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Abstract—We study the problem of broadcasting real-
time flows in multi-hop wireless networks. We assume that
each packet has a stringent deadline, and each node in
the network obtains some utility based on the number of
packets delivered to it on time for each flow. We propose a
distributed protocol called the delegated-set routing (DSR)
that incurs virtually no overhead of coordination among
nodes. We also develop distributed algorithms that aim to
maximize the total timely utility under DSR. The utility of the
DSR protocol and distributed algorithms are demonstrated
by both theoretical analysis and simulation results. We show
that our algorithms achieve higher timely throughput even
when compared against centralized throughput optimal
policies that do not consider deadline constraints.

I. INTRODUCTION

Mutli-hop broadcasting in wireless networks, which
entails disseminating information to every device in the
system via retransmissions at multiple nodes, is an im-
portant mechanism to coordinate devices in networked
systems. Furthermore, many applications of broadcast
communications are safety-critical, and timely deliveries
of information is crucial to maintain the robustness and
safety of the system. For example, multi-hop broadcast-
ing is needed to disseminate timely safety information
among connected vehicles in vehicular ad hoc networks
(VANETs), to announce control decisions in networked
control systems and Internet of Things (IoT), and to
exchange locations and flight paths among unmanned
aerial vehicles (UAVs) for Unmanned Aircraft System
Traffic Management (UTM).

The cellular infrastructure that will enable these time-
critical broadcast wireless applications will be 5G net-
works that are currently being designed to support
ultra-low latency, ultra-high throughput communications.
These networks will utilize the highly directional and
high bandwidth mm-wave band, which suffers from high
attenuation and sensitively to fading. This requires the
relatively dense deployment of small base stations at spac-
ings of about 250 m. However, providing fiber backhaul
to all of these base stations is prohibitively expensive.
An important development in this context is Integrated
Access and Backhaul (IAB) [1], [2], under which there
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are a few base stations with fiber backhaul that act as
gateways to many others that are connected via a mm-
wave wireless mesh backhaul. This mm-wave backhaul
creates a directional wireless network between the nodes,
but routing across these is highly dynamic and subject to
the vagaries of the wireless channel. The same mm-wave
spectrum also is used to provide access to end-users, i.e.,
both access and backhaul are integrated over mm-wave.

Motivated by the above features of emerging networks,
this paper studies the problem of designing algorithms for
broadcasting real-time flows with strict per-packet end-
to-end deadlines in directional wireless mesh networks.
Here, real-time flow imposes a strict deadline for each of
its packets, and packets that cannot be delivered before
their respective deadlines are dropped from the system.
From the IAB perspective, our goal is to ensure that each
broadcast packet is delivered to an appropriate IAB base
station before its deadline, at which point it is immedi-
ately transmitted to its respective end user. Each IAB node
in the network then obtains some utility based on the
time-average number of on-time packets that it receive
from each flow. The goal of this paper is to maximize the
total timely-utility of the whole network.

There are several important challenges that need to
be addressed for broadcasting real-time flows in such
multi-hop mmWave networks. First, since it is difficult
to coordinate a large network in real-time, centralized
algorithms that require the instant knowledge of the state
of each node and packet are usually infeasible to imple-
ment. Hence, we need distributed algorithms, where each
node makes decisions using its local information. Second,
as mentioned above, transmissions in the mmWave band
can be unreliable. Finally, broadcasting algorithms need to
explicitly address the deadline requirement of each flow.

Main Results and Organization

In this paper, we propose a new protocol for broad-
casting in multi-hop mmWave networks, namely, the
delegated-set routing (DSR) protocol. DSR has two impor-
tant features: First, it is a distributed protocol where all
the required coordination among nodes can be conveyed
in the headers of packets once the topology of the net-
work is known. Hence, there is virtually no overhead of
coordination after topology creation process. Second, DSR



allows each node to dynamically change its transmission
strategies based on the deadlines of its packets and ran-
dom events, such as transmission failures, it experiences.

Relaxing the link utilization constraint (number of tran-
missions allowed per time slot) to an average one, and
using dual decomposition techniques, we also propose
a distributed algorithm that aims to maximize the to-
tal system-wide utility under DSR. This algorithm only
requires minimal and infrequent information exchange
among nodes. We analytically prove that our algorithm
achieves the optimal total utility under an average link ca-
pacity constraint. The key novelty lies in a natural decom-
position into packet-by-packet and link-by-link updates
that need minimal coordination. These lead to a steepest-
ascent-type control associated with each packet, and a
sub-gradient type of update at links. This algorithm also
gives rise to a simple index policy when link utilization
constraints of all links need to be satisfied at every instant.

