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Online Crowd Learning with Heterogeneous
Workers via Majority Voting

Chao Huang, Haoran Yu, Jianwei Huang, and Randall A Berry

Abstract—Many platforms recruit workers through crowd-
sourcing to finish online tasks involving a huge amount of
effort (e.g., image labeling and content moderation). These
platforms aim to incentivize heterogeneous workers to exert
effort finishing the tasks and truthfully report their solutions.
When the verification for the workers’ solutions is absent, the
crowdsourcing problem is challenging and is known as infor-
mation elicitation without verification (IEWV). Majority voting
is a common approach to solve an IEWV problem, where a
worker is rewarded based on whether his solution is consistent
with the majority. However, most prior related work relies on
a strong assumption that workers’ solution accuracy levels are
public knowledge. We relax such an assumption and propose
an online learning mechanism based on majority voting, which
allows the platform to learn the distribution of the workers’
solution accuracy levels. In the mechanism, workers will be asked
to report their private accuracy levels (which do not need to
be the true values), in addition to deciding their effort levels
and solution reporting strategies. The mechanism computes the
workers’ rewards based on their reported accuracy levels, and
the workers obtain rewards if their reported solutions match
the majority. We show that our mechanism induces workers to
truthfully report their solution accuracy levels in the long run, in
which the platform asymptotically achieves zero regret. Moreover,
we show that our online mechanism converges faster when the
workers are more capable of solving the tasks.

I. INTRODUCTION
A. Motivations

The emerging applications of crowdsourcing have success-
fully harnessed the intelligence of an unprecedentedly wide-
ranging population of workers for solving various tasks [1],
[2]. For example, in Waze, one of the most successful crowd-
powered start-ups, users report fairly accurate traffic jam
information and are provided with automatically generated
optimal route suggestions [3]. In OpenReview, an online paper
review platform, world-wide researchers anonymously conduct
academic reviews [4].

To encourage high-quality solutions from the crowdsourced
workers, a platform needs to carefully design the reward mech-
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anism. This is challenging, especially when the platform cannot
verify the correctness or quality of workers’ solutions [5], [6].
This may be because it is costly and time-consuming to obtain
the ground truth. For example, in Waze, traffic jam information
reported by the users may be difficult to verify in real-time,
and the platform can only reward users based on their reported
data. In OpenReview, it is also hard to verify the quality of
reviews due to the intrinsic complexity of academic review and
reviewer anonymity. When there is a lack of verification for
the workers’ solutions, the crowdsourcing problem is known
as information elicitation without verification (IEWV) [7].

There is a large body of research on IEWV during the
last decade. Much existing literature (e.g., [7], [8]) considers
homogeneous workers, i.e., the capabilities of generating the
correct (or high-quality) solutions are the same among workers.
This often results in some symmetric equilibria (where all
the workers adopt the same strategy), and it provides insights
into applications where workers have similar capabilities (e.g.,
image labeling [9]). However, in many other practical sce-
narios, workers have quite different capabilities. For example,
in mobile crowdsensing, accuracy of sensors from different
mobile phones may vary tremendously [10]. In OpenReview,
senior researchers are more likely to generate more reliable
reviews than junior ones can. In this paper, we consider
workers with heterogeneous solution accuracy levels. It is
challenging to design a reward mechanism considering such
heterogeneity, as accounting for the worker diversity makes
the elicitation of effort and truthfulness more difficult.

There is another key difference between our work and
the prior literature on IEWYV. Most prior work relies on the
strong assumption that workers’ solution accuracy levels are
public information, i.e., such information is known by both
the platform and the workers [8], [11], [12]. This assumption
may not hold in many practical scenarios. It is becoming more
difficult for a platform to access and make use of personal
data due to an increasing tendency of privacy protection [13].
Without the personal data, the platform can hardly estimate
the workers’ solution accuracy levels. For example, in peer
grading, without the information of a student’s education
background, a platform cannot efficiently estimate the student’s
capability of homework evaluation. Several recent work (e.g.,
[6], [14]) considered heterogeneity of workers under this
strong assumption that the workers’ accuracy distribution is
public information. This paper takes the first step to study the
IEWYV problem without requiring the platform to know even
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Fig. 1: Interactions between platform and workers in each time slot .

the workers’ accuracy distribution. Such information will be
effectively learned and utilized by the platform through our
proposed online learning mechanism.

