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Abstract—Today’s wireless networks consist of a multitude of
Radio Access Technologies (RATs), each being controlled indi-
vidually, leading to suboptimal utilization of network resources.
However, the unprecedented growth of data traffic is creating the
need for an efficient inter-working of various RATs to circumvent
the problem of suboptimal utilization of resources. Application
of Software Defined Networking (SDN) principles enables the
control and management of various RATs in a unified way. In
this paper, we specifically focus on the inter-working between
Long Term Evolution (LTE) and Wireless Fidelity (WiFi). We
propose an SDN based architecture for a network comprising
LTE Base Stations (BSs) and WiFi Access Points (APs). Users
can be offloaded from one RAT to another based on different
criteria, viz., user priority and channel state of users. We
consider the problem of optimal RAT selection to maximize the
total system throughput subject to constraints on the blocking
probability of high priority users and the offloading probability
of high priority users and formulate it as a Constrained Markov
Decision Process (CMDP). We propose a low-complexity RAT
selection algorithm which does not require the knowledge of
the statistics of system dynamics. To conduct experiments, we
develop a Network Simulator-3 (ns-3) based evaluation platform
in accordance with the SDN principles. Experimental results
demonstrate that the proposed algorithm provides a near-optimal
performance.

I. INTRODUCTION

With the advent of Fourth Generation (4G) cellular net-
works, data-hungry applications such as video, social net-
working are becoming popular. Simultaneously, the number of
mobile subscribers is also increasing. To cater to the increasing
data traffic consumption and data rate demand, network opera-
tors are deploying low cost IEEE 802.11 based Wireless Local
Area Network (WLAN) (popularly known as Wireless Fidelity
(WiFi)) Access Points (APs) in hotspot areas. These kind
of networks is known as Heterogeneous Networks (HetNets).
While 4G Long Term Evolution (LTE) Base Stations (BSs) are
deployed aiming at providing ubiquitous coverage, WiFi APs
target to provide high data rate in hotspot regions. In regions
where both LTE BS and WiFi AP coverages are present, a user
can be associated with either of them and steered from one to
another. This steering mechanism introduced in 3GPP Release
12 specifications [1] is known as mobile data offloading.

With the future Fifth Generation (5G) [2] standardization in
progress, it is expected that future wireless networks will be
a mixture of a large number of Radio Access Technologies
(RATs). In existing networks, every RAT is controlled by
RAT-specific elements. For example, LTE is controlled by
control elements such as Mobility Management Entity (MME)
and Evolved NodeB (eNodeB), and WLAN is controlled by

WLAN controllers. Even in the upcoming 5G network [2]
which supports multiple RATs, radio access decisions are
taken by RAT-specific elements. Therefore, while choosing
control and management decisions, a global view of different
RATs is not present in today’s networks. This results in a
suboptimal utilization of network-wide resources. To achieve
the optimal network performance, common functionalities
supported by different RATs such as admission control, flow
control, mobility management need to be controlled and man-
aged in a unified manner. Recent developments in Software
Defined Networking (SDN) [3] may enable us to achieve
unified control of various RATs.

SDN enables the split of control and data plane elements
and functionalities in a network. Using SDN, the control
plane functionalities of different RATs can be decoupled from
network elements of various RATs and aggregated in the
control plane. While the resulting control plane consists of
control and management protocols and elements, the data
plane consists of protocols and elements for data transfer.
Since the control plane has a global view of the entire network,
this approach facilitates the optimal utilization of network
resources contrary to distributed control in today’s network.

In this paper, we focus on the interworking between LTE
and WiFi networks. We propose an SDN based network archi-
tecture which unifies the control and management functionali-
ties of LTE and WiFi RATs using an SDN controller. The LTE
BS and the WiFi AP forward the radio resource management
messages to the SDN controller which takes the control and
management decisions. We focus on the optimal RAT selection
problem. We consider that users of different priorities are
present in the network. The controller takes admission control
decisions based on the user priority. We assume that high
priority users are those users which require Guaranteed Bit
Rate (GBR) (such as Voice Over Internet Protocol (VoIP), live
streaming). High priority users are always served using LTE
since WiFi may not provide the required Quality of Service
(QoS). Low priority users are best effort class of users which
may be served using LTE or WiFi. We assume that the avail-
able resource blocks in LTE, after a fixed number of resource
block is allocated to every GBR high priority user, are equally
distributed among the low priority users. However, the data
rate obtained by an individual low priority user depends on
the channel condition of the user. A high priority user may be
blocked if it is not possible to provide the required QoS using
LTE. We assume that the arrival of a high priority user and
the departure of a high/low priority user from LTE (WiFi) can



