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Abstract—We propose a Coded selective-repeat ARQ pro-
tocol with cumulative feedback, by building on the uncoded
baseline scheme for ARQ, developed by Ausavapattanakun and
Nosratinia. Our method leverages discrete-time queuing and
coding theory to analyze the performance of the proposed data
transmission method. We incorporate forward error-correction
(FEC) to reduce in-order delivery delay, and exploit a matrix
signal-flow graph approach to analyze the throughput and delay.
We demonstrate and contrast the performance of the Coded ARQ
protocol with that of the uncoded ARQ scheme, with minimum
coding, i.e., with a sliding window of size 2. Coded ARQ can
provide gains up to about 40% in terms of throughput. It also
provides delay guarantees, and is robust to various challenges
such as imperfect and delayed feedback, burst erasures, and
round-trip time fluctuations.

I. INTRODUCTION

Automatic Repeat reQuest (ARQ) and hybrid ARQ (HARQ)
methods have been used in 5G mobile networks [1], to
boost the performance of wireless technologies such as HSPA,
WiMax and LTE [2]. HARQ technique combines the important
features of both forward error-correction (FEC) and ARQ error
control. A review on HARQ mechanisms that provide robust-
ness in 4G LTE networks is given in [3]. A network-coding-
based HARQ algorithm for video broadcast over wireless net-
works is proposed in [4]. ARQ and HARQ protocols perform
together, and provide the system with reliable packet delivery
over non-deterministic channel conditions. Here, failure in the
Media Access Control layer HARQ operation is compensated
for by the radio link control layer ARQ in acknowledged mode
at the expense of extra latency for the packet [5].

Unreliable feedback in ARQ has been studied in [2],
where a new method of acknowledging packet delivery for
retransmission protocols is proposed. The proposed method is
based on backwards composite acknowledgment from multiple
packets. Compared to ARQ, the scheme exhibits increases
reliability under varying channel conditionns, at the cost of
a small increase in average experienced delay.

The role of the feedback channel is to limit retransmissions
and increase data channel efficiency. Inevitable feedback chan-
nel impairments may cause unreliability in packet delivery.
Attempts to increase feedback reliability, e.g., by means of
repetition coding, is costly to the receiver node while erro-
neous feedback detection may increase packet delivery latency
and diminish throughput and reliability. In LTE, blind HARQ
retransmissions of a packet are proposed to avoid feedback
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complexity and increase reliability [6]. However, this approach
can severely decrease resource utilization efficiency.

Uncoded SR ARQ protocols via signal-flow graphs have
been analyzed in [7]. Scalar-flow graphs have been used to find
the moment generating functions (MGFs) for the transmission
and delay times in [8]. Matrix signal-flow graphs (MSFGs)
have been extensively used in the state-space formulation of
feedback theory [9]. They can be used to model channel
erasures, incorporating unreliable feedback.

Different classes of codes have been proposed to correct
errors over packet erasure channels. Block codes require a
bit/packet stream to be partitioned into blocks, each block be-
ing treated independently from the rest. Block codes for error
correction have been considered in [10]. Streaming codes, e.g.
convolutional codes, have the flexibility of grouping the blocks
of information in an appropriate way, and decoding the part
of the sequence with fewer erasures. They can correct more
errors than classical block codes when considering the erasure
channel [10], [11]. Fountain codes have efficient encoding and
decoding algorithms, and are capacity-achieving. However,
they are not suitable for streaming because the decoding delay
is proportional to the size of the data [12].

Using FEC, in-order delivery delay over packet erasure
channels can be reduced [10], and the performance of SR
ARQ protocols can be boosted. Delay bounds for convolu-
tional codes have been provided in [13]. Packet dropping to
reduce playback delay of streaming over an erasure channel
is investigated in [14]. Delay-optimal codes without feedback
for burst erasure channels, and the decoding delay of codes
for more general erasure models have been analyzed in [15].

In this paper, we use a MSFG approach to analyze the
throughput and delay performance of Coded SR ARQ pro-
tocols over packet erasure channels with unreliable feedback.
Erasures can occur in both the forward and reverse channels.
However, an acknowledgment (ACK) cannot be decoded as
a negative acknowledgment (NACK), and vice versa. We
propose a maximum distance separable (MDS) Coded ARQ
scheme, by building on the uncoded baseline scheme proposed
in [7]. In our coded model, feedback is cumulative, i.e. it ac-
knowledges all the previously transmitted packets. Contrasting
the throughput and delay performance of Coded ARQ with the
uncoded ARQ scheme, we demonstrate that with minimum
coding, i.e., with a sliding window of size 2, Coded ARQ can
provide gains up to about 40% in terms of throughput, given
the unreliability of the feedback. Coding also has benefits
under burst erasures or higher erasure rates. Coded ARQ is



more predictable across statistics, hence is more stable.