When the workers’ accuracy distribution is public informa-
tion, the majority voting mechanism is a popular practical
method for solving the IEWV problem [1], [2], [6]. In the
majority voting mechanism, a worker obtains a reward if his
solution matches the majority solution from the other workers.
In this paper, we build our mechanism based on majority
voting. As discussed, prior work lacks an analytical study
of the mechanism design when the platform does not know
workers’ accuracy distribution. We address such a challenge
by proposing an online learning framework, where workers’
accuracy distribution is estimated based on their accuracy
reports as tasks are assigned and finished over time. Hence,
the online mechanism gradually learns to use proper rewards
to incentivize workers to truthfully report their accuracy. Due
to its online nature, our mechanism can be implemented in real
time. This is a desirable property as the ability to finish rapidly
incoming tasks on the fly can help reduce the dalay and save
cost for the platform.

To design an online learning mechanism based on majority
voting, we need to answer several questions:

o First, how should the platform design the reward mecha-

nism without knowing the workers’ accuracy distribution?

« Second, how will the heterogeneous workers behave in

our proposed learning mechanism?

In this paper, we focus on addressing the above key ques-
tions. To answer the first question, we propose a majority-
voting-based online learning mechanism, which encourages
the workers to report their accuracy levels (in addition to
deciding their effort levels and solution reporting strategies). To
answer the second question, we analyze workers’ equilibrium
strategies on their accuracy reporting (as well as effort exertion
and solution reporting). The platform will implement the
learning algorithms over multiple time slots. In each time slot,
the mechanism will compute rewards to workers based on their
accuracy reports, and the workers will obtain rewards if their
reported solutions match the majority. The interactions between
the platform and the workers in each time slot are as follows
(illustrated in Fig. 1):

1) Period I: The workers report their solution accuracy levels

to the platform.

2) Period II: The platform decides the amount of consistency
rewards based on the workers’ reported accuracy levels.

3) Period III: The workers choose effort exertion and solu-
tion reporting strategies.

After finishing the task in Period III, the workers report
their solutions, and Majority Voting is implemented by the
platform. More specifically, the platform aggregates the work-
ers’ reported solutions and provides consistency rewards to the
workers whose solutions are consistent with the majority. Note
that the results of the majority voting phase are completely
dependent on the previous three periods, hence we do not treat
it as a separate period.

The online learning mechanism design is very challenging in
our context. This is because there is no accessible ground truth
to verify either the workers’ task solutions or their accuracy
reports. Moreover, without prior information of the workers’
accuracy levels, the majority voting mechanism provides a
natural incentive for the workers to under-report their accuracy
so that the platform will set a larger reward (see Section III
for more detailed discussions on this point). To address these
challenges, we propose a randomized reward mechanism that
incentivizes the workers to truthfully report their accuracy lev-
els. Moreover, by carefully designing the reward, the platform
can also anticipate the workers’ decisions on effort exertion
and solution reporting, based on their accuracy reports.

B. Key Contributions

The main contributions of this paper are as follows.

o Mechanism design without knowing worker accuracy
distribution for the IEWV problem: To the best of our
knowledge, this is the first attempt to study the mechanism
design for the IEWV problem when the platform does
not know the workers’ accuracy distribution. The lack
of such information makes the mechanism design very
challenging, as neither the workers’ reported accuracy nor
their reported task solutions can be verified.

e Proposing online crowd learning mechanism: We design
an online mechanism to learn the distribution of workers’
solution accuracy levels without ground-truth verification.
Our mechanism enables the platform to anticipate the
workers’ effort exertion and solution reporting decisions
based on their past accuracy reports.



o Characterizing online reward design in closed-form: We
compute in closed-form the online reward design that
incentivizes workers to truthfully report their accuracy
levels. The reward level also enables the platform to
accurately learn the accuracy distribution in the long run.

o Performance Evaluation: We evaluate our online mecha-
nism via numerical experiments. Interestingly, we show
that workers achieve the highest payoffs by truthfully
reporting their accuracy levels, when comparing with
several benchmark reporting strategies. We also show that
our mechanism converges faster when the workers are
more capable of solving the tasks.

The rest of this paper is organized as follows. In Section
I, we introduce the model. In Section III, we present the
mechanism. In Sections IV and V, we analyze the workers’
and the platform’s optimal strategies, respectively. We show
numerical results in Section VI and conclude in Section VIL.