trigger the offloading of a low priority user to LTE (WiFi). Our
target is to maximize the total system throughput. Generally,
WiFi provides better throughput to users compared to LTE
when WiFi load is less. However, depending on the channel
conditions of the users, under high WiFi load, association
with LTE may be preferable since the total throughput in
WiFi decreases [4] with load. However, maximizing the total
system throughput may result in excessive blocking of high
priority users since their contribution towards the total system
throughput is usually less than that of low priority users.
Therefore, we consider a constraint on the blocking probability
of high priority users. This problem has been addressed in our
earlier works [5], [6]. However, the channel states of users are
not considered in these works. Maximizing the total system
throughput subject to a blocking probability constraint [5],
[6], may lead to excessive offloading of low priority users. For
example, upon the admission of a new high priority user in
LTE, an existing low priority user may be offloaded to WiFi.
However, if another high priority user departs from LTE, it
may be optimal to offload one existing WiFi user to LTE.
As a result, it may happen that within a short time interval,
one user moves from LTE to WiFi and back to LTE again,
leading to ’ping-pong’ kind of behavior. Similar instances can
occur in case of departures followed by arrivals also. This
may generate additional control signaling in the backhaul.
To address this, along with the high priority user blocking
probability constraint, we also take into account the offloading
probability of low priority users (i.e., fraction of offloaded low
priority users) as a constraint. This problem can be modeled
as a Constrained Markov Decision Process (CMDP) problem.

The conventional Dynamic Programming (DP) methods to
solve the CMDP problem is computationally expensive in the
face of large state and action spaces. Moreover, the compu-
tation of the optimal policy using DP methods requires the
knowledge of transition probabilities of the underlying model
which are governed by the statistics of the system dynamics,
viz., the arrival rates of high and low priority users. This is dif-
ficult to obtain in reality. To address these issues, we propose
an algorithm based on which RAT selection and offloading
decisions can be taken in the SDN controller. Unlike DP based
algorithms, the proposed algorithm has low computational
and storage complexities. Furthermore, the proposed algorithm
does not require the knowledge of the statistics of system
dynamics and hence, is suitable for practical implementation.
We develop an SDN based evaluation platform in Network
Simulator-3 (ns-3) (a discrete event network simulator) to
conduct the experiments in an integrated LTE-WiFi network.
Building of this platform requires a significant restructuring of
existing ns-3 modules. Experimental results demonstrate that
the proposed algorithm provides a near-optimal performance.

A. Related Work
RAT selection and offloading solutions proposed in the

literature can be mainly classified into two categories, viz.,
user-initiated [7]–[9] and network-initiated [5], [6], [10], [11].
In [9], “on-the-spot offloading”, which always steers a data
user to WiFi inside the WiFi coverage, is proposed. In [8], the
problem where each user attempts to maximize its own utility
is formulated as a non-cooperative game. However, due to the

emergence of SDN as a part of future 5G networks, network-
initiated RAT selection and offloading solutions are gaining
popularity. Among the SDN based network-initiated RAT
selection and offloading approaches [12]–[15], the authors in
[13] consider an SDN-enabled dynamic path selection problem
in a multi-RAT system and propose an algorithm which
chooses the path based on the rate obtained. The rate obtained
takes into account factors like radio conditions, performance
requirement of different flows and load conditions. In [14], the
authors propose a QoS-aware RAT selection algorithm based
on a metric which takes into account bit rate requirements of
users and capabilities of different RATs. A user association
heuristic which considers multiple traffic classes and scales
well with the LTE/WiFi HetNet system, is proposed in [15].

Unlike [5], [6], we consider channel states of users and a
constraint on the offloading probability of low priority users
for RAT selection. The proposed algorithm in this paper does
not require the knowledge of the model. Although model-free
learning techniques are adopted in literature [11], contrary to
our approach, they still suffer from the curse of dimensionality.
The development of SDN based evaluation platform in ns-3
enables us to characterize the performance of our proposed
algorithm in a practical LTE-WiFi network.

The rest of the paper is organized as follows. In Section II,
we present the system architecture. Section III and IV describe
the system model and the problem formulation, respectively.
We describe the proposed algorithm in Section V along
with an analysis of computational and storage complexities.
Performance of the proposed algorithm in the SDN based
evaluation platform is described in Section VI. Section VII
concludes the paper.

II. PROPOSED SYSTEM ARCHITECTURE
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Figure 1: SDN based LTE-WiFi architecture.

In this section, we propose an overlay architecture that
allows us to handle LTE and WiFi networks together using
SDN. The proposed architecture consists of an SDN controller.
As demonstrated in Fig.1, the SDN controller handles all
control and management related functionalities. To this end,
the Radio Resource Management (RRM) unit of the LTE BS
is moved to the SDN controller. In effect, decision making
related functionalities are implemented in the SDN controller
which has a unified view of the entire network. RRM related
control messages sent by users in LTE are forwarded by
the LTE BS to the SDN controller. For example, the Radio



Resource Control (RRC) connection request message reaches
the controller via the LTE BS. Remaining functionalities of
RRC after the removal of RRM, remains in the LTE BS.
Similarly, the association request message is forwarded by
the WiFi AP to the SDN controller. In spite of the fact that
we have a single controller, scalability issues do not arise
since only a small fraction of control signals (which are
RRM related) is handled by the SDN controller. Note that
channel condition information of users is needed for taking
RAT selection and offloading decisions. For this purpose,
channel condition information of users are forwarded to the
SDN controller at the time of association of users.

