPENDIX I

PROOF OF PROPOSITION 1

We start by deriving the conditional success probability

Ps(ξ), i.e., the probability that a transmission will be suc-

cessful by exceeding ξ conditioned upon Φ [19].

Ps(ξ) = P(SIRt > ξ | Φ)

= P
(

ht
oRo

r−α > ξIRo,t | Φ
)

(a)
= E (exp (−ξrαIRo,t) | Φ)

=E

(

exp
(

−
∑

x∈Φ\{o}
ξrαht

xRo
‖x−Ro‖

−α
1(x ∈ Φt)

)

| Φ
)

=
∏

x∈Φ\{o}
E
(

exp
(

−ξrαht
xRo

‖x−Ro‖
−α

1(x ∈ Φt)
)

| Φ
)

(b)
=

∏

x∈Φ\{o}

( p

1 + ξrα‖x−Ro‖−α
+ 1− p

)

.

where (a) and (b) follows because the fading coefficients are

i.i.d. random variables with exponential distribution of unit

mean.

Therefore, using integration by parts, we have

Mγ(s) =

∫ ∞

0

(1 + y)s−1dP(SIR < y | Φ)

= −(s− 1)

∫ ∞

0

(1 + y)s−2
P(SIR < y | Φ)dy

= 1 + (s− 1)

∫ ∞

0

(1 + y)s−2Ps(y)dy.
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