II. MODEL

In Section II-A, we introduce the workers’ decisions and
payoffs. In Section II-B, we introduce the interations between
the workers and the platform, with an emphasis on the workers’
accuracy reporting.

A. Workers’ Decisions and Payoffs

In this subsection, we first define each worker’s strategy, and
then define each worker’s payoff function.

1) Workers and Tasks: We consider a finite discrete time
horizon 7 = {1,2,--- ,T} and a set N = {1,2,--- N}
of workers. In each time slot ¢, all the workers are assigned
an identical, binary-solution task and required to report their
solutions after solving the task. The task can be, for example,
judging whether the quality of an online article is Good or Bad.
We use X; = {1, —1} to denote the solution space of the task
assigned in time slot ¢, where 1 means Good and —1 means
Bad.! We use z; € X, to denote the true solution of the task
in time slot ¢t. Each worker ¢ can have a different estimated
solution after solving the task, denoted by xff‘t“mate € X;, and
he can choose to report a value xftport € X, to the platform
that may or may not be the same as xffttimate. Although the task
assigned to all workers in a particular slot is the same, the task
can change over different time slots. Note that we consider the
challenging case where the platform cannot verify the workers’
solutions, hence the platform and the workers do not know x;,
forall t € T.

2) Worker Effort Exertion and Solution Reporting Strategy:
In each time slot ¢, each worker needs to decide whether
to exert effort to complete the task, where the accuracy
(i.e., quality) of his solution depends on his effort level. Let
eir € {0,1} be a binary variable denoting worker ¢’s effort
level [1]. Spending effort with a cost ¢; ; > 0 will improve the
accuracy of a worker’s solution. Specifically, the probability

IBinary-solution tasks are widely considered in literature [1], [2]. We can
extend our analysis to the scenario where a task has more than two possible
solutions, i.e., by decomposing a multiple-solution task into several binary-
solution tasks [1].

that worker 4’s estimated solution in time slot ¢ is the same as
the true solution of the task is given by

P(x;e;qttimate — xt) _

plov, if e; , = 0 (with zero cost), (D
Dit € [phigh, 1} , ife;s =1 (with a cost ¢;¢ > 0),

where 0.5 < p'°V < phigh < 1 and the values of p'°V and phish
are public knowledge to both the platform and the workers. We
assume that even without any effort a worker still has some
information about the true solution, so his estimate is more
accurate than random guessing, i.e., plOW > 0.5.2 Here, Dit 18
the solution accuracy level (after effort exertion) of worker ¢
in time slot ¢, and it may change over time (depending on the
specific task). Although p; ; is worker 4’s private information,
the platform knows its range [phigh, 1] that is common among
all workers.?

Each worker also needs to decide whether to truthfully report
his solution to the platform. Let v;;, € {1,—1} denote the
reporting strategy of worker ¢, where v; ; = 1 indicates truthful

reporting and v; ; = —1 indicates untruthful reporting,” i.e.,
estimate : —
report iri,t ) if Vit = ]-7 (2)
%t _‘,L,;?sttlmate7 if Vit = —1.

For notational convenience, we use s;; = (i, vi¢)
to denote each worker’s effort exertion and solution re-
porting strategy, where s;; belongs to the set & =

{(Ov 1)a (07 _l)a (17 1)’ (L _1)}'

3) Worker Accuracy Reporting Strategy: In practice, the
platform may have no prior knowledge on the distribution
of workers’ solution accuracy levels. We assume that all p; ¢
(i.e., worker’s solution accuracy level after effort exertion)
are independently and identically distributed with a general
cumulative distribution function F'(p) on support [phieh 1]
The platform knows the support but not the specific form of
F(p), hence needs to design an online learning mechanism
to discover F'(p). Our mechanism requires the workers to
report their p; ;. A worker ¢ can choose to report the value

of piP* € [phieh 1] in time slot ¢, and such value may not

2We can extend our analysis to the case where p'°% = 0.5, i.e., without
exerting effort a worker has no information about the true solution, so the
estimated solution is equally likely to be right or wrong. However, this case
can complicate the platform’s reward design. We leave the details for interested
readers to the online appendix [15].

3Since the focus of this paper is to model the case where workers have
heterogeneous accuracy levels, we assume that workers have homogeneous
costs. Specifically, we assume that c; + = ¢ > 0, for all 3, ¢.