III. SYSTEM MODEL
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SDNController

Low Priority User
High Priority User

Figure 2: SDN based LTE-WiFi network.

The system model described in Fig. 2 consists of an LTE
BS and a WiFi AP inside the coverage area of the LTE BS.
The LTE BS and the WiFi AP are connected to the SDN
controller using lossless links. We assume that high and low
priority users are present at any geographical point inside the
coverage area of the LTE BS. Low priority users which are
present outside the dual coverage area of the LTE BS and the
WiFi AP, get associated with the LTE BS always. Without loss
of generality, we consider only those low priority users which
are present in the common coverage area of the WiFi AP and
the LTE BS. Low priority users can be associated with either
the LTE BS or the WiFi AP. We assume that high and low
priority users are allocated resources in LTE from a common
resource pool. We assume that in LTE, users can be of either
“good” or “bad” channel state. We assume that based on the
location of users, the coverage area of the LTE BS is divided
into two regions, viz., cell center and cell edge regions. Since
cell edge users are present in the vicinity of cell boundary,
usually they receive weaker signal strength than the cell center
users. Therefore, it is assumed that users present in the cell
center region have good channels, whereas cell edge users have
bad channels. Selection of cell center/ cell edge region can be
done based on the average Channel Quality Indicator (CQI)
experienced by the users in LTE. If the average CQI of a user
exceeds a certain threshold, then the user is called a cell center
user, a cell edge user otherwise. We assume that the users are
stationary, and the channel states do not change with time
once the user is admitted. Channel states of incoming users
are assumed to be known at the controller, however channel
states in LTE are either good or bad with finite probabilities.
Since the coverage area of the WiFi AP is small, we assume
that channel states of users in WiFi are always good.

We assume that high and low priority user arrivals are
Poisson processes with means λH and λL, respectively. The
service times for high and low priority users are exponentially
distributed with means 1

µH
and 1

µL
, respectively. Assumptions

on service times are in accordance with [16].

A. State Space
We model the system as a controlled continuous time

stochastic process {X(t)}t≥0. We represent a state s in the
state space S as s = (iG, iB , jG, jB , kG, kB), where iG, iB
denote the number of high priority users associated with the
LTE BS with good and bad channels in LTE, jG, jB denote the
number of low priority users associated with the LTE BS with
good and bad channels in LTE, and kG, kB denote the number
of low priority users associated with the WiFi AP with good
and bad channels in LTE, respectively. Note that we do not
explicitly mention the channel states of users in WiFi since the
channel states of users in WiFi are always good. The arrival
and departure of high and low priority users with good and bad
channel states in LTE are taken as decision epochs. It is easy
to see that the system changes state only at these decision
epochs. Also, due to Markovian nature of the system, it is
sufficient to observe the system state at these decision epochs
and not at other points in time.

Whenever there is an arrival or a departure of user, we refer
to it as an event. The system changes state whenever an event
occurs. Let the set of all events be denoted by E . E consists
of arrival and departure of high and low priority users. Let
the arrivals of a high and a low priority user with good (bad)
channel be denoted by E1(E3) and E2(E4), respectively. We
assume that the departures of a high and low priority user
with good (bad) channel are denoted by E5(E6) and E7(E8),
respectively. We denote the departures of a low priority user
from WiFi with good and bad channel in LTE by E9 and E10,
respectively. Note that, the channel states of users in WiFi
does not appear in the event space because the channel states
of users in WiFi are always good. At every decision epoch,
the SDN controller chooses a decision based on the current
system state and the event. Based on the decision, the system
makes a transition to different states with finite probabilities.

Let the LTE system be composed of CL resource blocks. We
assume that s = (iG, iB , jG, jB , kG, kB) ∈ S if (iG + 2iB) ≤
CL, (jG + 2jB) ≤ N and (kG + kB) < W , where N is a
sufficiently large positive integer (N � CL). The first two
conditions are based on the assumption that a user with bad
channel requires twice as many resource blocks as required
by a user with good channel. The first condition also signifies
that the admitted high priority user is provided the required
number of resource blocks, whenever resources are available.
The quantity W signifies the maximum number of users that
can be supported in WiFi with a specified minimum per-user
throughput guarantee. Note that the per-user throughput of
WiFi decreases monotonically with the number of WiFi users
[4]. Since high priority users require a GBR (RL,H , say), a
fixed number of resource blocks are allocated to high priority
users based on the channel condition of the user. However,
since low priority users are best-effort in nature, the remaining
resources in LTE are allocated uniformly among low priority
users. Therefore, the bit rates obtained by low priority users



(which is a function of the channel state) depend on the
number of high priority users in the system. We assume that
the bit rate obtained by a low priority user with bad channel is
1
d (d > 1) times that of a low priority user with good channel,
where d is a constant.