We evaluate our algorithms through simulations on rep-
resentative network graphs. We compare our algorithms
against recent studies on throughput optimal algorithms,
including one that is designed specifically for broadcast,
and one that is universal in terms of being able to support
unicast, multicast and broadcast. We show that despite
some of these algorithms being centralized and complex,
our algorithm, which is designed specifically for simplicity
and delay optimality, achieves better performance.

The paper is organized as follows. Section II reviews
existing studies on broadcasting and multi-hop networks.
Section III describes our system model for multi-hop net-
works with real-time broadcast flows. Section IV describes
the additional structure imposed by the DSR protocol,
as well as an epoch-wise approach to policy selection.
Section V applies dual-decomposition, which turns out
to be the basis of our distributed algorithm. Section VI
proposes distributed algorithms that optimize DSR, as
well as the index policy that can ensure hard capacity
constraints are met. Section VII presents our simulation
results. Finally, Section VIII concludes the paper.

II. RELATED WORK

Broadcasting/multicasting is a fundamental functional-
ity of networks, and has been studied in a substantial
body of literature. One of the earliest policies for broad-
casting/multicasting in ad hoc networks is via flooding
[3], [4]. However, such policies can lead to severe packet
collision frequency, and excessive redundant retransmis-
sions, as shown by Ni et al. [5]. Gandhi et al. [6]
and Huang et al. [7] have shown that the problem of
minimizing delay in wireless ad hoc networks is NP-hard,
and have proposed approximation algorithms aiming to
reduce delay. These studies rely on centralized algorithms.

There has been much interest in throughput optimal
broadcasting/multicasting. For instance, Sarkar and Tassi-
ulas [8] proposed a scheduling and routing policy that re-
lies on pre-computed spanning trees, which might be diffi-

cult to maintain and compute in scalable sized networks.
Ho and Viswanathan [9] and Yuan et al. [10] propose
network coding based policies in the context, which, how-
ever, leads to additional computation complexity. Zhang
et al. [11] and Sinha et al. [12] consider multi-hop broad-
casting problems in Directed Acyclic Graphs (DAG), which
are not applicable to networks with arbitrary topology.
Sinha et al. [13] also propose a centralized throughput
optimal broadcasting policy for networks with arbitrary
topology, which might be difficult to deploy in a large
scale system. Furthermore, the throughput maximization
focus of all the above does not directly allow for meeting
stringent deadline guarantees.

Given the rising application of wireless networks to
safety-critical and realtime applications, there has been
much recent interest in deadline constrained multi-hop
communication. Xiong et al. [14] proposed a delay-
aware throughput optimal policy for multi-hop networks.
Their policy, however, can not provide stringent delay
guarantees. Mao et al. [15] propose a hard deadline
guaranteed policy, under the assumption that all routes
in the network are fixed. Li and Eryilmaz [16] consider
serving flows with stringent deadlines in a multi-hop
system, and their proposed framework can be extended
to incorporate routing decisions. However, their policies
are heuristic, and optimality cannot be shown. Singh and
Kumar [17] relax the deadline constrained optimization
problem in the manner of the Whittle’s relaxation for
multi-armed bandits, and proposed decentralized optimal
solutions. However, both it and the above body of work
on deadline constrained communication only considers
unicast traffic, and it is not clear how it applies to
broadcasting/multicasting networks.

III. SYSTEM MODEL

We consider a multi-hop network that consists of N
wireless nodes operating in the mmWave band motivated
by the IAB system. Here, the nodes correspond to fixed
IAB base stations, and the network topology is known to
all nodes. The available spectrum is divided into multiple
half-duplex channels, and nodes can use these channels
to send and receive packets from multiple nodes simul-
taneously. Furthermore, these channels are directional
in that transmissions on different links do not interfere
with each other, consistent with empirical observations in
IAB test deployments [2]. These links can have different
constraints on the supportable number of transmissions
in each time slot, as well as their reliabilities.