II. SYSTEM MODEL

We have a point-to-point channel model consisting of a
sender and a receiver. On the forward link, the sender attempts
to transmit a packet to the receiver, and upon the successful
reception of the packet, on the reverse link, the receiver
acknowledges the sender by transmitting a feedback. The
status of a transmission at time t is a Bernoulli random variable
taking values in X = {0, 1}, where 0 denotes an error-free
packet, and 1 means the packet is erased. The erasure rate ε
is a function of channel condition. Both for the forward and
reverse links, we use a Gilbert-Elliott (GE) channel model
[16], which is a binary-state Markov process St with states
G (good) and B (bad)1, i.e. S = {G,B}, and probability
transition matrix P. The packet erasure rates in states G and
B are εG and εB , respectively. We let ε = [εG, εB ]. Since
the channel state is not the same as the channel observation,
the process Xt is a hidden Markov model2 (HMM), which is
driven by the process St.

The channel state information is not available at the sender
and the receiver. Hence, the sender does not know the state
of the forward link at time t, but it observes the status of the
feedback at time t− 1, which is a Bernoulli random variable.
Similarly, the receiver does not know the status of the reverse
link, but it observes the status of a transmission at time t. The
joint probabilities of channel state and observation at time t is
computed using the state-transition matrix of the GE channel:

P =

[
1− q q
r 1− r

]
, (1)

where the first and second rows correspond to the transition
probabilities of states G and B, given the channel state at
time t−1. Solving πP = π and π1 = 1, where 1 is a column
vector of ones, the stationary vector of P is π = [ r

r+q ,
q
r+q ].

Hence, the erasure rate is ε = πεᵀ. Given r, εG, εB , and ε, we
have q = r

(
εB−εG
εB−ε − 1

)
. Note that 1/r represents the average

erasure burst, and burst erasures occur when r is low. The
joint probabilities of channel state and observation at time t,
given the channel state at time t− 1, are given as

P(St = j,Xt = 1|St−1 = i)

= P(St = j|St−1 = i)P(Xt = 1|St = j) = pijεj .

Let P1 = P · diag{ε} be the error matrix on the forward
(or reverse) link. Similarly, P0 = P · diag{1 − ε} is the
success matrix in either link. Note that P0 + P1 = P. The
entries of P0 and P1 are the joint state-transition probabilities
given the channel observations [7]. Hence, the HMM can be
characterized by {S,X ,P, ε}.

Consider the forward link {S(f),X (f),P
(f)
0 ,P

(f)
1 } and

the reverse link {S(r),X (r),P
(r)
0 ,P

(r)
1 } that are mutually

1If channel reciprocity holds, then the link estimate of the reverse direction
at the sender can directly be used for link adaptation in the forward link. In
the current work, we leave the study of the link equivalence (similarity of the
transfer functions of the forward and reverse links) as future work.

2HMM is a statistical Markov process with unobserved states [17]. Al-
though the state is not directly observed, the output dependent on the state
can be observed.

independent. The composite channel is characterized by
{S(c),X (c),P

(c)
00 ,P

(c)
01 ,P

(c)
10 ,P

(c)
11 }, where S(c) = S(f)×S(r)

are the composite channel states, i.e. the Cartesian product
of forward and reverse states, and X (c) = X (f) × X (r) =
{00, 01, 10, 11} is the combined observation set. Note that
X

(c)
t = 00 means both the forward and reverse links are good,

while X(c)
t = 10 means the forward link is erroneous and the

reverse link is good. For X(c)
t = 11, the joint probability of

the combined observation and the composite state at time t,
given the composite state at time t− 1, is

P(S
(c)
t = (j,m), X

(c)
t = 11|S(c)

t−1 = (i, k)) = p
(f)
ij ε

(f)
j p

(r)
kmε

(r)
m .

Using the Kronecker product notation ⊗, we have P
(c)
ij =

P
(f)
i ⊗ P

(r)
j for the combined observation at time t, i.e.

