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Abstract—Ecosystem of a forest suffers from many adverse
events such as wild-fire which can occur randomly anywhere in
the forest and grows in size with time. This paper aims to analyze
performance of a network of randomly deployed wireless sensors
for the early detection of these time-critical and time-evolving
events in a forest. We consider that the forest lies in a confined
space (e.g. a circular region) and the wireless sensors, with fixed
sensing range, are deployed within the boundary of forest itself.
The sensing area of the network is modeled as a finite Boolean-
Poisson model. In this model, the locations of sensors are modeled
as a finite homogeneous Poisson Point Process (PPP) and the
sensing area of each sensor is assumed to be a finite set. This
paper aims to answer questions about the proximity of a typical
sensor from a randomly occurred event and the total sensing
area covered by sensors. We first derive the distribution of contact
distance of a FHPPP and the expression of the capacity functional
of a finite Boolean-Poisson model. Using these, we then derive the
probability of sensing the event at time t, termed event-sensing
probability.

I. INTRODUCTION

The ecosystem and biodiversity of forests suffer from vari-

ous natural and artificial events including wild-fires and spread

of disease [1], [2]. The past literature has suggested that such

events can be controlled to avoid severe loss by designing a

mechanism for early detection of these events. One way to

build an efficient alarm system for early detection of these

time-critical events is by using wireless sensor network (WSN)

of fire sensors deployed in forest. Wireless sensor networks

refers to network of sensors connected via wireless links.

WSNs are regarded as a cost-effective and inexpensive solution

to jointly detect an event/events including fire over an area.

However, while deploying a sensor network, it is important to

understand the impact of the sensor density on the proximity

of these critical events and the sensing region covered by these

sensors in order to ensure that events are detected well in time.

The coverage performance of a WSN with sensors having

fixed disk sensing range is analyzed in [12]. Readers are

advised to refer to [13] for an extensive literature survey

discussing the coverage and connectivity analysis of WSNs.

The performance of a WSN can be characterized via various

metrics, e.g. the distance of the closest sensor from an event

(termed contact distance) or the probability that the event is

sensed by at least one node of the WSN (termed event sensing

probability). The deterministic deployment of sensor nodes

may not be possible in the forests where terrains are not

uniform. In these scenarios, sensors are generally deployed

randomly. Tools from stochastic geometry provide a tractable

framework to study the coverage of random networks includ-

ing WSN [14]. The coverage performance of infinite random

WSNs was well studied in the past literature [8]. Modeling of

wireless sensor nodes as point process can be justified owing

to their random deployment and connectivity mechanism [3].

Poisson point process (PPP) is one example of point process

which has been widely used in the past literature owing to

their tractability. For example, coverage analysis of wireless

sensor network modeled as PPP is performed in [9]. In [7],

PPP is used to model a sensor network with sensors acting as

data collectors and transmitters to evaluate performance of this

network. The coverage analysis of WSN with deterministic

sensing range of individual sensors was performed in [10]

by modeling this network using Boolean-Poisson model [11].

Although sensors are moving with time, authors have only

considered a particular time snapshot where sensors locations

form a PPP. Other point processes such as binomial point

process (BPP), finite PPP are also used in the past literature.

For example, WSN has been modeled as BPP. In [4], the

authors presented a closed-form analytical expression for the

moment generating function of the interference at the origin.

In [5], authors presented the closed form expression for the

different distance distribution of BPP. In [6], authors studied

the distance distribution in a multi-hop network with n nodes

uniformly distributed in a square.

The expression for CDF of contact and nearest neighbor

distance for homogeneous infinite PPP is available in [14].

The expression for capacity functional for a homogeneous PPP

is derived in [11]. Since the forest lies in finite space, the

deployed sensor network is also finite. There has been past

research to investigate distribution of various distances among

nodes that are uniformly distributed in a confined space. In

[15], the authors derived the cumulative distribution function

(CDF) of the distance between two randomly located mobile

devices. In [16], authors have considered wireless nodes to be

uniformly located within a square and calculated the distribu-

tion of the distance of the k-th neighbor along with the distance

between two randomly selected nodes. The performance of

a sensor network modeled as a Boolean process with nodes

located as PPP in a confined space to detect a dynamic and

time-evolving event, for example, its coverage probability and

the closest distance of the nearest sensor of this network from

an arbitrary point in the same space was not studied in the

past work which is the main focus of this paper.
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Fig. 1. Illustration of a wireless sensor network deployed in a forest. The
forest is located inside a circular area of radius rd. Sensors are deployed
randomly in the forest. An event of fire has occurred at a location Yu. The
outer envelop of fire have adopted a circular shape with a radius increasing
with time.