Time is slotted and numbered as t = 1, 2, . . . . We as-
sume that link l can transmit Tl packets in each time slot,
and that each transmission will be successfully received
by the receiver with probability Pl. At the end of each
time slot, the receiver sends an aggregated ACK indicating
which packets it has successfully received in the time
slot to the transmitter. Where we need to indicate the



transmitter and the receiver of a link, we use l = n→ m
to indicate that link l has transmitter n and receiver m.

We consider F real-time broadcast flows, using sf to
indicate the source node of flow f . At the beginning of
each time slot t, af (t) packets of flow f arrive at node
sf . We assume that [af (1), af (2), . . . ] is a sequence of
i.i.d. random variables with mean Af . Moreover, each
flow f specifies a per-packet end-to-end deadline of Df

time slots. Packets from flow f are only useful for Df

time slots from their respective arrival times at their
source nodes, and are dropped from the network when
they expire. Due to communication constraints, it is likely
that some nodes cannot receive all packets from each
flow. We therefore measure the performance of node n
on flow f by its timely-throughput, defined as the long-
term average number of packets from flow f that are
successfully delivered to node n within the deadline per
time unit.

Let Ω be a set of stationary packet scheduling policies.
Hence, given the state of the system consisting of the
locations and expiry times of all existing packets, a policy
ω ∈ Ω is a rule that decides which packet to transmit
on what link, subject to communication constraints. For
each stationary policy ω ∈ Ω, let xωn,f (t) be the number
of packets from f that are delivered to n at time t under
ω, i.e., these are the packets that survived the deadline
constraint. Also, let εωl,f (t) be the number of packets from
flow f transmitted over link l at time t under ω. Since
ω is a stationary policy, and all packets that expire are
immediately dropped, we can define

µωn,f := lim inf
T→∞

∑T
t=1 x

ω
n,f (t)

T

as the timely-throughput of node n on flow f under ω,
and

ε̄ωl,f := lim sup
T→∞

∑T
t=1 ε

ω
l,f (t)

T

as the average number of transmissions for flow f over
link l under ω.

Now, finding the optimal total utility with respect to
timely-throughputs over all the N nodes under DSR is
equivalent to finding the stationary policy that maximizes
the total timely-utility under link utilization constraints,
which can be written as

Relaxed Timely-Utility Maximization (R-TUM)

Max
N∑
n=1

F∑
f=1

Un,f (µωn,f ) (1)

s.t. ω ∈ Ω, (2)
F∑
f=1

ε̄ωl,f ≤ Tl,∀l. (3)

Notice that whereas the R-TUM problem above requires
each delivered packet to satisfy its deadline constraint, it

only requires that the long-term average number of trans-
missions over link l,

∑F
f=1 ε̄

ω
l,f be no larger than Tl. This

link utilization constraint relaxation is in the same manner
as [17]. In a practical system, such a relaxation might be
akin to imposing an average transmit power constraint
rather than a hard one. We will first design policies that
pertain to this relaxed link-utilization constraint. Using
the insights gained, we will also develop a policy that
enforces a hard link-utilization constraint, i.e.,

F∑
f=1

εωl,f (t) ≤ Tl,∀l, t. (4)

Solving the R-TUM problem could be posed as a Markov
Decision Process (MDP), where the state of the system at
any given point of time consists of the locations and expiry
times of all existing packets. However, such a solution is
infeasible to implement in practice. First, it is straight-
forward to show that the number of different system
states is at least doubly exponential in N , and hence
standard algorithms for finding the optimal MDP-based
solution will result in prohibitive complexity. Second, even
after one finds the optimal MDP-based solution, it may
be impossible to implement it in a distributed fashion,
since the complete state needs to be known at each node.
In what follows, we impose additional structure on the
policy space to render it tractable.

IV. A STRUCTURED APPROACH TO REAL-TIME

BROADCASTING

We now introduce two elements of structure to the
policy space to enable its solution as a distributed convex
optimization problem.

A. Delegated-Set Routing (DSR)

Ensuring a per-packet deadline guarantee requires that
we retain flexibility in routing to dynamically choose the
next hop node for a packet based on current state. Thus,
source routing on a per-packet basis is not satisfactory.
However, for distributed implementation, we also need to
ensure that there is no ambiguity as to which neighboring
node is responsible for transmitting a packet to a given
node. We resolve these seemingly opposite requirements
via a protocol that we term delegated-set routing (DSR).