B. Action Space

Let the action space (set of all possible association decisions
in case of arrivals and departures) be denoted by A. Action A1

corresponds to blocking of an arriving user or doing nothing
during a departure. Actions A2 and A3 refer to association
with LTE and WiFi, respectively. Action A4 accepts a high
priority user in LTE and offloads a low priority user with
bad channel to WiFi. Action A5 offloads a low priority user
with bad (good) channel from LTE (WiFi) to WiFi (LTE)
upon the departure of a user from WiFi (LTE). Action A6

accepts a high priority user in LTE and offloads a low priority
user with good channel to WiFi. Action A7 offloads a low
priority user with good (bad) channel from LTE (WiFi) to
WiFi (LTE) upon the departure of a user from WiFi (LTE).
In case of high priority user arrivals, the feasible action set is
{A1, A2, A4, A6}. In case of low priority user arrivals, the
feasible action set is {A2, A3}. In case of departures, the
feasible action set comprises A1, A5 and A7, respectively.
Note that blocking is a feasible action for high priority users
only when the system is non-empty. On the contrary, low
priority users are blocked only when (jG + 2jB) becomes
equal to N .

C. Transition Probabilities

From each state s ∈ S and under each feasible action a ∈ S,
the system moves to a different state s′ ∈ S with a positive
probability pss′(a). Let the sum of arrival and service rates
of users in state s = (iG, iB , jG, jB , kG, kB) be denoted by
v(iG, iB , jG, jB , kG, kB). Therefore,

v(iG, iB , jG, jB , kG, kB) = λH + λL + (iG + iB)µH

+ (jG + jB + kG + kB)µL.

Let ŝ = (i′G, i
′
B , j

′
G, j
′
B , k

′
G, k

′
B) and e{i:1≤i≤6} be a set of 6

dimensional vectors with all elements being zero except the
ith element being ‘1’. Then,

pss′(a) =



λHpg
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λH(1−pg)
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λLpg
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λL(1−pg)
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

i′GµH
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e1,

i′BµH
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e2,

j′GµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e3,

j′BµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e4,

k′GµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e5,

k′BµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e6,

where pg denotes the probability that the channel state of the
arriving user in LTE is good. Values of i′G, i

′
B , j

′
G, j
′
B , k

′
G, k

′
B

as a function of different actions a (conditioned on events El)
are described in Table I.

Table I: Transition Probability Table.

a|El (i′G, i′B, j′G, j′B, k′
G, k′

B)

A1|E ∩ (E2 ∪ E4)
{ (iG, iB , jG, jB , kG, kB)

A2|E1 (iG + 1, iB , jG, jB , kG, kB)
A2|E2 (iG, iB , jG + 1, jB , kG, kB)
A2|E3 (iG, iB + 1, jG, jB , kG, kB)
A2|E4 (iG, iB , jG, jB + 1, kG, kB)
A3|E2 (iG, iB , jG, jB , kG + 1, kB)
A3|E4 (iG, iB , jG, jB , kG, kB + 1)
A4|E1 (iG + 1, iB , jG, jB − 1, kG, kB + 1)
A4|E3 (iG, iB + 1, jG, jB − 1, kG, kB + 1)
A5|(E5 ∪ . . . ∪ E8) (iG, iB , jG + 1, jB , kG − 1, kB)
A5|(E9 ∪ E10) (iG, iB , jG, jB − 1, kG, kB + 1)
A6|E1 (iG + 1, iB , jG − 1, jB , kG + 1, kB)
A6|E3 (iG, iB + 1, jG − 1, jB , kG + 1, kB)
A7|(E5 ∪ . . . ∪ E8) (iG, iB , jG, jB + 1, kG, kB − 1)
A7|(E9 ∪ E10) (iG, iB , jG − 1, jB , kG + 1, kB)

D. Rewards and Costs
Depending on the system state and the action chosen, a finite

amount of reward is obtained. In WiFi, the total throughput
depends on the total load of WiFi comprising low priority
users both with good and bad channels in LTE. Let RW,D(k)
denote the per-user throughput of k users in WiFi under full
buffer traffic model [4]. RW,D(k) is a function of success and
collision probabilities which arise due to the contention-based
medium access of WiFi users and slot times for idle, busy
(due to collision) and successful transmissions. Let the reward
rate in state s and under action a be denoted by r(s, a). The
reward rate under a state-action pair is the sum of throughput
of users in LTE and WiFi under the action. Let us define

R(iG, iB , jG, jB , kG, kB) = (iG + iB)RL,H

+
(CL − iG − 2iB)

(jG + jB)
(jG +

jB
d

)RL,L1(jG+jB)>0

+ (kG + kB)RW,D(kG + kB),

(1)

where RL,L is the data rate corresponding to a single resource
block in LTE for low priority data users with good channel
state. The exhaustive description of reward rates in state s
under different event-action pairs is provided in Table II.