4In fact, workers can benefit by colluding to always report 1 (or —1) as the
task solution. However, in many online crowdsourcing platforms, workers are
temporally and spacially separated and have very limited communications.
Hence, we assume that workers report their solutions indenpendently and
restrict their solution reporting strategies to either 1 or —1 [2], [6], [14].

SNote that workers’ solution accuracy levels over time are considered
independent and may change due to different task assignments. However,
we assume that the overall distribution of the workers’ solution accuracy
levels does not vary over time. With a fixed worker population, the accuracy
distribution can be treated as fixed when the assigned tasks over time have
similar levels of difficulty [2].
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be his true solution accuracy level, i.e., p; ;
from p; ;.

4) Consistency Reward for Majority Voting: In each time
slot ¢, after workers report their solutions, the platform will dis-
tribute consistency rewards to workers accordingly. If worker
i’s reported solution mreport is aligned with the majority
solution from the rest of the workers (denoted by xrfziority),
he will receive a consistency reward R;; > 0. Specifically, the

majority solution from worker i’s perspective is

report

md]orlty 1’ ! ZJEN’J?&Z xrc ort - O,
—i,t -1 if Z]e./\/J;ﬁzx ; < 0 (3)
tie, if D icn ki T xreport =0.
If zgftport = zr_nijtority, worker ¢ receives R;, for matching

the majority solution. If 2™ jtomy tie, worker i also

receives R;;, because his reported solution decides the ma-

jority solution from all the workers. If xmport + :vrf?jtority

and ™Y £ tie, worker i will receive no reward, i.e.,
R, = 0. Note that the consistency reward R;; is affected
by the workers’ accuracy reports, which will be explained in
Section III. We denote the probability that worker 7 receives
th as Pzt( report St) where preport _ (p:etport Vi c N),
and St = ((617t7’l)7;’t),Vi € N)

5) Worker Payoff: : We define worker 7’s payoff in slot ¢ as

Us t(Pieport St,R ) Rz ¢ B t( report St) — €4t C, €]

where R; ;- P, 1(p} 1Pt 's,) captures the expected consistency
reward and —e; ; - ¢ captures the cost for effort exertion.

B. Interactions between Workers and Platform

In this subsection, we introduce the interactions between
the workers and the platform in each period of time slot ¢,
respectively.

1) Worker Effort and Solution Reporting Game in Period
III: In Period III of each time slot ¢, after workers reported
accuracy levels p;™”" = (p{F*"",Vi € ) in Period I, and
the platform announced reward bundle (R;;, Vi € N) in
Period II, each worker decides effort exertion and solution
reporting strategies.® Recall that workers obtain rewards if their
solutions match the majority, hence their decisions on effort
exertion and solution reporting affect other workers’ payoffs
in a game theoretical fashion.’

2) Platform Reward Design in Period II: In Period II
of time slot ¢, the platform computes the reward bundle
(Ri,Vi € N) based on the accuracy reports in Period I, and
anticipates the workers’ decisions in Period III. Note that the
platform does not know the workers’ accuracy distribution,
and it wants to obtain a good estimate of the distribution by

SHere workers are informed of the announced reward bundle, not the private
reported accuracy levels. Further as will be seen, from the announced rewards
a worker cannot infer what accuracy levels other workers reported.

"The detailed game formulation is left to appendix [15] due to space limits.
We assume that workers know the distribution F'(p). This models the scenario
where workers know each other, e.g., in peer grading, students from the same
class may know other students’ background and capabilities well.

designing the reward to incentivize the workers to truthfully
report their solution accuracy levels. In this case, the platform’s
objective is to minimize the regret defined as follows:

Tl;n;o <p€$?§§,1] ‘FT(p) - F(p)D , (5)

where for any p € [p"s" 1], the empirical distribution
(characterized by the cumulative distribution function) of the
workers’ accuracy reports is given by®

- Zt 127,6./\/]]' repoxt
Fr(p) = NT

The platform’s objective is to minimize the regret, which
indicates the difference between the empirical distribution and
the actual distribution of the workers’ solution accuracy levels.’

Next, we formulate the platform’s regret minimiation prob-
lem. The platform chooses the consistency reward to minimize
the asymptotic regret. The problem is formulated as follows:

(6)

Problem 1. (Platform’s Reward Design Problem in Period II)

min (,gefﬁi’i,u Fro) = Fo )D (7)
var. R;; € [0, R™™], Vie N, teT.