X
(c)
t = ij, i, j ∈ X . We assume that both the forward and

the reverse channels have the same parameters3 r, εG, εB ,
and ε. Hence, the state-transition matrix for both the forward
and reverse channels is given by P. In the rest of the paper,
we will drop the superscript (c) and denote the observation
probability matrices by P00, P01, P10 and P11. Similar to
[7], let P0x = P00 + P01 and P1x = P10 + P11 be the prob-
ability matrices of success and error on the forward channel,
respectively, and let Px0 = P00 + P10 and Px1 = P01 + P11

be the matrices of success and error on the reverse channel,
respectively. Furthermore, the matrices P, P0, and P1 will
denote the composite channel matrices, i.e. the Kronecker
product of the forward and reverse channel matrices. The
matrices for the GE channel are provided in Appendix A.

III. ANALYSIS OF THROUGHPUT AND DELAY OF ARQ

In this section, we describe the protocol for the proposed
channel model, signal-flow graphs, as well as a primer on
the MSFGs for throughput and delay of ARQ protocols. We
analyze the throughput and guaranteeable delay of uncoded
ARQ, and provide exact expressions for memoryless channels.

A. Protocol

We use a slotted Selective Repeat (SR) ARQ protocol for
data transmission. With SR ARQ, the sender sends a number
of packets specified by a window size without the need to wait
for individual ACK from the receiver. SR ARQ allows the
receiver to accept packets out of order, which can be stored in
a buffer and sorted at the receiver to ensure in-order delivery.
If there is full feedback, ARQ achieves 100% throughput and
the lowest possible packet delay over an erasure channel,
and it is composable across links [20]. However, when the
network is lossy, link-by-link ARQ cannot achieve the capacity

3The forward and reverse channels do not necessarily have the same
erasure rates or parameters. In practice, data packets and feedback packets
typically have different lengths and different coding levels. Furthermore, data
packets generally travel downstream from the sender towards receivers, and
feedback packets travel upstream from receivers to the sender [18]. Hence,
to compensate the channel asymmetry, more bandwidth can be allocated on
downlink. In [19], we have studied the role of asymmetric channel conditions,
where links might have different erasure or burst rates, and demonstrated
the role of cumulative feedback in improving throughput when forward link
erasures dominate, and in reducing delay under bursty feedback.



Fig. 1: (Uncoded) SR ARQ protocol description.

of a general network. The receiver may selectively reject the
packets, and the sender individually retransmits packets that
have timed out. All data packets are available at the transmitter
prior to any transmission, and the receiver does not have
buffer overflows. There is a handshake mechanism between the
sender and receiver that initiates a synchronous transmission.
After the start of transmission, the round-trip time (RTT) is k
slots, i.e. it takes k−1 time slots between the transmission of
a packet and receipt of its feedback – ACK/NACK sent by the
receiver indicating if it has correctly received a data packet.

At the sender, a timeout mechanism is used to prevent
deadlock. When a packet is (re)transmitted, the timeout as-
sociated with this packet is set to T , which is greater than or
equal to the RTT k. Upon the reception of the first feedback,
the waiting will be aborted after the timer expires, i.e., after
d = T − k slots. The feedback includes the information about
all correctly received packets. The ACK/NACK is sent in each
slot. Thus, the packet whose ACK is lost will be acknowledged
by the subsequent ACKs/NACKs. If a succeeding ACK/NACK
is successfully received before the timer expiration, the packet
will not be retransmitted. Otherwise, i.e. if the timeout expires
and no ACK is received, the sender retransmits the packet until
it receives an ACK. Hence, we do not have an upper bound on
the maximum number of retransmissions of a packet to guar-
antee its reliable delivery. When a packet is lost and its NACK
is received, the packet will be retransmitted immediately. If the
NACK is lost, the packet will be retransmitted after the timer
expires. The protocol for uncoded ARQ is shown in Fig. 1.

B. Signal-Flow Graphs

A signal-flow graph is a diagram that consists of a set of
nodes that denote the different states of the system, and a set
of directed branches that represent the functional relationships
among the states. The analysis of finite-state HMMs can be
streamlined by using signal-flow graphs, and labeling the
branches of flow graphs with observation probabilities [21],
[22]. We next detail how to build the flow graphs for the
analysis of SR ARQ.

