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Abstract—Cache-enabled networks have received increasing

attention in both wired and wireless settings. A big challenge for

the operator of such networks is to solve efficiently the content

placement problem, i.e., to decide how many caches to deploy in

the network and in which nodes. We study the content placement

problem for two classes of network optimisation objectives, the

first focusing on the minimisation of the sum of the shortest

paths and the second capturing the cost vs. benefit trade-off to

deploy a cache. We know from the state-of-the-art that, even

in small networks with few caches, it is unrealistic to find the

optimal solution in a reasonable timescale for similar optimisation

problems. In order to cope with this challenge, we present an

approach under the prism of network analysis. We introduce a

family of lightweight heuristic algorithms that use graph-theoretic

metrics that identify the most important nodes of the network.

We evaluate the performance of the heuristics using real network

datasets, showing that the best heuristics are based on the metrics

of betweenness centrality and degree centrality. Finally, we provide

a randomised version of the heuristics noticing that the same

metrics present again the best performance across the different

datasets. Moreover, we find out that, in general, the deterministic

version of each heuristic outperforms its randomised version.

I. INTRODUCTION

Nowadays, due to the increasing demand for mobile mul-
timedia content, operators face the challenge of redesigning
the wireless networks in order to enable high data-rate and
low-latency content delivery. Introducing cache-enabled wire-
less networks that store popular contents at the network edge
(gateway routers, base stations of different sizes, end-user
devices) has emerged as a promising candidate for future 5G
wireless networks since it has the potential to significantly
reduce the load at the backhaul [1].

The idea of cache-enabled networks has already been used
extensively in the wired domain; Content Delivery Networks
(CDNs) and Information-Centric Networks (ICNs) are exam-
ples of this. A CDN is an overlay network which consists of
a set of distributed servers placed in strategic locations that
replicate the content of the original server with the view to
decrease its load and reduce the latency by hosting contents
close(r) to the end-users [2]. ICN supports in-network caching
mechanisms to enhance content delivery, and thus each router
has storage space to cache frequently requested content [3].

In both wired and wireless cache-enabled networks, the
content placement problem is a key design challenge; the
operator needs to decide where and how many caches to
deploy. The decision depends on the optimisation metric such
as the minimisation of the network cost or the satisfaction

of the Quality-of-Service (QoS) of end-users. Three families
of approaches have been used to solve the content placement
problem: i) Find the exact solution of the optimisation problem.
The main disadvantage is that even some simple instances
of the content placement problem are NP-hard [4], meaning
that the exact solution cannot be computed in a reasonable
timescale and therefore finding the optimal solution has very
limited practical interest. ii) Solve a relaxation problem with
an approximation algorithm that has performance guarantees
of the returned solution to the optimal one in the original
problem. The main disadvantage is that many approximation
algorithms face difficult implementation issues or present im-
proved running time performance (over exact algorithms) only
on impractically large inputs. iii) Propose a heuristic algorithm.
This approach is simpler but there is no performance guarantee
of the heuristic.

In this paper, we study the content placement problem
in cache-enabled networks where the objective is either the
minimisation of the sum of the shortest paths or a metric that
quantifies the trade-off from the benefit of adding one cache
to the network with the cost to deploy it. Our contributions
are two-fold: i) We introduce a family of heuristic algorithms
that use network analysis metrics in order to identify the
most important nodes of the network [5]. These heuristics
have two appealing design features: First, they can be used
to solve both optimisation objectives, and, in principle, they
are directly applicable (with minor modifications) to any set of
similar optimisation objectives, even in adjacent fields (e.g., the
function placement problem in edge networks [6]). Second,
they are lightweight, since they can solve the content place-
ment problem in milliseconds, which is an appealing property
especially for wireless networks where the content changes
dynamically. ii) We compare the performance of the heuristics
using real network datasets and find out that two particular
heuristics, based on the betweenness centrality and the degree
centrality [5], perform better than the other heuristics in almost
all network topologies. Moreover, we present a randomised
version of the heuristics and find out that the same conclusion
holds. We also compare the randomised version with the
deterministic version and show that the latter outperforms the
former for the majority of the network topologies.

II. RELATED WORK

Authors of [4] survey content placement approaches in the
context of ICN networks. Many optimisation problems lead to



(a) Chain network. (b) Y-network. (c) A complex network.

Fig. 1: Three networks to illustrate how the metrics identify the most important nodes.