For each node n that possesses a packet i at time
t, we define the delegated-set of node n as the subset
of nodes that n is responsible for forwarding packets,
possibly through multi-hop transmissions. First, to ensure
routing flexibility, whenever a node n decides to forward
a packet to another node m, node n delegates a subset
of its own delegated-set to m, and specifies this subset in
the packet header. If the transmission is successful, this
subset is removed from the delegated-set of n, since it
is now the responsibility of m to forward the packet to
this subset. Second, in order to avoid duplicate transmis-
sions (ambiguity on which node should transmit a given



packet), the DSR protocol requires that the delegated-sets
of different nodes for the same packet are chosen to be
disjoint.
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Fig. 1. An example illustrating DSR.

To illustrate how DSR works, consider the network as
shown in Fig. 1. When a packet arrives at the source
node sf , the delegated set of sf is every node in the
network, since it is the responsibility of sf to broadcast
the packet to the entire network. Suppose in the first
time slot, sf transmits the packet to A, and delegates the
subset {A,C,D} to A. If the transmission is successful,
the delegated-set of sf becomes {sf , B,E}, while the
delegated-set of A is {A,C,D}. In the next time slot,
when sf transmits the packet to B, it needs to delegate
the subset {B,E} to B. In particular, sf cannot include
node D in the delegated-set for B, since D is already in
the delegated-set of A.

We note that the ability to dynamically adjust routing
decisions is an important feature that distinguishes DSR
from many existing studies on multi-hop broadcasting,
such as [13] and [8]. These studies adopt source-routing,
where the source node determines the routing decision of
each packet, and intermediate nodes cannot change the
decision. As sf cannot foresee whether the transmissions
from A to C will be successful, it cannot take an optimal
routing decision.

B. Epoch-wise Stationary Policies

Our second aspect of adding structure to the policy
space is to expand it from Ω, the set of all stationary
policies, to the set of all epoch-wise stationary policies.
In an epoch-wise stationary policy, time is divided into
epochs of equal length. The epoch-wise stationary policy
adopts a stationary policy ω+[i] in each epoch i. The
duration of an epoch is chosen to be large enough so
that the average performance of ω+[i] in epoch i is not
influenced by the system state at the beginning of the
epoch. Specifically, an epoch-wise stationary policy is
defined as follows:

Definition 1. An epoch-wise stationary policy is a sequence
of stationary policies ω+ = (ω[i])∞i=1, ω[i] ∈ Ω), where ω[i]
is used in epoch i. The length of an epoch is chosen so that,
under ω+,

µω
+

n,f := lim inf
T→∞

∑T
t=1 x

ω+

n,f (t)

T
= lim inf

I→∞

∑I
i µ

ω[i]
n,f

I
,

and

ε̄ω
+

l,f := lim sup
T→∞

∑T
t=1 ε

ω+

l,f (t)

T
= lim sup

I→∞

∑I
i ε̄
ω[i]
l,f

I
.

We can now define Ω+ as the set of all epoch-wise
stationary policies. For each epoch-wise stationary policy
ω+, let γω

+

:= [[µω
+

n,f , 1 ≤ n ≤ N, 1 ≤ f ≤ F ], [ε̄ω
+

l,f , 1 ≤ l ≤
L, 1 ≤ f ≤ F ]] be the vector of timely-throughputs and
average link uses under ω+. Also, let Γ := {γω+ |ω+ ∈ Ω+}
be the set of attainable vectors of timely-throughputs and
average link uses under all epoch-wise stationary policies.
An important advantage of considering the policy space
Ω+ is that Γ is a convex set.

Lemma 1. Γ is convex.

Proof. The proof is is provided in [18].

Since Γ is a convex set, it is straightforward to verify
that the optimization problem (1)–(3) subject the policy
space Γ is a convex optimization problem.

V. SOLUTION OVERVIEW

Although the problem R-TUM, (1) – (3), is convex,
solving it directly remains challenging because there is no
simple characterization of Γ. In this section, we present
a general framework of solving R-TUM through dual
decomposition. The exact distributed algorithm based on
DSR will be presented in the next section.