In the current paper, the nodes of the flow graphs correspond
to the states of the transmitter. Upon the initial state that a
new packet is transmitted (input node, I), the transmitter goes
from one state to the other. The output node (O) represents
correct reception of ACK by the sender, and other nodes are
hidden states. Upon the start of transmission, the transmitter

goes from one state to the other. A certain value for the random
variable X , that for example models the transmission or delay
time for ARQ protocols as in [7], [8], [23], [24], corresponds
to a state transition. A state transition is accompanied with
the value for X , and its probability p, which appear in the
branch gain as pzX . Hence, the input-output gain of the graph
is a polynomial in z, whose coefficients are the probabilities
of corresponding values of X . This polynomial denotes the
probability-generating function (PGF) for X , i.e., E[zX ]. Flow
graphs with vector node values and branches labeled with
observation probability matrices are called matrix signal-flow
graphs4 (MSFGs) [7]. The graph can be simplified using the
basic equivalence operations, i.e. parallel, series, and self-loop.
Then, the input-output relationship is given by the matrix-
generating function (MGF) Φ(z).

C. Distributions of the Transmission Time and Delay

In this paper, we derive the MGFs for the transmission
time and the delay of Coded ARQ protocol (Sect. IV). The
transmission time τ is defined as the number of packets
transmitted per successful packet, while the delay D is the
time from when a packet is first transmitted to when its ACK is
successfully received at the sender. Both τ and D are random
variables with positive integer outcomes. The PGFs Φτ (z) and
ΦD(z) of τ and D are derived using their MGFs by pre- and
postmultiplications of row and column vectors, respectively.
We will discuss how to obtain the MSFGs and the MGFs for
the transmission time and delay in Sect. IV. We now discuss
in detail how to obtain Φ(z)’s from Φ(z)’s.

For the GE channel model, the probability vector of trans-
mitting a new packet depends on the channel state. We assume
that there are no erasures when the channel state is G, i.e.
εG = 0. Hence, the probability of transmitting a new packet in
state G is πG(1−q)+πBr. Similarly, the probability of trans-
mitting a new packet in state B is (πGq+πB(1−r))(1−εB).
Hence, the probability vector of transmitting a new packet is
πI = πP0 = [πG(1− q) + πBr, (πGq + πB(1− r))(1− εB)].

a) Throughput Analysis: The MGF of the transmission
time τ is calculated by left- and right-multiplying the matrix-
generating function of τ , i.e., Φτ (z) with πI and the column
vector of ones:

φτ (z) =
πIΦτ (z)1

πI1
=

1

1− ε
πP0Φτ (z)1. (2)

The average transmission time τ̄ is found by evaluating the
derivative of φτ (z) at z = 1, as τ̄ = φ′τ (1). The throughput is
the reciprocal of the average transmission time, thus η = 1/τ̄ .

b) Delay Analysis: The MGF of the delay D is given as

φD(z) =
πIΦD(z)1

πI1
, (3)

where ΦD(z) is the matrix-generating function of the delay.
The average delay time D̄ is found by evaluating the derivative
of φD(z) at z = 1, as D̄ = φ′D(1).

4MSFGs have been extensively used in the state-space formulation of
feedback theory [9]. They can also be used to model channel erasures,
incorporating unreliable feedback.



In reality, the feedback is lossy and delayed, burst errors
occur, and the fluctuations in the RTT can cause a high
variability in the delay. To understand these effects, we exploit
the three-sigma rule5. The 3σ heuristic is justifiable when
the distribution of the delay is sub-Gaussian. A sub-Gaussian
distribution has strong tail decay property since the tails decay
at least as fast as the tails of a Gaussian. In [26], we show via
numerical simulations that the tails of the delay distribution
are dominated by the tails of a Gaussian distribution. In this
case, the guaranteeable delay D̂ of a protocol is upper bounded
by the guaranteeable delay of a Gaussian distribution with the
same mean and variance as the distribution of D.

We define the guaranteeable delay of the ARQ protocol –
given that the distribution of the delay is sub-Gaussian – as

D̂ = D̄ + 3σD, (4)
where D̄ is the average delay, and σ2

D is the variance of the
delay, which is evaluated as σ2

D = φ′′D(1) + D̄ − D̄2, where
φ′′D(1) is the second derivative of φD(z) at z = 1.

We denote by D̂ARQ(3σ), D̂C−ARQ(3σ) the guaranteeable
delays of the uncoded and Coded ARQ protocols, respectively.