NP-hard formulations and a number of heuristics have been
proposed [7]. References [8] and [9] are the ones closest to
our work. The authors study the content placement problem in
a particular type of ICN called Content Centric Networking-
CCN. In order to decide where to place the content, they take
into account the path length reduction, the probability of a
content being requested by a user and the storage constraints.
They show that the optimisation problem is equivalent to a
variation of the general knapsack problem, which is NP-hard.
They then propose heuristics by choosing where to add the
content based on a number of graph-theoretic centrality metrics.

In our work, we also use three centrality metrics (degree
centrality, betweenness centrality, closeness centrality) that the
authors in [8] and [9] have used. One difference is that they
focus on different optimisation objectives; moreover, ours are
generic, whereas in [8] and [9], the objective is CCN-specific.
Another difference is that we analyse the performance of the
heuristics based on datasets from real network topologies. The
authors in [8] and [9] focus heavily on synthetic topologies;
they just use one dataset from a real network in [9]. Finally,
in our work, with the second objective function we take into
account the cost to deploy a cache. This factor is not captured in
[8], [9], since they consider physical storage constraints without
examining any techno-economic parameters so that the operator
can decide how many caches to deploy.

Reference [10] presents a comprehensive survey of content
placement algorithms in the context of CDNs. In some cases,
multiple algorithms are proposed; for example, [10] proposes
two heuristics where an initial placement of the servers take
place, following with a refinement procedure in order to remove
redundant contents and to reduce the operational cost further. In
general, the state-of-the-art does not consider centrality metrics
in the context of CDN. The only exception is [11], where
the authors use the betweenness centrality metric in order to
assign the end-user to a particular cache based on his QoS
requirements. This user-centric application of a centrality met-
ric is complementary to our network-centric analysis. Finally,
the authors in [12] introduce a different notion of centrality,
which is based on the content and assumes knowledge of the
content popularity.

In the wireless domain, the deployment of cache-enabled
base stations should take into account a number of wire-
less performance metrics, such as the outage probability and

average delivery rate as well as the effects of mobility [13].
In heterogeneous wireless networks, a user can retrieve the
requested content from many network endpoints, therefore
neighbouring caches should cooperate and avoid storing the
same objects multiple times [14]. Moreover, the problem of
caching has been studied along with multicast in [15], authors
showing that it is NP-hard and deriving heuristics with perfor-
mance guarantees. Centrality metrics have not been considered
in the context of wireless cache-enabled networks.

III. METRICS THAT IDENTIFY THE MOST IMPORTANT
NODES IN A NETWORK

In this section, we model a cache-enabled network as a graph
G = (V,E) with V, E, being the set of nodes and links
respectively. Since there is a bidirectional link between any
two connecting nodes, we consider only undirected graphs.
In this graph G, the operator is interested in identifying the
most important nodes. Towards this direction, we introduce the
following 4 centrality metrics [5].

• Degree centrality (DC): The degree of a node is its most
basic structural property, i.e., the number of its incident
links. DC chooses the nodes based on the analogy that
someone who has many friends is the most important.

• Betweenness centrality (BC): The node betweenness ex-
presses how often the node lies on the shortest path
between all the other nodes of the network. In case that
there are more than one shortest paths between two nodes,
BC corresponds to the fraction of them that run through
a particular node.

• Closeness centrality (CC): Closeness centrality of a node n
is defined as the inverse of the sum of the shortest distances
between n and every other node in the network. The lower
the total distance from all other nodes, the more central is
considered the node.

• Eigenenvector centrality (EC): Eigenvector centrality is
based on the premise that a node’s importance is deter-
mined by how important its neighbours are. Therefore, it
takes into consideration not only how central the node is
but also how central its neighbours are, using similar ideas
with the Google’s PageRank algorithm [5]. A high value
of EC implies that a node is connected to a lot of nodes
who themselves have high EC.

In Tables I and II, we present two numerical examples where
we compute the above metrics for a chain network and a



TABLE I: Centrality metrics for the chain network.

Metric A B C D E
DC 1 2 2 2 1
BC 0 3 4 3 0
CC 0.1 0.14 0.17 0.14 0.1
EC 0.5 0.87 1 0.87 0.5

TABLE II: Centrality metrics for the Y-network.