Here, the consistency reward is upper bounded by a finite
value R™#*, modeling that the platform cannot provide an
arbitrarily large reward (e.g., due to budget concerns [16]).

3) Worker Accuracy Reporting Game in Period I: In Period
I of time slot ¢, workers independently report their accuracy
levels, anticipating the platform’s decision in Period II and the
workers’ own equilibrium decisions in Period III. The accuracy
reporting game among the workers is formulated as follows.

Game 1. (Workers’ Accuracy Reporting Game in Period 1
of slot t) In Period I of each time slot t, the workers’
accuracy reporting game is a Bayesian game, i.e., a tuple
Q= WN,P,V,u;"?, F) that consists of

o Players: The set N of workers.

o Strategies: Each worker chooses his accuracy reporting
strategy p;etport € Pi £ [pMs" 1]. The accuracy re-
porting strategy profile of all the workers is piP°" =
(PSP Vi € N') and the set of feasible strategy profile
of all the workers is P = [[;cn Pi-

o Types: Each worker i’s type is his accuracy level p;, €

ya [phigh ], which is his private information.
o Payoffs: The vector ui"? = (u;’,Vi € N') contains all

workers’ payoffs as defined in ( 8 ).
« Type Distribution: Each worker i’s type p; ¢ is drawn from
a common distribution with cdf F(-) on support [p™i&® 1].

8Note that in (6), 1 is an indicator function, i.e.,

1 = 1if
p;?fort<p

report

Dyt < p, and 1 repore =0 if preport > p.
’ i,t

<p
90ur model is also applicable to other objectives such as minimizing the
regret between the platform’s tradeoff under estimated accuracy distribution
and that under actual accuracy distribution. The tradeoff here can be a balance
between the quality of the workers’ solutions and the total rewards [6].



Since the accuracy reporting game is a Bayesian game, we
define the expected payoff for a worker ¢ in time slot ¢ as

arg /. report report o
Uit (pzt iRie,p iy ) 8t) =
blf eport eport
[ R T s AP (B,
. . )
blf 7, repor repor .
where w)y (p; " Rie, P07 5 sit, 8—it(P_; ) is worker

1’s payoff in time slot ¢, glven any belief p_, ;. Due to space
limits, its expression is left to the online appendix [15].

We apply e-approximate Bayesian Nash equilibrium (e-
BNE) as the solution concept for Game 1 [17]. This equi-
librium concept is defined as follows.

Definition 1. (e-BNE) A set of reporting strategy
( report* VZ 6./\/) Wl[/’l preport* — ( report* Vt € 7—) is

an e-BNE if for any i and pGCort # p?port*, we have

report* report*
= E uzt yP—_it s Ry t7st)

report report*
*E uzt( yP—it th73t>—€'

At an e-BNE, it is not possible for a worker to increase
its payoff by more than e via unilaterally deviating from
his equilibrium strategy. Note that e-BNE is a generalized
concept of BNE, where no worker can increase his payoff via
unilaterally deviating from his equilibrium strategy. An e-BNE
with € = 0 is a BNE. As we will show, our mechanism induces
an e-BNE where € approaches zero as 1" increases.

Recall that the platform’s goal is to learn the workers’
accuracy distribution by asking them to report their accuracy
levels. The platform needs to carefully design the reward
mechanism to incentivize the workers to truthfully report their
accuracy levels, so that the learning is accurate. We present
the reward mechanism design in the following section.

€))

III. ONLINE CROWD LEARNING MECHANISM

In this section, we present our online crowd learning mech-
anism based on majority voting. The mechanism aims to
encourage the workers to truthfully report their accuracy levels.
However, without information about the workers’ accuracy
distribution, majority voting provides the (wrong) incentive for
workers to under-report their accuracy levels. A lower accuracy
(from under-reporting) makes the platform believe that this
worker has a smaller chance of matching the majority. Hence,
to compensate the cost of effort exertion, the platform needs
to use a larger reward. To address this issue, we propose
a randomized reward design. Moreover, after the platform
estimates the rewards based on workers’ accuracy reports, it
needs to add a positive term to the estimated rewards in order to
reduce the bias. The bias comes from the imperfect estimation
of the accuracy distribution due to a finite number of accuracy
reports, as well as the workers’ potenial accuracy misreports.