IV. CODED ARQ

In this section, we propose a Coded ARQ scheme, where the
transmitted packets are coded. The coding scheme is similar
to the generation-based random linear network coding in [27].
The sender has a coding bucket, and when it is ready to send a
packet to the receiver, it produces a coded packet by forming a
random linear combination of all the packets in the bucket. The
encoded packet is then transmitted to the receiver. The receiver
sends a cumulative feedback to indicate the set of successfully
received encoded packets in the coding bucket. If the receiver
successfully collects a sufficient number of encoded packets
to decode all packets in the coding bucket, and the sender
successfully receives the cumulative ACK message, it then
purges the successfully ACK’ed encoded packets in the coding
bucket and partially updates the coding bucket by moving
new packets. While the performance of the reverse link can
also be boosted with coding, the analysis of the protocol
becomes more complex. We also expect that the gain of coding
would be incremental compared to the gain of the cumulative
feedback of the seen packets. The extension of the model to
include coded feedback is left as future work.

We consider minimum coding, i.e., with a sliding window
of size M = 2. Different from uncoded ARQ, HARQ with
soft combining, and CF ARQ, the transmission scheme is
adaptive, i.e. the transmission rate is adjusted based on the
cumulative feedback for M = 2 MDS coded packets in
the transmitted packet stream. The receiver needs both coded
packets to reconstruct the transmitted packet stream, i.e., the
DoFs required at the receiver is N = 2. We do not assume in-
order packet delivery. Therefore, the transmitted packets in the

5Even for non-normally distributed variables, at least 88.8% of cases should
fall within properly calculated three-sigma intervals, which follows from
Chebyshev’s Inequality. For unimodal distributions, the probability of being
within the interval is at least 95% [25].

Fig. 2: Coding matrix for Coded ARQ scheme with 2 packets
assuming a feedback delay of 2 time slots.

bucket will be successfully decoded when both of the coded
transmitted packets are successfully received and ACK’ed by
the receiver. While the model can be extended to M > 2
using a recursion, the state space scales exponentially, and
the analysis becomes prohibitively complicated without any
additional insights. Therefore, it is left as future work.

We illustrate the coding matrix for Coded ARQ for M = 2
in Fig. 2. The rows and columns of the matrix indicate the
time and the specific information (uncoded) packets, pi, to be
transmitted. The dots in each row show the composition of
the transmitted packet, and different colors indicate specific
generations, horizontal lines show the time when feedback
about a specific generation is obtained, and the red crosses
show lost packets. Furthermore, the double arrows on the right-
hand show the in-order delivery times of the packets to the
client application. There are 2 main properties of Coded ARQ.
Different from the uncoded ARQ, i) the ACK in Coded ARQ
is cumulative, and ii) the rate of the Coded ARQ is adapted
based on the cumulative feedback.

The combined observation set for Coded ARQ with M = 2
packets is X (c) = Z3

2. For example, X(c)
t = 001 means that

the forward channel is good for both packets and the reverse
channel is erroneous, i.e., the ACK for M = 2 packets is lost.
The HMM for the delay of Coded ARQ is shown in Fig. 3.
Similar to previous models, I1 and O are the input and output
nodes, and other nodes are the hidden states, and I1 and I2
represent transmission of the first new packet and the second
packet one time slot later, respectively. The possibilities upon



the transmission of the 2 packets are:

• Transition to state A2. After sending the new packets
(M = 2), the transmitter receives a feedback message
k − 1 time slots later. This state is denoted by node A2.

• Transition to state O. If the feedback is an error-free
ACK (with probability P000 = P0xP00), then the system
transits to state O.

• Transition to state B2. If the feedback is a success-
ful NACK for both packets (with probability P110 =
P1xP10), then the system transits to state B2, where both
packets have to be retransmitted.

• Transition to state C2. If the feedback is an erroneous
ACK (with probability P001 = P0xP01) and the timer
expires before receiving any error-free ACKs/NACKs,
the system will transit to state C2, the packets will
be retransmitted, and the timeout will be reset. The
packets will then be acknowledged when a succeeding
ACK/NACK is correctly received.

• Transition to state A1. If only one of the packets is
successfully transmitted and the feedback is an error-
free ACK (with probability P100 + P010 = P1xP00 +
P0xP10), the system goes to state A1. This state is
equivalent to the state A for the uncoded ARQ model
as shown in [7, Figure 4]. Hence, the rest of the analysis
follows from the uncoded ARQ analysis in [7].