A. Dual Problem Formulation

Let λl be the Lagrange multiplier with respect to the
constraint

∑F
f=1 ε̄

ω+

l,f ≤ Tl in (3), and λ be the vector of
all λl, l = 1, 2, . . . , L. The Lagrangian of R-TUM is then

L(γω
+

, λ) =

N∑
n=1

F∑
f=1

Un,f (µω
+

n,f )−
L∑
l=1

λl

 F∑
f=1

ε̄ω
+

l,f − Tl

 ,

(5)

and the dual objective function is

D(λ) = max
γ∈Γ
L(γ, λ). (6)

The dual problem of R-TUM is to find a non-negative
vector λ that minimizes D(λ).

We first show that strong duality holds for R-TUM.

Theorem 1. Let P∗ be the optimal solution to R-TUM, and
D∗ := minλ:λl≥0,∀lD(λ), then P∗ = D∗.

Proof. The proof is provided in [18].

Hence, solving R-TUM is equivalent to solving the dual
problem, which consists of two steps: First, given a vector
λ, we need to find the dual objective function D(λ).
Second, we need to find the vector λ that minimizes D(λ).



B. Packet-By-Packet Decomposition for the Dual Objective

We first present an iterative algorithm that finds D(λ) =
maxγ∈Γ L(γ, λ) for a given λ using the steepest ascent
algorithm. For each stationary policy ω, let γω be defined
to be the vector of timely-throughputs and link usages
under ω. Then the steepest ascent algorithm constructs a
sequence of epoch-wise stationary policies that ultimately
converges to the optimal epoch-wise stationary policy. The
algorithm proceeds as follows:
1) Set k ← 1
2) Let ω+

k be the round-robin epoch-wise
stationary policy that follows the sequence
{ω1, ω2, . . . , ωk, ω1, ω2, . . . , ωk, . . . }.

3) Let ωk+1 be the stationary policy that maximizes the
directional derivative, ∇L(γω

+
k , λ) · γωk+1 .

4) Set k ← k + 1 and repeat step 2.
Based on our construction of ω+

k , we have γω
+
k =∑k

j=1 γ
ωj

k . Therefore γω
+
k+1−γω

+
k = γωk+1−γω

+
k

k+1 . Effectively,
for each k, our steepest ascent algorithm finds ω+

k+1 that
maximizes the directional derivative ∇L(γω

+
k , λ)·(γω

+
k+1−

γω
+
k ) among all epoch-wise stationary policies with step

size 1
k+1 . Following the analysis presented in Boyd et al.

[19] Section 9.4.3, it is straightforward to show the
following:

Theorem 2. Under our steepest ascent algorithm,
L(γω

+
k , λ) converges to D(λ), as k →∞.

Notice that the critical step in our steepest ascent policy
is to find ωk+1 that maximizes∇L(γω

+
k , λ)·γωk+1 . We have

∇L(γω
+
k , λ) · γωk+1

=
∑
n,f

∂

∂µn,f
L(γω

+
k , λ)µ

ωk+1

n,f +
∑
l,f

∂

∂ε̄l,f
L(γω

+
k , λ)ε̄

ωk+1

l,f

=

F∑
f=1

{
N∑
n=1

U ′n,f (µ
ω+
k

n,f )µ
ωk+1

n,f −
L∑
l=1

λlε̄
ωk+1

l,f

}
.

This naturally gives us a flow-by-flow decomposition in
the sense that ∇L(γω

+
k , λ) · γωk+1 can be maximized by

maximizing
N∑
n=1

U ′n,f (µ
ω+
k

n,f )µ
ωk+1

n,f −
L∑
l=1

λlε̄
ωk+1

l,f (7)

for each flow f individually. Moreover, note that, after
normalizing with the average packet arrival rate of flow
f , µωk+1

n,f is the average delivery per-packet from flow f to
node n, and ε̄ωk+1

l,f is the average number of transmissions
per packet over link l for flow f .

For each packet i from flow f, let yn,f,i be a random
variable representing the event that packet i is success-
fully delivered to node n within its deadline of df . Also, let
zl,f,i be the random variable indicating the number times
that link l transmits i. Then E[yn,f,i] is the success prob-
ability that packet i is delivered to node n, while E[zl,f,i]

is the expected number of times that link l transmits i.
Therefore, from (7), maximizing ∇L(γω

+
k , λ) · γωk+1 can

be achieved by maximizing

N∑
n=1

U ′n,f (µ
ω+
k

n,f )E[yn,f,i]−
L∑
l=1

λl E[zl,f,i] (8)

for each packet i.
We note that such packet-by-packet decomposition al-

lows distributed algorithms for finding the optimal solu-
tion since, instead of considering the system state as a
whole, each packet only needs to maximize (8) on its
own, without considering the states of other packets.