Metric A B C D E
DC 1 2 3 1 1
BC 0 3 5 0 0
CC 0.11 0.17 0.2 0.13 0.13
EC 0.41 0.77 1 0.54 0.54

Y-network that depicted in Figs. 1a, 1b. In these examples, the
ranking of the nodes is quite similar for all metrics. However,
there are some interesting variations. In the chain network, all
intermediates nodes have the same DC. However, when we use
the other metrics, node C which is in the middle of the topology
becomes the most important node. Consider e.g. the BC metric;
there are 4 shortest paths that pass through C instead of 3 that
pass through nodes B and D. In the Y-network, though nodes
A, D and E which are at the edge of the network have the same
DC and BC (the lowest one in the network), nodes D and E
are considered more important than node A when it comes to
EC. The reason is that they have as a direct neighbour node C,
which is more important than the unique neighbour of node A,
i.e., node B.

Besides these centrality metrics, we also use two metrics
that capture some local topological properties in a graph: the
coreness metric (CM) and the local clustering (LC) coefficient.
CM identifies tightly interlinked groups within a network: a
k-core of a graph G is a maximal subgraph of G in which
all nodes have degree at least k. Since we focus on connected
networks, by definition, all nodes have degree at least 1 and
belong to 1-core. Then, in order to compute the 2-core, we
need to remove nodes of degree 1 until everything that has left
has degree at least 2. On the other hand, the local clustering
coefficient of a node n is defined as the number of pairs of
neighbours of n connected by edges over the number of pairs
of its neighbours [5]. LC measures the extent to which one’s
friends are also friends of each other.

We illustrate these metrics in Table III using the network
of Fig. 1c (we do not use the chain and the Y-network, since
these metrics need more complex networks in order to classify
the nodes into different groups). A general comment is that
each node who belongs to 1-core has always a LC of 0.
Other than this, we notice that though node 5 has a degree
2, it belongs to 1-core, since its neighbour 6 has a degree
1. Regarding LC, node 7 has 3 neighbours and each pair of
them are also neighbours, therefore its LC is 1, which is the
maximum possible value.

IV. NETWORK OPTIMISATION OBJECTIVES AND
OUR HEURISTIC ALGORITHMS

Let G = (V,E) be a cache-enabled network and K be the set
of nodes with a cache. We assume that the caches are identical.
We denote with ln the shortest path between a node n 2 V and

TABLE III: CM and LC for the network of Fig. 1c.

1 2 3 4 5 6 7 8 9 10 11 12
CM 1 3 1 3 1 1 3 3 2 2 1 2
LC 0 0.3 0 0.4 0 0 1 0.33 1 0.33 0 1

a cache in K (ln=0 if n 2 K). In this work, we study the content
placement problem for the following two network objectives.

• Problem A: For a given cardinality K of the set K, find
whether a node n belongs to K so that the sum of the
shortest paths L =

P
n ln is minimised.

• Problem B: Given a fixed cost c per cache, find the
cardinality K of the set K and whether a node n belongs
to K so that the quantity

P
n ln + cK is minimised.

In order to solve these problems, we apply a heuristic
algorithm with six variations, each one for the metrics defined
in the previous section. The steps of the algorithm for the
problem A are:

1) For a given cardinality K of the set K and a particular
metric, the operator computes the nodes’ values for this
metric. The K nodes with the highest values belong to
K, breaking randomly the ties.

2) For each node n 2 V, the operator computes the mini-
mum shortest path ln.

3) The sum of the shortest paths L =
P

n ln corresponds to
the solution of the heuristic.

We stress that the solution corresponds to a local minimum,
not a global minimum. The latter would demand the computa-
tion of all possible combinations of deploying K caches, which
is practically too expensive, even when the operator is interested
in deploying a small number of caches.

Regarding problem B, there are some changes in the heuristic
algorithm. First, the operator needs to repeat V times the steps
1 and 2, since he does not know a priori whether the increase
in the cardinality of set K will increase or decrease the value
of the optimisation metric. Then, for each set of cardinality
K 2 {1, 2, . . . , V }, he computes the quantity

P
n ln + cK and

chooses the set K that minimises it.