Mechanism 1 provides the details of the online mechanism.
In Step 1 the workers submit their accuracy reports; in Step 2
the platform randomly selects a threshold and uses this to set
the reward in Step 3.

Mechanism 1 Online Crowd Learning Mechanism

1: initialization: set ¢t = 1;
2: while ¢t < 7T do
3:  Assign an identical task to all the workers;
4. Step 1 (Reporting Accuracy): Workers voluntarily
submit accuracy reports (p;etport VieN);
if worker ¢ does not submit then
pftport « plow;
end if
Step 2 (Selecting Threshold): The platform randomly
selects p; uniformly from support [phigh, 1];
9:  Step 3 (Setting Reward):

report

® W

10: ifp < p; then

11: Rm +— 0;

12:  else

13: Estimate RH via (13) and compute §; via (11);
14: Rit + Ry + 01

15 end if

16: t<+t+1;
17: end while

In Step 2, the reason to select a random threshold p; is
to incentivize the workers to truthfully report their accuracy
levels. Such a random selction offsets the benefit a worker
obtains from under-reporting his accuracy and compensates
the loss a worker suffers from over-reporting his accuracy.
Specifically, if a worker ¢ under-reports his accuracy, he will
have a larger chance of matching the majority solution. This is
because the platform will use his accuracy report to calculate
other workers’ rewards, and his under-reporting will lead other
workers’ rewards to be larger. With larger rewards, other
workers are more likely to exert effort (and truthfully report
solutions). As a result, worker ¢ will have a larger chance of
matching the majority solution. However, when the platform
randomly sets p;, under-reporting increases the probability that
p;efport < p¢ and hence increases the probability of getting a
zero reward. This reduces the benefit a worker obtains from
under-reporting his accuracy level. Similarly, if a worker ¢ over-
reports his accuracy level, he will have a smaller chance of
matching the majority solution. When the platform randomly
sets Py, such a loss is compensated by decreasing the possibility
of getting a zero reward.

In Step 3, for workers with p; ;

report

> py, the platform will
first estimate a reward R,yt, usmg only the accuracy reports
submitted by all the workers excluding ¢ during all previous
time slots (including current time slot). Then, the platform
adds a positive term §; to determine the final reward, where
0 helps reduce the bias discussed previously. Specifically, the
calculation of the final reward is done as follows:
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1) The platform calculates the empirical distribution F; ;(p)
for each worker i, i.e., for all p € [0.5,1],

t
~ E:r:1§:jeAﬂj¢i1pf5“t§p

(12)

2) The platform estimates Ri’t for each worker ¢ according
to the following equaility:

- c

Ri,t = T )
(2P () = 1) (e — 0.5) = (P — 0.5)

N (13)
where Py (p,) is the probability that the majority
among N — 1 workers provide the correct solution. Its
expression is given in (10), where j = +/—1 and py is
generated from the distribution with cdf F; ;(p) in (12).
The choice of the estimated reward Ri,t in (13) assumes
that workers’ accuracy reports are truthful and unbiased.
Hence, we need to add a term d; (to be defined as follows)
to cancel the effect from potential accuracy misreports as
well as offset the bias.

3) The platform adds a uniform time-dependent term &;
in the form of (11) to each estimated reward E-’t, and
announces the final reward R; ; = Ri,t +d; to each worker
i. In (11), the expressions of v, e;, P, PA(py, ¢;), and
P}(p;) are given in the appendix [15] due to space limits.

Adding 6; ensures that the final reward can incentivize
workers with p;ctport > p; to exert effort and truthfully report
his solution, i.e., s;; = (1, 1), while workers with pz)etport < Py
to exert zero effort and truthfully report his solution, i.e.,
sit = (0,1). This enables the platform to anticipate the
workers’ effort exertion and solution reporting strategies based
on their accuracy reports.

As we will show in Theorem 1, with the mehcanism being
repeatedly implemented, as time goes by, workers’ accuracy
reports will approach their actual accuracy levels. At the very
beginning, a worker may benefit from misreporting accuracy,
but over time, the effect of a worker’s accuracy misreport on
others’ strategies (on effort exertion and solution reporting)

becomes smaller.!® This in turn provides less incentive for a
worker to misreport his accuracy level. As a result, workers
tend to truthfully report their accuracy levels in the long run.

IV. WORKER DECISIONS

In this section, we will analyze the workers’ decisions under
Mechanism 1.