In this paper, we consider a finite wireless sensor network

with sensors in a confined circular forest. Each sensor node

has an associated sensing range. The completed sensing range

of the network is modeled as a finite Boolean-Poisson model.

In this model, the locations of sensors (termed germs) are

modeled as a finite homogeneous PPP (FHPPP) and the

sensing area of each sensor (termed grain) is assumed to be a

finite set. We first assume that the target critical event to be

sensed/detected can occur uniformly anywhere in the forest.

We then compute the distribution of distance of the nearest

sensor from the occurrence point of this event. We also derive

the expression for the capacity functional of finite Boolean

model which help us derive the probability that the event is

sensed by at least one sensor at time t.

II. SYSTEM MODEL

This paper presents the coverage-analysis of time-critical

and dynamic events (e.g. wild-fires) occurred anywhere in the

forest with the help of wireless sensors deployed randomly

in the forest. The list of important symbols and notation is

represented in table I.

We assume that the forest is modeled as a 2D ball B(o, rd)
with center at the origin and radius rd. The sensor nodes have

a fixed sensing radius rS around them and are deployed to

sense any time-critical event which can occur randomly and

uniformly in the forest. We model the coverage area of the

sensor network as a Boolean-Poisson model ξ. In this process,

the locations of sensor are modeled as a FHPPP Φf = {Xi}
with intensity

λ(x) =
m

πr2d
✶(‖x‖ ≤ rd),

where m = λ(o)πr2d is the mean number of sensors deployed

in the forest. Here, Xi denotes the location of ith sensor.

Let λf = λ(o) denote the density of this PPP inside the

ball B(o, rd). Although this paper considers the forest to be

confined in a circular region but the result obtained in the

paper can be extended to analyze performance in forests of

any arbitrary shape. Since, we have assumed that each sensor

have a fixed sensing range Si, the occupied space by the sensor

network is given by:

ξ =
⋃

Xi∈Φf

Xi + Si. (1)

TABLE I
NOTATION TABLE

Symbol Definition

B(X, r) Ball of radius r centred at X.

Φf 2D FHPPP modeling location of sensors in the
forest i.e.B(o, rd)

λf Density of wireless sensor network (number of
sensors per unit area).

rS The fixed sensing radius of each sensor.

Xi The location of the ith sensor.

Si Sensing region of ith sensor i.e.B(o, rS)
ξ Total sensing area of all sensors.

A(r, rd, z) Area of intersection between two circles located
z distance apart with radii r and rd.

⊕ Minkowski addition operator.

Y = ‖Y‖ L-2 norm of Y.

Φf(A) Random variable denoting the total number of
points of Φf located inside the set A.

B(o, rd)∩B(Y, r) Intersection between the circles B(o, rd) and
B(Y, r).

|A| Area of any set A.

Modelling events and their time-evolution: Let the occur-

rence/starting/center point of a target event be denoted by Yu.

The location of Yu is assumed to be uniformly distributed

in the forest B(o, rd). In other words, the probability density

function of the distance of Yu from the origin is given by

f‖Yu‖(y) =
2y

r2d
✶(y ≤ rd).

As stated earlier, we consider events that are time-evolving (in

particular growing with time). At time t, the event’s envelop

is denoted by set KYu(t) that contains the event occurrence

point Yu. The envelop size and shape at time t will depend

on the event type and its propagation/evolution characteristics.

Consider an example of wild-fires in the absence of wind.

Once a fire has occurred at the location Yu, fire will increase

in all directions with constant speed vF. Hence, at time t, the

fire envelop will be a circle, expressed as B(Yu, vFt).

III. DISTANCE DISTRIBUTIONS

In this section, we will derive the CDFs of contact distance

of the event and the nearest neighboring sensor distance of a

typical point for the FHPP Φf .

A. CDF of the contact distance of the event

The contact distance RC of the event is a random variable

denoting the distance of closest sensor {Xi : Xi ∈ Φf} from

the event occurrence point Yu. It has been assumed that Yu

is independent of Φf . In other words, RC is the distance of the

nearest point of a finite homogeneous PPP from a reference

location uniformly located inside the range of the finite PPP.

Let us first condition on the location of Yu. The conditional

CDF of the event contact distance RC(Yu) at r is the

probability that nearest sensor from the location Yu is at

distance less than or equal to r. Mathematically,

FRC|Yu
(r) = P(RC(Yu) ≤ r|Yu).