Table II: Reward Rate Table.

(a|El) r(s, a)
(A1| ∪Ei∈E Ei) R(iG, iB , jG, jB , kG, kB)
(A2|E1) R(iG + 1, iB , jG, jB , kG, kB)
(A2|E2) R(iG, iB , jG + 1, jB , kG, kB)
(A2|E3) R(iG, iB + 1, jG, jB , kG, kB)
(A2|E4) R(iG, iB , jG, jB + 1, kG, kB)
(A3|E2) R(iG, iB , jG, jB , kG + 1, kB)
(A3|E4) R(iG, iB , jG, jB , kG, kB + 1)
(A4|E1) R(iG + 1, iB , jG, jB − 1, kG, kB + 1)
(A4|E3) R(iG, iB + 1, jG, jB − 1, kG, kB + 1)
(A5|E5 ∪ . . . ∪ E8) R(iG, iB , jG + 1, jB , kG − 1, kB)
(A5|E9 ∪ E10) R(iG, iB , jG, jB − 1, kG, kB + 1)
(A6|E1) R(iG + 1, iB , jG − 1, jB , kG + 1, kB)
(A6|E2) R(iG, iB + 1, jG − 1, jB , kG + 1, kB)
(A7|E5 ∪ . . . ∪ E8) R(iG, iB , jG, jB + 1, kG, kB − 1)
(A7|E9 ∪ E10) R(iG, iB , jG − 1, jB , kG + 1, kB)

We consider two types of cost functions, due to blocking
and offloading, respectively. Let the cost rate for blocking and
offloading in state s under action a be denoted by cb(s, a) and



co(s, a), respectively. Whenever the SDN controller blocks one
high priority user, cb(s, a) is unity, else it is zero. Therefore,

cb(s, a) =

{
1, if high priority users are blocked,
0, otherwise.

Whenever the SDN controller offloads one low priority user
from one RAT to another, co(s, a) is unity, else it is zero.

co(s, a) =

{
1, if a = (A4|| . . . ||A7),

0, otherwise.

IV. PROBLEM FORMULATION & SOLUTION TECHNIQUES

We aim to determine a policy for the association of high
and low priority users which maximizes the total system
throughput subject to constraints on the blocking probability
of high priority users and the offloading probability of low
priority users. A policy is a mapping from a state to an
action specifying which action is to be chosen in a state.
The problem can be formulated as a CMDP problem. Since
arrivals and departures of high and low priority users can occur
at any arbitrary time, the considered problem is continuous
time in nature. In this case, a stationary randomized optimal
policy, i.e., a mixture of pure policies with corresponding
probabilities, exists [17].

A. Problem Formulation

Let the set of memoryless policies be denoted byM. We as-
sume that the Markov chains induced by memoryless policies
are unichain to guarantee a unique stationary distribution. Let
the average reward, the cost due to blocking of high priority
users and the cost due to offloading of low priority users over
infinite horizon under policy M ∈ M be denoted by VM ,
CB,M and CO,M , respectively. Let the total reward, the cost
due to blocking and the cost due to offloading till time t be
denoted by R(t), CB(t) and CO(t), respectively. The CMDP
problem can be described as follows,

Maximize: VM = lim
t→∞

1

t
EM [R(t)],

subject to: CB,M = lim
t→∞

1

t
EM [CB(t)] ≤ Bmax and

CO,M = lim
t→∞

1

t
EM [CO(t)] ≤ Omax,

(2)

where EM is the expectation operator under policy M and
Bmax, Omax denote the constraints on the blocking probability
of high priority users and the offloading probability of low pri-
ority users, respectively. Since the optimal policy is stationary,
the limits in Equation (2) exist.

B. Conversion to Discrete-Time MDP and Lagrangian Ap-
proach

Optimal policy can be obtained using Relative Value Itera-
tion Algorithm (RVIA) [18]. However, before that, we need to
adopt Lagrangian approach [17]. For fixed values of Lagrange
Multiplier (LM) βb and βo, the equivalent unconstrained
reward function is given by

r(s, a;βb;βo) = r(s, a)− βbcb(s, a)− βoco(s, a).