We first characterize workers’ effort exertion and solution
reporting strategies in Proposition 1.

Proposition 1. In Period Il of each time slot t, with a

probability at least 1 — %4, we have

= {(1, D),
(0,1),
As stated previously, adding §; ensures a worker with
pftport > Py will exert effort and truthfully report solutions,
i.e., use (1,1). Note that this happens with a probability at
least 1 — t% The uncertainty here is due to the sampling bias
of the workers’ solution accuracy levels. For example, suppose
that all workers truthfully report solution accuracy levels. With
a small probability, the empirical accuracy distribution can still
differ with the true distribution by a large amount. Note that as
time goes by (i.e., t increases), workers are more likely to adopt
strategies shown in (14), hence the platform can anticipate the
workers’ behaviors with a higher accuracy.

. report —
lf pi,,t 2 DPt,
report —

. (14)
if py <pr

Next, we characterize the workers’ accuracy reporting strate-
gies. Recall that we adopt e-BNE as the equilibrium concept.
As € decreases, the condition for a strategy profile to constitute
an equilibrium becomes stronger. We focus on the case where
€ asymptotically converges to zero. In this case, an ¢-BNE
converges to a BNE. We show the detials in Theorem 1.

10Note that a worker’s reward is calculated by other workers’ accuracy
reports from all previous time slots.



Theorem 1. There exists an O < 1“TT> -BNE for Game 1 in

Period I of slot t, where each worker i’s reporting strategy

t .
pi L satisfies

max {pi,t — Ut,Phigh} < p,r'iport < min{p;+ + 0,1}, (15)

where oy = O (q/lntt)

The implication behind Theorem 1 is as follows. In each slot
t, if each worker ¢’s accuracy misreport is upper-bounded by

O't:O Int

: ) , then the allowed deviation of profit a worker

gains over the entire time horizon T (i.e., €) is upper bounded
by O ( lnTT>, which converges to zero as 7' increases.

There are two things to note. First, the accuracy reporting
strategy in the form of (15) can correspond to infinitely many
possible cases with reporting deviation being upper bounded by

Int

the same order of O ( &L ). This shows that our mechanism

t

is fairly general and is capable of characterzing a large set of
equilibrium strategies. Second and more importantly, truthful
reporting of the accuracy from the very beginning (i.e., t =
1) also belongs to such e-BNE, since (15) holds with pftport
replaced by p; ¢, for all 4,¢. It means that our mechanism can
induce truthful accuracy reporting, which converges to a BNE.
This is a desirable property.

V. PLATFORM’S REWARD DESIGN

In this section, we solve the platform’s problem in (7).
The platform decides (R;;,Vi € N,t € T) to minimize the
asymptotic regret which indicates the difference between the
empirical accuracy distribution and the actual distribution.

Suppose workers follow e-BNE in the form of (15). We
bound the platform’s regret in Theorem 2.

Theorem 2. If the platform sets (R;;,Vi € N,¥t € T)
according to Mechanism 1, then the platform’s regret is
asymptotically zero. That is, for any 1 € (0,1], we have

|F() F(p)| < ﬁ_,_@ g vg[highl]
TP D)l = INT T , VP p ) )
(16)
with probability at least 1 — 1, where
In 2 T
. P L _
A\ onr T O ( T ) =0 17

Theorem 2 implies that the choice of R;; according to
Mechanism 1 is an optimal solution to Problem (7), as it
achieves an asymptotic zero regret. Note that there may exist
other values of R; ; that induce other different types of e-BNEs,
which may also yield zero regrets with potentially different
convergence rates. We leave a more detailed discussion on the
convergence rates to future work.

VI. NUMERICAL RESULTS

In this section, we provide simulation results to investigate
the impact of workers’ accuracy reporting strategies and work-
ers’ characteristics on the overall system performance. As will
be shown, our mechanism renders workers to truthfully report
accuracy levels, which achieves the largest worker payoff and
smallest platform regret. Moreover, the mechanism performs
better when the workers are more capable of solving tasks.