C. Link-by-Link Update for the Dual Problem

After finding D(λ), we now proceed to find the solution
to the dual problem, minλ:λl≥0,∀lD(λ). Our solution is
based on the subgradient method. We first find the sub-
gradient of D(λ).

Theorem 3. Let γ(λ) = [[µn,f (λ)], [ε̄l,f (λ)]] :=
arg maxγ∈Γ L(γ, λ), then the L-dimensional vector [Tl −∑F
f=1 ε̄l,f (λ)] is a subgradient for D(λ).

Proof. The proof is provided in [18].

The subgradient method finds the optimal λ that min-
imizes D(λ) iteratively. Starting with an arbitrary vector
λ(1), the subgradient method finds λ(k+ 1) = [λl(k+ 1)]
by setting

λl(k + 1) =

λl(k)− βk

Tl − F∑
f=1

ε̄l,f (λ(k))

+

, (9)

where x+ := max{0, x}.

Theorem 4. If the sequence βk is chosen so that βk ≥
0,∀k,

∑∞
k=1 βk =∞, and limk→∞ βk = 0, then D(λ(k))→

minλ:λl≥0,∀lD(λ), as k →∞.

Proof. This is the direct result of Theorem 8.9.2 in [20].

Recall that
∑F
f=1 ε̄l,f (λ(k))) is the average number of

transmissions that link l makes. Therefore, for link l to
update λl by (9), link l only needs to know its own
link constraint and the number of transmissions it makes.
Hence, this subgradient method allows for a distributed
update of λl.

VI. OPTIMIZATION OF DSR

Under DSR, the transmission strategy for a node hav-
ing a packet i consists of two parts: determining which
node to transmit the packet i to, and determining what
delegated-set to assign to the receiver. In this section, we
discuss the optimal transmission strategy that maximizes
(8) under the design of DSR.

Fix a packet i from flow f . For each subset of nodes π,
let Lπ be the set of links whose transmitter and receiver



are both in π. Also, for each node n, subset of nodes π,
and integer τ ∈ [0, df ], define

Wf (n, π, τ) =

max

(∑
k∈π

U ′k,f (µ
ω+
k

k,f )E[yk,f,i]−
∑
l∈Lπ

λl E[zl,f,i]

)
(10)

if node n receives the packet i and delegated-set π, and
the packet i has τ time slots before meeting its deadline.

By the definition of Wf (n, π, τ), finding the optimal
transmission strategy that maximizes (8) is equivalent to
finding the value of Wf (sf , {1, 2, . . . , N}, df ), as well as
the transmission strategy that achieves it.

We use dynamic programming to find Wf (n, π, τ). Sup-
pose node n receives the packet i and delegated-set π,
and packet i has τ time slots before meeting its deadline.
Also suppose that node n decides to transmit the packet
to m and designates the delegated-set πm to m. If the
transmission is successful, then, in the next time slot, node
n has a delegated-set of π−πm, node m has a delegated-
set of πm, and packet i has τ − 1 time slots before its
deadline. By the definition of Wf (·), we have, given that
the transmission is successful,

max

(∑
k∈π

U ′k,f (µ
ω+
k

k,f )E[yk,f,i]−
∑
l∈Lπ

λl E[zl,f,i]

)
= Wf (n, π − πm, τ − 1) +Wf (m,πm, τ − 1)− λn→m.

(11)

On the other hand, if the transmission fails, then, in the
next time slot, node n still has the delegated-set π and
packet i has τ − 1 time slots before its deadline. Given
that the transmission fails, we have

max

(∑
k∈π

U ′k,f (µ
ω+
k

k,f )E[yk,f,i]−
∑
l∈Lπ

λl E[zl,f,i]

)
= Wf (n, π, τ − 1)− λn→m. (12)

Since each transmission from n to m succeeds with
probability Pn→m, we have, given that n transmits packet
i and assigns delegated-set πm to m,

max

(∑
k∈π

U ′k,f (µ
ω+
k

k,f )E[yk,f,i]−
∑
l∈Lπ

λl E[zl,f,i]

)
= Pn→m × (11) + (1− Pn→m)× (12). (13)