Using DP, the optimality equation for the considered Semi-
Markov Decision Process (SMDP) ∀s, s′ ∈ S is

V (s) = max
a

[r(s, a;βb;βo) +
∑
s′

pss′(a)V (s′)− ρt̄(s, a)],

where V (s), ρ, t̄(s, a) represent the value function of state s ∈
S, the optimal average reward of the system and the mean
transition time for state s and action a, respectively. Since the
sojourn times are known to be exponential, this becomes a
special case of continuous time controlled Markov chain, and
therefore, the following equation holds.

0 = max
a

[r(s, a;βb;βo)− ρ+
∑
s′

q(s′|s, a)V (s′)], (3)

where q(s′|s, a) are controlled transition rates which satisfy
q(s′|s, a) ≥ 0, for s′ 6= s and

∑
s′
q(s′|s, a) = 0. Scaling the

transition rates by a positive scalar quantity is equivalent to
time scaling. This scales the average reward for every policy
without changing the optimal policy. Therefore, we assume
(without loss of generality) that −q(s|s, a) ∈ (0, 1),∀a. This
implies that q(s′|s, a) ∈ [0, 1] for s′ 6= s. We add V (s) to
both sides of Equation (3) to obtain the following equation for
an equivalent discrete-time MDP ({Xn} say) with controlled
transition probabilities pss′(a).

V (s) = max
a

[r(s, a;βb;βo)− ρ+
∑
s′

pss′(a)V (s′)], (4)

where pss′(a) = q(s′|s, a) for s′ 6= s and pss′(a) = 1 +
q(s′|s, a) for s′ = s. For the rest of the paper, instead of
the original continuous-time MDP, we focus on the obtained
equivalent discrete-time MDP in Equation (4).

For fixed βb and βo, we can use RVIA to solve the
unconstrained maximization problem in Equation (4) using the
following equation.

Vn+1(s) = max
a

[r(s, a;βb;βo) +
∑
s′

pss′(a)Vn(s′)−Vn(s∗)],

(5)
where Vn(s) is the value function estimate of state s after
n iterations, and s∗ is a fixed state. We aim to obtain the
the optimal values for βb and βo, viz., βb∗ and βo

∗, which
maximize the average reward subject to cost constraints.
The following equations describe gradient descent routines to
update the values of βb and βo in kth iteration.

βb,k+1 = βb,k +
1

k
(Bπβb,k −Bmax),

βo,k+1 = βo,k +
1

k
(Oπβo,k −Omax),

where βb,k, βo,k are the values of βb and βo in kth iteration,
and Bπβb,k , Oπβo,k denote the high priority user blocking
probability and the low priority user offloading probability in
kth iteration, respectively. Note that the optimal policy for the
considered CMDP is a randomized policy with randomizations
in at most two states [19].



V. PROPOSED RAT SELECTION ALGORITHM

In Section IV, maximization of the total system throughput
subject to constraints on the high priority user blocking
probability and the low priority user offloading probability is
formulated as a CMDP problem which can be solved using DP
techniques. However, DP based methods suffer from the curse
of dimensionality. For example, in traditional policy iteration
[18], the computational complexity is O(|A||S|) which is
exponential in the cardinality of the state space. Furthermore,
computation of the optimal policy requires the knowledge
of the state transition probabilities which are governed by
the statistics of arrival processes of high and low priority
users. In practice, the statistics of arrival processes may be
unknown. Although learning based approaches [11] which do
not require the knowledge of statistics of arrival processes may
be adopted, usually their convergence rate is very slow. To
address these issues, we propose a low-complexity algorithm
which is practically implementable. Moreover, it does not need
the knowledge of the statistics of arrival processes.

A. Myopic with Constraint Satisfaction Algorithm

In this subsection, we propose an algorithm which is myopic
in the sense that it only optimizes based on the current reward
and does not look into the future utility. However, the pro-
posed algorithm, called Myopic with Constraint Satisfaction
Algorithm (MCSA), satisfies the associated constraints on the
blocking probability of high priority users and the offloading
probability of low priority users. The complete description of
MCSA is provided in Algorithm 1.

We first determine the event in the current decision epoch.
Then, we determine the best action (denoted by a∗) based on
the current reward (Line 4). If the current event is low priority
user arrival (event E2 and E4), then irrespective of the channel
condition of the incoming user, we always choose the action
a∗. Since the feasible actions (A2 and A3) in case of low
priority user arrivals neither affect the blocking probability
of high priority users nor affect the offloading probability
of low priority users, we always act in a myopic manner.
However, if the current event is high priority user arrival
(event E1 and E3), then we initially increment the counter
corresponding to the number of high priority user arrivals
(denoted by AH ). If the current value of blocking probability
(denoted by BH ) is less than the specified constraint Bmax,
then we block the arriving high priority user (Line 16). Note
that, we keep a small margin εB on Bmax to ensure that in
the long run the system operates below Bmax. However, if
BH is more than Bmax − εB and the current value of the
offloading probability of low priority users (denoted by OL) is
less than the specified constraint Omax, then we always choose
the action a∗ (Line 11). If the current value of OL violates the
constraint, then A2 is selected (Line 12) since choosing A4 or
A6 may further increase the value of OL. Similar to Bmax, we
keep a small margin εO on Omax. Based on whether action
involving blocking (A1) or offloading (A4 and A6) is chosen
(denoted by FB and FO, respectively), we update the current
value of BH and OL (Line 20 and 21). Similar procedures
are followed in case of departures, where the corresponding
counter (denoted by D) is updated, and depending on the value

Algorithm 1 Myopic with Constraint Satisfaction Association
Algorithm.