A. Simulation Setup

We consider that workers’ accuracy levels follow a two-point

distribution,!! i.e.,

b,
Dit =
{ph,

where pP&h < p; < p, < 1and 0 < z < 1. To evaluate
the impact of workers’ reporting strategies, we consider three
different types of strategies for workers, which are as follows:

w.p. 2, (18)

w.p. 1-—z

e Random Reporting (RR): all the workers randomly re-
port their accuracy levels, i.e., Pr(pftpc”rt = p) =
Pr(pgf"tport = pp) = 0.5, for all i,¢t. This reporting
strategy serves as a benckmark.

o Truthful Reporting (TR): all the workers truthfully report
accuracy levels, i.e., pifiport = p;+, for all i,¢. This is a
special case of workers’ reporting in (15), i.e., an equi-
librium that can be induced by our proposed mechanism.

o Asymptotically Truthful Reporting (ATR): all the workers
follow the reporting strategy specified in (15), and they
are allowed to misreport. Since (15) contains infinitely

many cases, we choose o; = w/lnTt and consider the

scenario where workers randomly report their accuracy

levels when I“Tt > pn—pi, and workers truthfully report

when h‘Tt < pp —pi, e,
report ) PLOT Dh with equal prob., if tht > pn — Pi,
it .
Dit if h‘Tt <pn—n-
(19)

Under this strategy, a worker randomly reports initially and
then keeps truthfully reporting. Notice that both TR and ATR
satisfy (15), whereas ATR may be more reasonable in practice
as it allows possible accuracy misreports.

Moreover, we set ¢ = 1, N = 100, pl°ov =
0.51, phieh = 055, 2 = 0.8, p; = 0.6, choose p;, from
set {0.75,0.80,0.85}, and implement the mechanism for 200
times.

B. Impact of Worker Reporting Strategies and Worker Char-
acteristics on Overall System Performance

To study the impact of workers’ reporting strategies, we first
examine how the time-average payoff of a randomly selected

"TWe choose a simple two-point distribution to facilitate the interpretation of
insights. We leave a more comprehensive numerical study of our mechanism
on various distributions to future work.
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Fig. 2: Impact of worker reporting strategies and worker characteristics on the overall system performance.

-1 report . report .
worker i, 7 > e Uie(Dy g s Siti Rits Pty »8—it), is af-

fected by different reporting strategies (see Fig. 2a). Moreover,
we study how the platform’s regret (| Fir(p) — F (p))) is affected
by different reporting strategies (see Fig. 2b). To investigate
the impact of worker characteristics, we examine how the
platform regret is affected by p;,, supposing that workers use
asymptotically truthful reporting strategy (see Fig. 2c).
Impact of reporting strategies on worker payoff. In Fig.
2a, we observe that TR yields the highest average worker
payoff, ATR leads to an intermediate payoff, and RR achieves
the lowest worker payoff (e.g., T' = 200). Our mechanism not
only induces truthful reporting as an asymptotic BNE, but also
the workers adopting the truthful reporting strategy achieve the
highest average payoffs. This is desirable as the mechanism
motivates the workers to truthfully report their accuracy levels.
Impact of reporting strategies on platform regret. In
Fig. 2b, we observe that the regret under ATR converges
to the regret under TR, and is smaller than that under RR.
This is because the platform adopts an empirical estimate of
the worker accuracy distribution via (6). As T increases, the
workers under ATR are more likely to truthfully report their

accuracy (the condition ﬁ > pr — p; is harder to satisfy).
Hence, the regret under ATR converges to that under TR.
Impact of worker characteristics on platform regret. In
Fig. 2c, as pj increases, the platform’s regret demonstrates
an earlier decreasing tendency (e.g., the decrease appears at
T = 10 for the blue curve and T' = 60 for the red curve)
and achieves a smaller regret (e.g., 7' = 200). Given 7T, as py,

increases, the condition h’Tt > pr—py is easier to be violated.
As a result, the workers are more likely to truthfully report
their accuracy levels, which helps achieve a smaller regret. In
other words, our mechanism has a better performance when
the workers are more capable of solving the tasks.

VII. CONCLUSION

In this paper, we present a crowd learning mechanism to
learn the workers’ accuracy distribution, which helps solve an
information elicitation without verification (IEWV) problem.
We formulate the interactions between the workers and the
platform as a sequential repeated game, and compute in

close-form the reward design that achieves the best system
performance. We show that our mechanism can incentivize
workers to truthfully report their solution accuracy levels in
the long term. Moreover, our mechanism converges faster when
the workers are more capable of solving the tasks.

For the future work, we plan to study the mechanism design
under multi-dimensional worker heterogeneity, where both the

workers’ costs and accuracy levels are heterogeneous.
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