Based on the above analysis, we can write down the
following iterative equation:

Wf (n, π, τ) = max{Wf (n, π, τ − 1),

max
m,πm:m∈πm,πm⊂π

[Pn→m(Wf (n, π − πm, τ − 1)

+Wf (m,πm, τ − 1)) + (1− Pn→m)Wf (n, π, τ − 1)

− λn→m]}, (14)

with boundary condition

Wf (n, π, 0) = ri,n = U ′n,f (µn,f ), (15)

where the term Wf (n, π, τ − 1) in (14) represents the
case when n does not transmit the packet at all. Eq. (14)
and (15) allows a dynamic programming algorithm to
find Wf (n, π, τ) for all f, n, π, and τ . As we will show
in Section VII, our algorithm can be easily carried out in
medium-sized networks.

A. Index-DSR for Per-Time-Slot Link Constraint
The Dynamic Program in (14) can be directly combined

with the dual decomposition in Section V to achieve the
optimal solution of R-TUM problem under DSR. In this
section, we further propose an index policy that satisfies
the per-time-slot link utilization constraint

∑
i,v εi,v,l(t) ≤

Tl, for all t, of the original TUM problem. The index-
DSR policy would be to transmit the maximum number
of packets among all possible packets to be transmitted
so that the per-time-slot link constraint is not violated.

We make several changes to the dynamic program and
the dual decomposition technique. First, we change the
iterative equation (14) to

Wf (n, π, τ) =

max
m,πm:m∈πm,πm⊂π

[Pn→m(Wf (n, π − πm, τ − 1)

+Wf (m,πm, τ − 1)) + (1− Pn→m)Wf (n, π, τ − 1)

− λn→m]}, (16)

as long as there is a link from n to another node in π,
and

Wf (n, π, τ) = Wf (n, π, τ − 1), (17)

otherwise. In other words, we force each node n to find
a link to transmit each packet. We also define m∗(n, π, τ)
and πm∗(n, π, τ) as the optimal m and πm that achieves
Wf (n, π, τ). We note that, since we now force each node
n to find a link to transmit each packet, it is possible that
Wf (n, π, τ) is negative for some (n, π, τ).

Second, in each time slot t and for each link n → m,
we find all packets possessed by n with delegated-set π, τ
slots until their respective deadlines, and m∗(n, π, τ) = m.
We sort these packets in descending order of Wf (n, π, τ),
and let ε′n→m(t) be the number of these packets with
Wf (n, π, τ) > 0. In other words, ε′n→m(t) is the number
of packets whose optimal strategy yields a positive return
by transmitting over the link n→ m. After sorting these
packets, link n→ m simply transmit the first Tn→m pack-
ets. Finally, the price of each link is updated by (9).

VII. SIMULATION RESULTS

In this section, we present simulation results that
compare the performance of our policy against a policy
proposed in [21] called Universal Max-Weight (UMW),
and a policy proposed by Sinha, Paschos, and Modiano in
[13] that we call SPM. We first provide a brief description
of these two policies.
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Fig. 2. Scenario 1: 11−node network
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Fig. 3. Scenario 1: Linear Utility Function
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Fig. 4. Scenario 1: Logarithmic Utility Function
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Fig. 5. Scenario 2: 18−node network

4 5 6 7 8 9 10

Deadline

5

10

15

20

25

30

35

T
o
ta

l 
U

ti
lit

y

DSR

Index-DSR

SPM

UMW

Fig. 6. Scenario 2: Linear Utility Function
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Fig. 7. Scenario 2: Logarithmic Utility Function

A. Overview of UMW and SPM

The UMW policy solves the problem of throughput-
optimal packet dissemination in a network with arbitrary
topology with unicast, multicast and broadcast traffic. In
both the centralized and distributed versions of UMW,
the route of each packet is decided at the origin. This
route is a weighted tree that is constructed using the
edge weights at time of decision at the origin. Hence, if
the route of the packet turns to be inappropriate during
packet dissemination, it cannot be modified. This policy
also has a heuristic distributed, but compare against the
centralized version, which has better performance than
the distributed one.