V. PERFORMANCE EVALUATION:
NETWORK OPTIMISATION PROBLEM A

For the performance evaluation, we use as a benchmark 15
network topologies from around the world which are available
from the Internet Topology Zoo project (http://www.topology-
zoo.org/): BICS (33 nodes), BT Europe (24 nodes), Canerie
(32 nodes), Chinanet (42 nodes), DFN (58 nodes), Geant2012
(40 nodes), Grnet (37 nodes), HiberniaGlobal (55 nodes),
Nsfnet (13 nodes), RedIris (19 nodes), RNP (31 nodes), Sinet
(74 nodes), Sunet (26 nodes), VtlWavenet2011 (92 nodes),
Xspedius (34 nodes). We use wired networks since we are in-
terested in evaluating the heuristic algorithms in real topologies
and there is lack of appropriate wireless network datasets.

Fig. 2 presents six instances of the Geant2012 topology,
where, for the optimisation problem A with K = 4, we have
ran 1000 times the heuristic algorithm for each metric. The
colour of a node visualises the number of times that a cache
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(a) BC. Shortest paths’s sum L = 54.
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(b) EC. Shortest paths’s sum L = 71.
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(c) CC. Shortest paths’s sum L = 66.
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(d) CM. Shortest paths’s sum L = 74.4.
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(e) DC. Shortest paths’s sum L = 62.2.
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(f) LC. Shortest paths’s sum L = 80.6.

Fig. 2: Example of the nodes that each heuristic chooses when 4 caches should be deployed in the Geant2012 topology. Green
color means that this node gets a cache for less than 50% of the experiments, red that it gets a cache for more than 50% of the
experiments, black that it never gets a cache.
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Fig. 3: Performance of the heuristics for the Geant2012 topology for the objectives of problems A and B.

has been deployed in this node. We use red for the case that
this node has been selected at least 500 times, green for 1-499
times and black when it is never selected. For BC and EC, the
choice of the nodes was fixed; this means that 4 nodes had
higher values for these metrics than all the other nodes. On the
other hand, for the other metrics, we need to break ties and
therefore more nodes have a chance to deploy a cache.

Regarding the performance of the heuristics, BC is the best
heuristic, following by DC, CC, EC, CM and LC. We notice
that BC shares two nodes with EC, CC and DC. Since BC
performs better than the other metrics, we conclude that the
other two nodes that it chooses are better candidates for the
objective of problem A. Moreover, we note that LC has three

fixed nodes which are found at the edges of the network and
have no overlap with the choices of BC, EC, CC and DC.
Apparently, these are not good choices for the optimisation
metric. Finally, 32 nodes have the same CM and therefore
the choice of the caches follows a uniform distribution among
them, performing worse than BC, EC, CC and DC.

Then, we expand our analysis as the number of caches varies
from 1 to 40 (all nodes have a cache). As expected, the sum
of the shortest paths decreases with the number of caches,
ending up to 0 for the (unrealistic) case that all nodes have
a cache. Moreover, we notice from Fig. 3a that for a large
number of caches, all metrics converge to the same point. This
is reasonable since the heuristics tend to choose the same set
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Fig. 4: Relative performance of the heuristics and statistics on the number of caches.

of nodes to deploy a cache and the impact of having a couple
of different nodes is small. For a smaller number of caches,
DC (the simplest metric) and BC rank higher than the other
metrics for the Geant2012 topology. We will identify whether
this is a representative trend in the next section where we will
study the network optimisation problem B.

VI. PERFORMANCE EVALUATION:
NETWORK OPTIMISATION PROBLEM B

We analyse the performance of the heuristics for the network
optimisation problem B for the Geant2012 topology with a
numerical example where the cost to deploy a cache is c=4. We
ran the heuristics for 10000 times per topology. As expected,
the optimisation metric is not a monotonic function of the
number of caches. As we can see from Fig. 3b, when a lot
of caches have been deployed, the addition of one more cache
increases the value of the objective. This is reasonable since, in
these cases,the marginal benefit from adding a cache is lower
than the marginal cost. Moreover, we notice that the global
minimum for each metric lies between 4 and 8 caches with
DC and BC being again the best metrics.

Next, we are interested in comparing the performance of
the six heuristics across the 15 network topologies. Though
the exact performance of the heuristics is topology dependent,
we aim at identifying whether we can rank the metrics and
whether there are some general trends. Towards this direction,
we compute for each network topology the best performance
for each metric. Then, we compute the normalised ratio y of
the best performance of metric i over the best metric for this
topology. Apparently, with this normalised metric y, the closer
the value is to one, the better is the performance of the metric.