Let the notation Φf(B(Yu, r)) denote the total num-

ber of points of Φf falling in ball B(Yu, r). Therefore,
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P(Φ(B(Yu, r)) = 0) denotes the void probability i.e. the

probability that no point of Φf falls in the ball B(Yu, r).
Therefore

FRC|Yu
(r) = 1− P (Φf(B(Yu, r) = 0|Yu))

Theorem 1. The CDF of the contact distance RC of an event

for a FHPPP with density λf is given as

FRC(r) = ✶(r ≤ 2rd)

(

1−
∫ rd

y=0

e−λf min(πr2,πr2d,A(r,rd,y))

f‖Yu‖(y)dy

)

+ ✶(r ≥ 2rd)(1− e−m). (2)

Proof: See Appendix A.

Remark 1. The case r ≥ 2rd in Theorem 1 refers to the case

where there is no sensor in the forest, and hence the distance

to the nearest sensor is taken as ∞. This is an artifact of PPP

that there is zero point of PPP in a finite range with certain

probability.

B. CDF of the nearest neighbor sensor distance from a typical

sensor

The nearest neighbor sensor distance RN is defined as the

distance of a typical sensor to its nearest neighbor sensor.

In the case of finite homogeneous PPP, the CDF of contact

distance and nearest neighbor distance will be the same (See

Appendix B for the proof). Therefore,

FRC
(r) = FRN

(r), ∀r. (3)

Similar to the previous case, r > 2rd refers to the scenario

where there is no other sensor in the forest.

Theorem 2. The expressions for the upper bound FRC
(r),

and the lower bound FRC(r), on the CDF of the event contact

distance is given by:

FRC
(r) =✶(r ≤ 2rd)

(

1−
[

A(r) +
2

α(r)r2d

(

e−α(r)r

(

rd

− 1

α(r)

)

+ e
−

α
2(r)
λf

(

1

α(r)
− |rd − r|

))])

,

(4)

FRC(r) =✶(r ≤ 2rd)

(

1−
[

A(r) +
2(rd + r)

r2d
√
λf

(

erf
(

−r

2

√

λfπ
)

− erf

(

−α(r)

2

√

π

λf

))

+
4

πr2dλf

(

e
−

πα
2(r)

4λf − e−
λfπr

2

4

)])

, (5)

where,

α(r) = 2λf min(r, rd), and

A(r) = e−λf min(πr2,πr2d)
(rd − r)2

r2d
.

Proof: See Appendix C.

Remark 2. Another (loose) upper bound on the CDF of the

event contact distance is given as:

FRC ≤ FRC(r) = ✶(r ≤ 2rd)
(

1− e−λf min(πr2,πr2d)
)

+ ✶(r > 2rd)(1− e−m). (6)

Proof: The upper bound FRC
(r) can be achieved by replac-

ing the intersecting area with its corresponding upper bound

min(πr2, πr2d).

C. Asymptotic behavior of FRC
(r) with rd while keeping m

fixed:

1) As rd → 0: In this case, the term

min(πr2, πr2d,A(r, rd, y)) = πr2d, therefore, the contact

distance distribution will be:

FRC
(r) = lim

rd→0
✶(r ≤ 2rd)

(

1−
∫ rd

y=0

e(−λfπr
2
d)fYu

(y)dy

)

+ ✶(r > 2rd)(1− e−m).

= 1− e−m.

2) As rd → ∞: In this case, the term

min(πr2, πr2d,A(r, rd, y)) = πr2. Hence, the contact

distance distribution will be:

FRC
(r) = lim

rd→∞
✶(r ≤ 2rd)

(

1−
∫ rd

y=0

e−λfπr
2

fYu
(y)dy

)

.

= lim
rd→∞

✶(r ≤ 2rd)

(

1−
∫ rd

y=0

e(−λfπr
2) 2y

r2d
dy

)

.

= 1− e−λfπr
2

.

When rd → ∞, FHPPP trivially converges to a homogeneous

PPP with intensity λf .

IV. CAPACITY FUNCTIONAL OF FHPPP AND THE EVENT

SENSING PROBABILITY

Let the set KYu
(t) denote the envelop of an event that

have occurred centered at location Yu. Recall the assumption

that Yu is uniformly located in B(o, rd) and independent of

FHPPP. We assume that the event envelop KYu is expanding

with time t.
The event sensing probability TK(t) at time t is the prob-

ability that the event envelop is sensed by at least one sensor

of the WSN. Note that the event will be sensed if and only if

the intersection of K(t) with ξ is non empty. Hence,

TK(t) = P(ξ ∩K(t) 6= φ).