Input: RL,H , RL,L, RW (.), Bmax, Omax.
1: Initialize AH ← 0, D ← 0, BH ← 0, OL ← 0, FB ← 0

and FO ← 0.
2: while TRUE do
3: Determine the event E in the current decision epoch.
4: Set a∗ ← arg max

a∈A
r(s, a).

5: if (E = E2||E4) then
6: Choose action a = a∗.
7: else if (E = E1||E3) then
8: AH ← AH + 1.
9: if BH > (Bmax − εB) then

10: procedure HP–CONSTRAINT–VIOLATION
11: If OL < (Omax − εO) choose a = a∗.
12: Else choose a = A2.
13: F0 ← I{a=A4||A6}.
14: end procedure
15: else
16: Choose action a = A1.
17: end if
18: procedure UPDATE–BP–OP
19: FB ← I{a=A1}.
20: BH ← BHAH+FB

(AH+1) .

21: OL ← OL(AH+D)+FO
(AH+D+1) .

22: end procedure
23: else
24: procedure DEPARTURE–POLICY
25: D ← D + 1.
26: If OL < (Omax − εO), choose a = a∗.
27: Else choose a = A1.
28: F0 ← I{a=A5||A7}.
29: OL ← OL(AH+D)+FO

(AH+D+1) .
30: end procedure
31: end if
32: end while

of OL, actions are selected (Line 25-27). Based on whether
A5 or A7 is chosen, OL is updated (Line 28-29). Note that
unlike DP methods, MCSA does not require the knowledge of
transition probabilities of the underlying model.

B. Complexity Analysis

In this subsection, we analyze the computational and storage
complexities of the optimal policy and the proposed MCSA.
The optimal policy needs to store the optimal action corre-
sponding to every state, resulting in a storage complexity of
O(|S|). Also, the computation of the optimal policy using
traditional policy iteration [18] involves a worst case complex-
ity of O(|A||S|) since the total number of feasible policies
is |A||S|. Therefore, it is very cumbersome to compute the
optimal policy using traditional DP methods.

In the case of MCSA, whenever an event occurs, we need to
compute the best action a∗. Therefore, the per-iteration com-
putational complexity of MCSA is O(|A|). MCSA requires to
store the running values of AH , D, BH and OL. However,
it does not need to store any information regarding the state



space. Therefore, the resulting storage complexity is O(1),
which is significantly better than that of the optimal policy.

VI. SIMULATION RESULTS

In this section, we implement the proposed algorithm in an
SDN based evaluation platform built by us using ns-3. We
observe the performance of MCSA in terms of the blocking
probability of high priority users, the offloading probability of
low priority users and the total system throughput and compare
with those of the optimal policy.

A. Simulation Setup and Methodology
We setup an evaluation platform (based on ns-3) which

provides a framework to simulate the SDN controller based
integrated control of LTE and WiFi networks. To this end, we
restructure few existing modules present in ns-3. We create
an SDN controller node which has two interfaces towards the
LTE BS and the WiFi AP, respectively, over Internet Protocol
(IP) connections. RRM functionalities present in the LTE BS
are moved to the SDN controller. RRM related control signals
in LTE and control signals in WiFi are forwarded to the SDN
controller. However, data plane traffic is routed directly from
the LTE BS to the gateway. To enable the communication
between the LTE BS and the SDN controller, an application
is developed. The application sends the control messages
encapsulated in another control message with suitable headers.
Whenever an event (arrival/departure of users) occurs, a con-
trol packet is sent from the user to the BS/AP which forwards
the packet to the SDN controller, The SDN controller then
chooses an action according to the implemented algorithm.

The considered network model comprises a 3GPP LTE
BS and an IEEE 802.11g WiFi AP inside the coverage area
of the LTE BS. Users are assumed to be stationary. We
consider that the radius of the coverage area of the WiFi AP
is approximately 30 m. The distance between the LTE BS
and the WiFi AP is approximately 50 m. We assume that the
WiFi AP is deployed by the cellular operators, and hence,
the interworking is trusted in nature. LTE and WiFi network
parameters summarized in Tables III and IV, are chosen based
on 3GPP [20]- [21] models and saturation throughput [4] IEEE
802.11g WiFi [22] model. In simulations, we assume that the
maximum data rate which a low priority user can obtain is
10 Mbps due to bottleneck in the access network. We set
Bmax = Omax = 0.05, εB = εO = 0.01.