The SPM policy is designed for throughput optimal
broadcast. SPM is a virtual-queue based algorithm, where
virtual-queues are defined for subsets of nodes. These
virtual queues keep track of a kind of backpressure, while
accounting for the fact that packets are duplicated in
the broadcast regime. Each slot is sub-divided into L
minislots, where L is the number of links in the network,
and a random link is activated in each mini-slot. Here, a
packet may be retransmitted multiple times over the mini-
slots comprising a slot (i.e., it could potentially reach all
nodes in just one slot). To ensure consistency with the
slot model, we modify this algorithm to only allow packet
state updates at each slot, rather than at each mini-slot.

B. Simulation Settings and Results

In this study, we consider two different simulation
scenarios motivated by designs for IAB network deploy-

ments [1], [2]. Here, we have two kinds of nodes, namely,
(i) gateway nodes with fiber drops (shown in red), and
(ii) wireless-only nodes with mm-wave backhaul (shown
as blue nodes). We assume that gateways communicate
reliably between each other with zero latency, since they
are connected to the same backend switch (consistent
with IAB architecture). The two scenarios represent differ-
ent levels of gateway availability. The first scenario is a an
11−node network with 2 fiber drops as in figure (2), while
the second scenario is an 18− node IAB network with
9 fiber drops as shown in figure (5). Hence, Scenario 1
is illustrative performance in a network with multiple
wireless hops, whereas Scenario 2 illustrates performance
in a more densely connected network.

In both scenarios, there are two broadcast flows. One
of the flows originates at a fiber-connected gateway node,
and the other one from a wireless-only node. For each
link l, Pl is randomly chosen from [0.5, 1.0], and Tl is
randomly chosen from [1, 5]. Each flow generates packets
according to a Poisson random process, where source
node of flow 1 has a mean arrival rate of 1.5 packets
per time slot, and source node of second flow has a
mean arrival rate of 2 packets per time slot. Since UWM
and SPM only aim to maximize throughput, we first
consider a linear utility function Un,f (µn,f ) = µn,f to
make a fair comparison. In this case, the total utility of
the system is the same as the total timely-throughputs.
In a second case, we also consider a logarithmic utility
function Un,f (µn,f ) = log(µn,f+1), which models the idea
that the utility of the end user might be a non-negative,



concave and increasing function of timely throughput.
We assume that the two flows have the same deadline
of D time slots, and vary D from 4 to 10. We test four
the optimal DSR protocol (for the relaxed problem), the
Index-DSR protocol, the UWM policy, and the SPM policy.

The simulation results for the linear utility function
and the logarithmic utility function for scenario in figure
(2) are shown in figures (3) and (4), respectively. The
performance of DSR is an upper bound, since it is the
optimal solution under a relaxed constraint. The Index-
DSR protocol outperforms UWM, possibly because of
more dynamic routing of each packet under Index-DSR.
This also shows that UMW might be providing bursty
service to nodes, since deadlines are often violated and
packets are dropped, leading to poor throughput. The
Index-DSR policy outperforms SPM in all cases despite
the assumption that SPM can compute the reachable
subgraph for each packet instantly.

The results for second IAB scenario, depicted in (5)
shows similar results in terms performance of DSR-based
algorithms for much the same reasons specified above.
However, results of figures (6) and (7) shows that UMW
has better performance than SPM, unlike the results
obtained in (3) and (7). This result appears to be due to
the density of the network. The UMW policy manages to
deliver more unexpired packets to the destination since
it has to traverse fewer hops. SPM is also handicapped
by the fact that we force it to obey a slot-by-slot state
update model like all the other protocols (although we do
allow it to utilize its minislot-based transmission model).
Ultimately, these results demonstrate the efficiency and
flexibility of the DSR protocol.

VIII. CONCLUSION

We studied the problem of broadcasting real-time flows
with hard per-packet deadlines in a multi-hop wireless
network. This problem is computationally complex due to
the need to solve an MDP over the network graph. We re-
lax the problem using average link utilization constraints,
and come up with a novel decomposition approach that
enables its solution in a distributed fashion. We propose
the DSR algorithm that maximizes the total timely-utility.
The algorithm has a low complexity, and has a really
low coordination overhead. We also develop a simple
index policy based on DSR that is able to meet hard link
utilization constraints. We simulate the variants of the
algorithm, comparing against several recent throughout
optimal algorithms . In all cases, DSR and the index
policy have a better performance in terms of total timely-
utility. We conclude that throughput and delay optimality
are fundamentally different, but simple near-optimal so-
lutions are possible in the delay-constrained case.
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