Similar to the previous section, we will start the derivation

with conditioning on the location Yu. Conditioned on Yu,

TKYu
(t) at time t, is the probability that an event started at

center Yu is sensed at time t. Mathematically, it can be written

as:

TKYu |Yu
(t) = P(ξ ∩KYu(t) 6= φ|Yu).

Note that this is the capacity functional of finite Boolean-

Poisson model evaluated at the set KYu
(t).

Theorem 3. The event sensing probability at time t is given

as

TK(t) =

∫ rd

0

TKYu
(t)

2y

r2d
dy. (7)
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Here, TKYu
(t) denotes the conditional event sensing proba-

bility at time t, conditioned on the starting location Yu of the

event and is given as

TKYu |Yu
(t) = 1− exp

(

−λf

∣

∣B(o, rd) ∩
(

Š⊕KYu
(t)
)∣

∣

)

(8)

where Š is the complement set of S and S is B(o, rS) and ⊕
denotes the Minkowski sum. Minkowski sum of any two set

A⊕ B is defined as {a+ b : a ∈ A, b ∈ B}.

Proof: See Appendix D.

Remark 3. It can be easily seen that if A is a 2-dimensional

ball then complement of A will be A itself. Therefore, Š will

be B(o, rS).
Remark 4. For the case of wild-fire, the KYu

(t) denotes

fire-envelop which may take some shape depending upon the

presence or absence of wind and its direction. In the absence

of wind, the fire envelop expands with a velocity of vF(t) in

all directions. At time t = 0, the fire envelop will be a point

located at the point Yu and at time t it will become a circle

with radius vF(t)t.
Now, Š⊕KYu(t) is the Minkowski sum of two balls which

is equal to a ball of aggregate radius

Š⊕KYu
(t) = B(Yu, vF(t)t+ rS). (9)

The fire sensing probability of a fire started at a typical point

at time t is given as:

TK(t) = 1−
∫ rd

0

e−λf |B(o,rd)∩B(Yu,vF(t)t+rS)|
2y

r2d
dy. (10)

Corollary 1. The coverage probability of a random point Yu

can be trivially achieved by putting t = 0 and is given as

P[ξ ∩ {Yu} 6=φ] = 1− P[ξ ∩ {Yu} = φ]

TYu
=1−

∫ rd

0

exp (−λf |B(o, rd) ∩ B(Yu, rS)|)
2y

r2d
dy

=1−
∫ rd

0

exp (−λfA(rd, rS, y))
2y

r2d
dy. (11)

Theorem 4. Bounds on the event sensing probability is given

by:

TK(t) = ✶(rF(t) ≤ 2rd)

(

1−
[

A (rF(t)) +
2

α(t)r2d
(

e−α(t)rF(t)

(

rd − 1

α(t)

)

+ e
−

α
2(rF(t))

λf

(

1

α(t)

−|rd − rF(t)|
))])

, (12)

TK(t) = ✶(rF(t) ≤ 2rd)

(

1−
[

A(rF(t)) +
2(rd + rF(t))

r2d
√
λf

(

erf

(

−rF(t)

2

√

λfπ

)

− erf

(

−α(t)

2

√

π

λf

))

+
4

πr2dλf
(

e
−

πα
2(t)

4λf − e−
λfπr

2
F(t)

4

)])

, (13)

where α(t) = 2λf min(rF(t), rd), rF(t) = vF(t)t+ rS and

A(rF(t)) = e−λf min(πrF(t)
2,πr2d) (rd−rF(t))

2

r2d
.

Another bound over the event sensing probability is given

by:

TK(t) ≤ TK(t) = 1− exp(−λfπr
2
F(t)). (14)

A. Asymptotic analysis

1) As rd → 0: In this case, the term |B(o, rd) ∩ (Š ⊕
KYu(t))| = πr2d. Hence,

lim
rd→0

TK(t) = 1− e−m

2) As rd → ∞: In this case, the term
∣

∣B(o, rd) ∩ (Š⊕KYu
(t))
∣

∣ =
∣

∣Š⊕KYu
(t)
∣

∣ which is not

a function of Yu. Let us denote this term as
∣

∣Š⊕K(t)
∣

∣.

Hence,

TK(t) = 1− e−λf |(Š⊕K(t))| (15)

Therefore, the expression of the event sensing probability

reduces to the capacity functional of Boolean-Poisson model

as given in [11].