Table III: LTE Network Model.

Parameter Value
High priority user capacity 4 users
Bit rate of a high priority user 20 kbps
Voice packet payload 50 bits
Data packet payload 600 bits
Tx power for BS and MS 46 dBm and 23 dBm
Noise figure for BS and MS 5 dB and 9 dB
Antenna height for BS and MS 32 m and 1.5 m
Antenna type for BS and MS Isotropic Antenna
Path loss (R in kms) 128.1 + 37.6 log(R)
Multi-path fading Extended Pedestrian A model [23]

B. High Priority Arrival Rate Variation
Fig. 3a describes the high priority user blocking proba-

bility of the proposed algorithm and the optimal policy. As

Table IV: WiFi Network Model.

Parameter Value
Channel bit rate 54 Mbps
UDP header 224 bits
Packet payload 1500 bytes
Slot duration 20 µs
Short inter-frame space (SIFS) 10µs
Distributed Coordination Function IFS (DIFS) 50µs
Minimum acceptable per-user throughput 4.5 Mbps
Tx power for AP 23dBm
Noise figure for AP 4 dB
Antenna height for AP 2.5 m
Antenna parameter Isotropic antenna
Path loss (R in kms) 140.3 + 36.7 log(R)
Fading Rayleigh fading

λH increases, the blocking probability of the optimal policy
increases. Since MCSA blocks high priority users based on
the value of Bmax without considering λH , the blocking
probabilities are nearly same for all λHs. In Fig. 3b, we plot
the low priority user offloading probabilities for the considered
algorithms. The low priority user offloading probability of
MCSA is a constant for all values of λH due to similar reasons
as that of Fig. 3a. However, in case of optimal policy, it
gradually rises with λH because actions involving offloading
(A4, A5, A6, A7) are selected more frequently. However, the
total system throughput of MCSA is very close to that of the
optimal policy (see Fig. 3c).

C. Low Priority Arrival Rate Variation

Fig. 4a describes the high priority user blocking probability
of MCSA and optimal policy. Similar to Fig. 3a, MCSA
exhibits blocking probabilities which are close to the given
constraint for every value of λL. In Fig. 4b, we plot the
offloading probability of low priority users as a function of
λL. The offloading probability of the optimal policy grows
with λL since more frequently actions involving offloading
are selected. MCSA provides offloading probabilities which
are close to the given constraint for all values of λL. In Fig. 4c,
we observe that the performance of MCSA is close to optimal
in terms of the total system throughput. This happens because
of the load balancing mechanism (similar to that of optimal
policy) facilitated due to the centralized nature of MCSA.

VII. CONCLUSION

In this paper, we propose an SDN based architecture for
an LTE-WiFi network and consider the optimal RAT selection
problem in a system where users of multiple priorities are
present. We aim to maximize the total system throughput
subject to constraints on the high priority user blocking prob-
ability and the low priority user offloading probability. This
problem is formulated as a CMDP problem. We then propose
an algorithm for RAT selection which has low computational
and storage complexities. Moreover, the proposed algorithm
does not require the knowledge of the underlying transition
probabilities of the model and hence, is suitable for practical
implementation. Although myopic in nature, the proposed
algorithm satisfies the associated constraints. To measure the
performance of the proposed algorithm, we develop an SDN
based evaluation platform which is implemented in ns-3. Ex-
perimental results exhibit that the proposed algorithm provides
a near-optimal performance.
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Figure 3: Plot of different system parameters for different algorithms under varying λH (λL = 1, µH = 1 and µL = 1).

1 1.2 1.4 1.6 1.8 2
0

5

10

15

Low priority user arrival rate (λL)(s
−1)

H
ig
h
p
ri
or
it
y
u
se
r
b
lo
ck
in
g
fr
a
ct
io
n
(%

)

Optimal policy
MCSA

(a) High priority user blocking percent-
age vs. λL.

1 1.2 1.4 1.6 1.8 2
0

5

10

15

Low priority user arrival rate (λL)(s−1)

L
ow

p
ri

or
it

y
u
se

r
offl

oa
d
in

g
fr

a
ct

io
n

(%
)

Optimal policy
MCSA

(b) Low priority user offloading per-
centage vs. λL.

1 1.2 1.4 1.6 1.8 2

20

40

Low priority user arrival rate (λL)(s
−1)

T
ot
al

sy
st
em

th
ro
u
gh

p
u
t
(M

b
p
s)

Optimal policy
MCSA

(c) Total system throughput vs. λL.

Figure 4: Plot of different system parameters for different algorithms under varying λL (λH = 0.2, µH = 1 and µL = 1).
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