In order to visualise the performance of the six heuristics, we
use boxplots. The bottom and top of the box are the first and
third quartiles, and the red band inside the box is the median.
The whiskers extend to the most extreme data points which are
not outliers, and the outliers are plotted individually. From Fig.
4a, it is clear that BC is the best metric, performing better than
the other metrics for 13 out of 15 network topologies. This
is a clear indication that the way that BC chooses the nodes,
evaluating how often the node lies on the shortest path between
all the other nodes, is the best criterion for the optimisation
problem B. Besides BC, DC is ranked 2nd with a quite close
performance to BC and very small variance. The third best

metric is CC. Then, EC and CM are quite close with the former
having a lower median value but a higher variance and whiskers
than the latter. Finally, LC admits the worst performance both
in terms of median value and in terms of the variance. It is
worth mentioning that LC works very well for the topology
VtlWavenet2011, which is the only one that BC underperforms.
This topology consists of four back-to-back clusters where most
nodes have degree 2 and local clustering coefficient 0. For
such topology, it works better to choose the nodes from a
uniform distribution and, therefore, DC and LC present the best
performance. Finally, Fig. 4b depicts the boxplot of the number
of caches for each metric. Ignoring the outliers that correspond
to VtlWavenet2011, the optimal number of caches for the cost
c = 4 is consistently less than 10.

VII. A RANDOMISED VERSION OF THE HEURISTICS

In this section, we present a randomised version of the
heuristics. Contrary to the deterministic version, a node n is
chosen probabilistically, with a probability which is equal to

vnPV
i=1 vi

, where vn is the value for node n for the metric that
the heuristic uses. The motivation for this randomised version is
to give the chance to a heuristic to correct a potentially wrong
choice of its deterministic version.

We evaluate the performance of the randomised version
focusing on the optimisation problem B. We study exactly the
same setup with the deterministic version of the heuristics.
Initially, we present the boxplot based on the normalised
metric y. As we can see from Fig. 5a, the randomised version
of BC is again the best metric; even the unique outlier for
VtlWavenet2011 is pretty close to the optimal metric, implying
that there is an improvement for the relative performance of
the randomised BC for this topology. DC is ranked again as
the 2nd best metric (with higher variance than the deterministic
DC but still small). Then, CC and CM are quite close in the
performance, following by EC which has a higher median value
but lower variance than CC and CM. Moreover, again LC
presents the worst performance, which however is closer to
the optimal performance than its deterministic version. Finally,
regarding the number of caches, as Fig. 5b reveals, the trend
is quite similar with the deterministic version. For almost all
cases, less than 10 caches are needed in order to optimise the
objective of problem B.
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Fig. 5: Relative performance of the randomised version of the heuristics and statistics on the number of caches.
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randomised version.

Finally, we compare the performance of each deterministic
heuristic with its randomised version. For this reason, we
compute the ratio of the best performance of a deterministic
heuristic over the best performance of the randomised heuristic
for each topology and present the outcome using boxplots in
Fig. 6. It is clear that, excluding LC, the deterministic heuristic
outperforms the randomised heuristic; only some whiskers and
outliers are better for the randomised version. Even for the case
of LC, the benefit from the randomised metric is small and not
guaranteed. We conclude that, in general, it is better to stick to
the choices of the deterministic metrics.

VIII. CONCLUSIONS

Motivated by the stringent need for extremely fast cache
placement decisions in cache-enabled wireless networks where
even end-users (through device-to-device communications) and
other edge devices (through mobile edge computing) could
potentially host caches, we introduce a family of lightweight
content placement heuristics. Based on graph-theoretic metrics
that measure instantly the importance of the nodes in the
network, our heuristics are directly applicable for a number
of network optimisation objectives. For the two objectives that
we explicitly analysed their performance through real network
datasets, our experiments revealed that betweenness centrality
and degree centrality are ranked consistently higher than the
other heuristics. Moreover, the deterministic version of the
heuristics perform better than the randomised version.

Potential future directions include the performance
evaluation with different objective functions, the analysis

of their scalability with synthetic topologies, and
machine learning extensions to predict content popularity.

IX. ACKNOWLEDGMENT
The work presented in this paper was supported by the EU

funded H2020 ICT project POINT, under contract 643990.

REFERENCES

[1] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: Technical misconceptions and business barriers,” IEEE Commu-
nications Magazine, vol. 54, no. 8, pp. 16–22, 2016.

[2] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi, “Orchestrating mas-
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