V. SIMULATION RESULTS AND ANALYSIS

In this section, we present some numerical results to validate

our analysis and provide insights about the system.
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Fig. 2. Graph showing the CDF of nearest neighbor distance (or contact
distance) and corresponding bounds for m = 5. Increasing the rd will reduce
the nearest neighbor distance distribution as the points will spread to far
locations.

1) CDF of contact distance and bounds: Fig. 2 shows the

CDF of the nearest neighbor distance and corresponding upper

and lower bounds for two values of rd. It can be been easily

seen that increasing rd, will reduce the CDF because points

will spread to far locations. Fig. 3 depicts the deviation of

bounds from the exact values.
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Fig. 3. Deviation of the bounds from the exact values for contact distance
distributions. Here m = 5.

2) Event sensing probability and corresponding bounds:

We now consider the case of wild-fires. Recall our assumption

that fire envelop takes a circular shape with radius vf(t).
Fig. 4 shows the variation of fire sensing probability and the

deviation of bounds from exact values at time t. Intuitively, the

fire sensing probability will increase with time. It is observed

from Fig. 5 that the maximum error does not change much

with respect to rd. Therefore, the bounds may be tight even

for higher values of rd.
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Fig. 4. The event sensing probability and corresponding deviation of bounds
from exact values at time t for wild-fires in the absence of wind. The capacity
functional (and hence sensing probability) increases with time t. Here, the
sensing range rS = 1 unit, m = 10 and the flame velocity vF = 1 unit.

3) Impact of sensing range and number of sensors: Fig.

6 shows the impact of increasing sensing range on the fire

sensing probability at time t for a WSN with 40 sensors

deployed in a forest with radius 40 units. We can observe that

increasing the sensing range of sensors will increase the fire

sensing probability. Hence, the critical time required to sense

a fire with certain probability can be increased by increasing

the sensing range which helps in early detection of fire. Fig. 7

shows the trade-off between the mean number of sensors (m)
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Fig. 5. The deviation of upper and lower bound for the sensing probability
from exact values for two distinct values of the forest radius rd. Here, the
sensing range rS = 1 unit, m = 10 and the flame velocity vF = 1 unit.

and the sensing range (rS) for the fire sensing probability,

while keeping mπr2S fixed. Note that mπr2S denotes the sum

of sensing areas of all sensors, and thus was used for the fair

comparison. It can be observed that increasing the density of

sensors have a higher impact on the fire sensing probability

than increasing the individual sensor’s sensing range. This

can be justified in the following way. Increasing the number

of sensors while reducing individual sensor’s sensing range

spreads the sensing region ξ across the forest. On the other

hand, increasing the individual sensor’s sensing range while

reducing the number of sensors localizes the sensing region ξ.
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Fig. 6. Impact of sensing range on the fire sensing probability. Here, the
forest radius of forest is 40 units. The mean number of sensors deployed are
40. The fire flame velocity vf is 0.5 unit. Increasing the individual sensor’s
sensing can help in the early detection of wild-fires.

VI. CONCLUSION

This paper studies the dynamic event sensing performance

of a randomly deployed wireless sensor network in a finite

area (e.g. forest) modeled by a FHPPP. The paper analyzes the

proximity of the wireless sensor network to an event, whose

location is uniformly distributed across the entire forest. In
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Fig. 7. Trade-off between the mean number of sensors (m) and the sensing
range (rS) for the fire sensing probability. We vary m and rS while keeping
mπr2S fixed at 40. The critical time before which the fire should be sensed
is 10 unit.

particular, we study the event sensing probability after time

t since the occurrence of the event. This paper presents an

analytical expression for the CDF of contact distance and

nearest neighbor distance distribution of FHPPP. The bounds

presented are tight and can be used for the asymptotic analysis

of the distance distribution and capacity functional. Finally,

the simulation results validate the theoretical analysis. There

are numerous possible extensions of this work. We have

considered a circular fire propagation model which is an ideal

case; there are several other fire propagation model exits in

the literature. These fire propagation models are more realistic

and can provide better insights into the sensor density. In

some seasons the forest is prone to fire therefore the seasonal

variations can also be included in the analysis to optimize

the number of active sensors and to minimize the energy

consumption of the sensor network.