• Transition to state G2. Node G2 indicates that a NACK
is lost (with probability P111 = P1xP11), both packets
are lost, and the transmitter waits for timeout (node B2).
We refer the reader to Fig. 3 for the detailed description
of these states. For the simplified matrix-flow diagrams
for throughput and delay analysis of uncoded ARQ in
unreliable feedback, see also [7, Figures 2, 4].

• Transition to state G3. Node G3 indicates that a NACK
is lost, but only one of the packets is successfully
transmitted and the other is lost (with probability P011 +
P101 = P0xP11 + P1xP01), and the sender waits for
timeout (node B3). Node A3 denotes the retransmission
of both packets, and the receiver only needs one of them.
Hence, if the system goes to state A3, the rest of the
analysis follows from the uncoded ARQ analysis in [7].

In this paper, as we use tiny codes, i.e. sliding window by
coding with just 2 packets, the available redundancy rate in
terms of the packets in the encoding window is 50%. However,
we do a finer-grained control over the redundancy rate via
the feedback which is cumulative. This can be observed from
Fig. 3. For example, if the CF acknowledges the successful
reception of 1 packet only, i.e., the system transits to state A1,
then the rate is adaptively adjusted to retransmit 1 packet only.
On the other hand, if only 1 packet is successfully transmitted
and the CF is lost, the system has a transition to G3, and
then to A3 that represents the retransmission of 2 packets
while the receiver only needs one of the packets. In this case,
upon the successful reception of the CF in the succeeding time
slots, the system either transits to state A1, i.e. 1 packet has
to be retransmitted again, or to state 0, i.e. no retransmission

is required. Therefore, the redundancy rate is not always 50%,
and a finer-grained control is provided via the feedback.

The matrix gain of the graph in Fig. 3 can be calcu-
lated using the basic simplification rules. For general channel
models (including the GE channel model), the analytical
derivation of the MGFs of the transmission time (2) and delay
time (3), hence characterization of the throughput and delay
performance of Coded ARQ, have been provided in the full
version of the paper [26, Appendices I, J]. Later in Sect. V,
we demonstrate the throughput and delay performance for the
GE channel under different burst erasure rates.

We next present closed form expressions for throughput and
delay of memoryless channels.

Proposition 1. The throughput for Coded ARQ for memoryless
channels is given by

ηC-ARQ =
(1− ε)

αC(ε) + εd+1(1− ε)βC(ε)/(1− εT )
, (5)

where αC(ε) = (1 + ε + 7ε2/2 − ε3/2 − 3ε4 + ε6)/(1 + ε)2,
βC(ε) = 1/2 + ε2(1− ε), and d = T − k.

Proof. See [26, Appendix I].

In (5), it is easy to show that 3/4 ≤ αC(ε) ≤ 1, and 1/2 ≤
βC(ε) < 13/20. Therefore, we can conclude that ηC-ARQ is
always higher than ηARQ for any given T , d, as determined in
[7]. Furthermore, ηC-ARQ is upper bounded by (1− ε)/αC(ε)
as T, d→∞. This implies that for memoryless systems, with
minimum coding, it is possible to achieve a gain of more than
30% compared with uncoded ARQ. The gain becomes higher
if the channel has memory, as demonstrated in Sect. V.

Proposition 2. The average delay of the Coded ARQ for
memoryless channels is given by

DC-ARQ = k + 1 + 3ε+ (2T + 5k + 4)ε2

+ (T − 7k + 5)ε3 +O(ε4), ε→ 0. (6)

Proof. See [26, Appendix J].

The variance of delay for Coded ARQ is derived next.

Proposition 3. The variance of delay for Coded ARQ for
memoryless channels is

σ2
DC-ARQ

= k2ε2(1 + ε− 16ε2) + kε2(5− 31ε+ 43ε2

− Tε2(4− 6ε+ 2ε2)) +O(1), ε→ 0. (7)

Proof. See [26, Appendix K].

Comparing (6) with the average delay of uncoded ARQ,
we observe that DC-ARQ−DARQ = 1 + (3 − k − 1)ε + (T +
5k + 3)ε2 +O(ε3) as ε → 0, which is due to the cumulative
feedback. On the other hand, when ε is large, DC-ARQ becomes
comparable to DARQ, as we demonstrate in Sect. V. However,
Coded ARQ always provides better delay guarantees than
uncoded ARQ. This provides insights in designing systems
that are robust to the RTT fluctuations.

We next numerically evaluate the performance of the differ-
ent ARQ protocols and outline the advantages of cumulative
feedback and Coded ARQ over uncoded ARQ protocols.