APPENDIX A

PROOF OF THEOREM 1

The void probability of FHPPP for the set B(Yu, r) is given
as

P(Φf(B(Yu, r))

= 0|Yu) = E





∏

Xi∈Φf

✶(Xi /∈ B(Yu, r))





(a)
= exp

(

−

∫

x∈B(o,rd)∩Φf

(

1− ✶ (x /∈ B (Yu, r))

)

λ(x)dx

)

= exp

(

−

∫

x∈(B(o,rd)∩Φf )

✶ (X ∈ B(Yu, r))λ(x)dx

)

= exp (−λf |B(o, rd) ∩ B(Yu, r)|)

Here, (a) is due to the PGFL (probability generating func-

tional) of finite PPP [14]. After de-conditioning over Yu, we

get (2).

APPENDIX B

PROOF OF (3)

The distribution of the distance from the nearest neighbor
sensor from any point is given as

FRN(r)

=
E [Number of sensors having nearest neighbor distance ≤ r]

E [Number of sensors]

=

E

[

∑

Xi∈Φf

✶ (RN(Xi) ≤ r)

]

E

[

∑

Xi∈Φf

✶(Xi ∈ Φf)

]

(a)
=

1

λfπr2d

∫

x∈B(o,rd)

λfP
x [RN(x) ≤ r] dx

=
1

πr2d

∫ rd

0

P
x! [RC(x) ≤ r] 2πxdx

(b)
=

∫ rd

0

1

r2d
P [RC(x) ≤ r] 2xdx = EYu [RC(Yu)] = FRC(r)

Here, (a) is due to Campbell Mecke’s theorem. Px! is the

reduced palm distribution and it is equal to the P for a PPP

due to Slivnyak’s theorem (step (b)).

APPENDIX C

PROOF OF THEOREM 2

In order to find the upper and lower bound of the contact

distance FRC
(r), consider the following integral:

f1(r) =

∫ rd

y=0

exp
(

−λf min(πr2, πr2d,A(r, rd, y))
)

fYu
(y)dy.

For range 0 ≤ y ≤ |r − rd|, the intersecting area

A(r, rd, y) = |B(o, rd)∩B(Yu, r)| is equal to min(πr2, πr2d)
and the contribution of this range to the above integral is

e−λf min(πr2,πr2d) (r−rd)
2

r2d
.

For range |r − rd| ≤ y ≤ r + rd, the intersecting area

A(r, rd, y) =r2d cos
−1

(

y2 + r2d − r2

2yrd

)

+ r2 cos−1

(

y2 − r2d + r2

2yr

)

(16)

− 1

2

√

((rd + r)2 − y2)(y2 − (rd − r)2).

The integral for the range |rd − r| ≤ y ≤ rd can not further

simplified to its closed form. Hence, we will try to replace

A(r, rd, y) with its upper and lower bound.
1) Proof of upper bound: Fig. 8(A) shows the intersecting

region by the dotted area. The area of the rectangular shaded

serves as an upper bound for the area of the intersecting region.

This rectangle has width r+ rd − y and height min(2r, 2rd).
2) Proof of lower bound: Let the two circle be C1 and C2, of

radius rd and r respectively. Without loss of generality, assume

rd > r. Let the center of C1 is located at the origin. Let C2 have

its center at (y, 0). Therefore the distance between center of

the two circle is y = ||y||. We have drawn a circle C3, of radius
r+rd−y

2 centered at ( rd−r+y

2 , 0). It is clear from Fig.8(B) that

circle C3 will touch C1 and C2 only at one point and the

distance between the two is the diameter of C3. Therefore,

C3 is completely under the intersecting region. Hence, its area

serves as the lower bound for the intersecting area.
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Fig. 8. Illustration showing the upper and lower bounds for the
intersecting area of two circles of radii rd and r located at y distance
apart.

APPENDIX D

PROOF OF THEOREM 3

Conditioned on the occurrence point Yu, the event sensing

probability is given as

P [ξ ∩KYu
(t) 6= φ|Yu]

= 1− P [ξ ∩KYu
(t) = φ|Yu]

= 1− E





∏

Xi∈B(o,rd)∩Φf

✶ ((Xi + Si) ∩KYu
(t) = φ)





(a)
= 1− exp

(

−λf

∫

B(o,rd)

(

1− ✶
(

x /∈ Š⊕KYu
(t)
)

)

dx

)

(b)
= 1− exp

(

−λf |B(o, rd) ∩ (Š⊕KYu
(t))|

)

.

Here, (a) is obtained from the PFGL of FHPPP, and (b) is due

to the fact that integrating the product of indicators of two sets

over R2 results in the area of the intersection of these two sets.
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