Fig. 3: Matrix-flow graph for delay analysis of SR ARQ in unreliable feedback with coding.

V. NUMERICAL SIMULATIONS

We evaluate the performance of the Coded ARQ scheme
outlined in Sect. IV by computing the MGFs of transmission
and delay times via the MSFG approach detailed in Sect.
III, and provide a numerical comparison of uncoded ARQ
in [7] and Coded ARQ schemes with feedback erasures. We
also include the simulation results6 to validate our analytical
models. The parameters for the numerical results are selected
as follows. The RTT7 is k = 5 time slots, timeout is
T = {8, 15} slots, and we have the same r = {0.1, 0.3} for
the forward and reverse GE channels with the same parameters
εB = 1 and εG = 0, hence the same erasure rate. We also
assume that M = 2 packets are transmitted, and N = 2 DoFs
are required at the receiver. The performance metrics are the
throughput η, the average per packet delay D̄, i.e. the per
packet delay for uncoded ARQ, and the delay corresponding
to the transmission of M = 2 packets in Coded ARQ, and
the guaranteeable delay D̂ versus ε for varying timeout T and
r. Unless otherwise specified, solid (Coded ARQ), and dotted
(ARQ) curves denote the analytical results, and unfilled circles
denote the simulation results.

6The source code for simulation and analysis is available at github.com/
deryam/TinyCodesforDelayGuarantees.

7The slot duration should be adjusted according to the transmission pro-
tocol. For example, if the transmission rate is 10 Mbits/s, it takes 1ms to
transmit 104 bits over the channel. In that case, the RTT equals to 1 ms.

The throughput of the baseline uncoded ARQ of [7], and
the Coded ARQ protocols in the Markov channel for r = 0.3
is shown in Fig. 4, for k = 5 and k = 10, for different
values of T . In the Coded ARQ, more packets can be reli-
ably transmitted even when the packet loss rate ε is large.
As ε increases, throughput of Coded ARQ scheme decays
slower than the other schemes because coding can compensate
the packet losses. Hence, less number of retransmissions is
required. For Coded ARQ, the throughput is always higher
than the throughput of the uncoded ARQ because the feed-
back is cumulative, which decreases the number of packets
being transmitted per a successful packet. Furthermore, the
transmission rate is adapted based on the feedback received.

We next illustrate the average delay D̄ and the guaranteeable
delay D̂ with respect to erasure rate, ε, for T = 8, in Fig. 5,
for r = 0.3 and r = 0.1, respectively. Since the minimum
time required to transmit 2 packets is k + 1 given an RTT
k, the delay gap between the coded and uncoded schemes at
ε = 0 is 1. Although the gap is indeed very small for small
coding bucket sizes M , it also means that when the erasure
rate is low, Coded ARQ has higher average delays compared
to the uncoded ARQ. We observe that both D̄ and D̂ for both
uncoded and Coded ARQ increase in T . Although Coded ARQ
might have a higher D̄ than uncoded ARQ, its D̂ is lower
than the value of uncoded ARQ. By increasing the timeout,
the gap between the guaranteeable delays for both models can
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Fig. 4: Throughput η vs. erasure rate ε, in Markov erasures for burst parameter r = 0.3, and RTT k = 5 (L), RTT k = 10 (R).

be made smaller. Comparing the different models in Fig. 5, we
observe that under burst errors (r = 0.1), the gap between the
guaranteeable delays is larger compared to the case of r = 0.3
for small ε. When r = 0.3, the gap between the guaranteeable
delays increases in ε, which means that Coded ARQ is more
predictable under high erasure rates.

We can observe that the higher the error burst (r = 0.1),
the lower the uncoded ARQ throughput and the higher is
the delay in noisy feedback [7]. As the burst rate increases,
the average delay is also higher for Coded ARQ. For both
uncoded ARQ and Coded ARQ, when the timeout T increases,
both throughput and delay are higher. For uncoded ARQ, the
sensitivity of throughput to timeout T increases as r decreases,
hence the throughput becomes very low when the timeout T
is very small. When r = 0.1, for Coded ARQ, throughput
becomes more sensitive to T , and it is possible to achieve
significantly higher throughputs by increasing T . However, for
both schemes, the sensitivity of delay to timeout T decreases
as r decreases, hence the variability of delay with timeout T
becomes less important under burst errors.

Our findings on Coded ARQ scheme suggest that the
following design insights should enable more robust design
for two-way erasure channels for wireless networks:
• Sensitivity of throughput and delay to timeout and RTT

increases under burst errors.
• Uncoded ARQ is very sensitive to erasure bursts. Hence,

the higher the burst rate, the lower its throughput and the
higher its guaranteeable delay is.

• Coded ARQ can provide gains up to 37% in terms of
throughput than the baseline uncoded ARQ.

• Coded ARQ has high delay but low variability. Further-
more, it has lower guaranteeable delay than uncoded
ARQ given the unreliability of the feedback.

• Coding has benefits under imperfect feedback, burst era-
sures or higher erasure rates. Coded ARQ is more pre-
dictable across statistics, and hence is more stable. This
can help design robust systems when RTT is unreliable.

VI. CONCLUSIONS

We leveraged discrete-time queuing and coding theory to
enhance the performance of SR ARQ schemes by exploiting
a matrix signal-flow graph approach. We proposed a Coded
ARQ scheme and computed the MGFs of transmission and
delay times. Contrasting the performance of Coded ARQ with
the uncoded ARQ scheme, we demonstrated its gain in terms
of throughput and delay. For the given parameter setting with
a sliding window of size 2, Coded ARQ can provide gains up
to 37% in terms of throughput, and its guaranteeable delay is
lower than the one for uncoded ARQ.

Extensions include the optimization of the erasure coded
schemes with minimal encoding and decoding complexity and
their code rate, and the development of more sophisticated
coding schemes, such as sequential MDS and convolutional
codes, Reed-Solomon codes, and the study of convolutional
codes for better FEC. This will pave the way for protocol de-
sign and state space representations. Possible future directions
also include the extension of the minimum coding scheme to
long codes. Extending Coded ARQ to bucket sizes to M > 2,
we can investigate the scaling between the bucket size M , the
RTT k and the DoFs required at the receiver N .

APPENDIX

A. Transition Probability Matrices

The state-transition matrix both for the forward and P for
the reverse channels is denoted by P. Since P is a stochastic
matrix, Pn1 = 1 for n ≥ 1. The stationary vector of the
state-transition matrix π satisfies π1 = 1 and πP = π.
The combined state-transition matrix for the symmetric GE
channels equals the Kronecker product of P with itself, i.e.,
P(c) = P⊗P, which is given by

P(c)=


(1− q)2 q(1− q) q(1− q) q2

r(1− q) (1− q)(1− r) qr q(1− r)
r(1− q) qr (1− q)(1− r) q(1− r)
r2 r(1− r) r(1− r) (1− r)2

 .
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Fig. 5: Guaranteeable delay D̂ vs. erasure rate ε, in Markov erasures for RTTk=5, timeout T =8, burst parameter r =0.3 (L), r =0.1 (R).

Let P0 and P1, respectively, be the success and the error
probability matrices of an HMM. Forward and reverse links
satisfy P

(f)
0 = P

(r)
0 = P0 and P

(f)
1 = P

(r)
1 = P1, where

P0 = P · diag{1− ε} =

[
1− q q
r 1− r

] [
1− εG 0

0 1− εB

]
=

[
(1− q)(1− εG) q(1− εB)
r(1− εG) (1− r)(1− εB)

]
,

P1 = P · diag{ε} =

[
1− q q
r 1− r

] [
εG 0
0 εB

]
=

[
(1− q)εG qεB
rεG (1− r)εB

]
.

The probability vector of transmitting a new packet is πI =
πP0. Given the erasure rates ε = [εG, εB ], and ε = πεᵀ, we
have πI1 = πP01 = 1 − πPεᵀ = 1 − ε, and (π − πI)1 =
πP11 = πPεᵀ = ε. The combined observation probabilities
are given by the following 4 × 4 matrices: P

(c)
00 = P0 ⊗ P0,

P
(c)
01 = P0 ⊗P1, P

(c)
10 = P1 ⊗P0, and P

(c)
11 = P1 ⊗P1.

Transition Probability Matrices for the Symmetric
Memoryless Channel. Since the memoryless channel has only
one state, P = 1 and its combined state-transition matrix is
P(c) = P ⊗ P = 1. Hence, for memoryless channels with
a symmetric erasure rate ε, we have P0 = (1 − ε), and
P1 = ε. Thus, the observation probabilities are P00 = (1−ε)2,
P01 = (1− ε)ε, P10 = ε(1− ε), and P11 = ε2.
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