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Abstract—Content caching has been considered as an effective
way to offload contents at network edge in order to alleviate back-
haul load. Recently, federated learning (FL) based edge caching
has gained a lot of popularity due to its prominent features
of data privacy, distributed mode of operation, and scalability.
However, these FL-based schemes ignore the behavior of the
communication channels during the federated weight averaging
procedure. In this paper, we introduce a novel robust federated
learning-based content caching approach for fog radio access
networks (F-RANs) that mitigates the effect of communication
channel noise. In our proposed robust FL approach, each cell
employs a deep neural network (DNN)-based model to predict
users’ future files rating score based on user and file contextual
information and shares its learned weights to the fog server. The
fog server is responsible for global weight averaging. Prior to FL
weight averaging fog sever feed incoming local model weights
to a generative adversarial neural network (GANs) model which
differentiates between noisy and actual federated weights, and
passes only actual weights based on the distribution of the weight
matrices. Extensive simulations have been carried out to validate
the performance of our proposed approach. Results show that
the GAN-aided federated model yields 23.1% more prediction
accuracy as compared to the federated noisy model without GANs
based noise mitigation.

Keywords:
Proactive caching, federated machine learning, fog radio
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I. INTRODUCTION

Nowadays, a large number of wireless devices are being
connected to the Internet ranging from smartphones, pods,
medical devices, smartwatches, and laptops. With the evolution
of wireless networks (6G) with small and macro cell based
heterogeneity, and Internet of Things (IoTs) support, the
number of device connections are rising at an exponential
pace, and as a result, we witness a massive surge in Internet
traffic growth. According to Cisco report, in near future, 50
billion devices are going to be connected to the Internet, and
on-average each user will be generating nearly 60 GB data
traffic per month [1], [2]. Furthermore, it is anticipated that
almost 82% of Internet traffic will be originated from the data-
hungry streaming applications such as NetFlix, YouTube, and
Spotify [3]. This huge amount of traffic flow is posing great
challenges to existing cellular and IoT infrastructure and may
lead to core network overloading. On the bigger picture, on
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one side users’ demand for the premium quality of service
(QoS) increasing, while on the other side mobile network
operators may not able to incur large investments to buy more
bandwidths for coverage and capacity. Thus, there is a need
of an urgent and cost-effective solutions to alleviate the core
traffic burden by making full use of edge caching, information
processing, and communication capabilities of fog radio access
networks (FRANs).

Content caching at network edge has been considered as
a promising solution to alleviate core network burden, and it
also improves users’ QoS by full filling requests with lower
service delays [4]. When a user requests some content such as
a video or text file, the service provider firstly checks content
locally if it is available at edge cache the content is delivered
otherwise, a cache miss occurs and the content has to be
fetched from the remote data center which causes higher delay
cost. In order to establish proactive content caching users’
future content demands are learned and the future contents are
then fetched before being asked. Traditional content caching
approaches such as least recently used (LRU), and first-in-
first-out (FIFO) based schemes are unable to incorporate the
content popularity information and result in lower cache hits
[5]. Some recent edge caching schemes [6]–[9] operate in a
fully centralized manner where the central server takes caching
decision and broadcasts to associated nodes. These centralized
approaches require the uploading of large volumes of users’
local data to the central server where content popularities are
predicted for future content offloading. These schemes result
in higher communication exchange overheads due to large
data exchange between entities, and also prone to users’ data
privacy issues [10].

In order to tackle the above issues several distributed
caching schemes [11]–[18] have been proposed. These
schemes follow federated learning paradigm in which each
base station (BS) i.e., small cell trains own content prediction
model based on the local data and transmit the trained model
updates to the global model over underlying communication
channel. Generally, in case of FRANs, fog server hosts the
global model. On receiving the local model updates from the
associated cells, the global model executes federated model
weight aggregation and sent model updates back to the cells.
These federated learning based schemes such as [11], [16]
assumes that communication channel between cells and the fog
server is perfect and there is no noise effect. However, under
dense small cell networks, the channel error and poor state
is more serious problem [19] due their lower antenna heights
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which leads to more service blockages, channel fadings, and
more frequent interruptions. Under such scenario, the global
model averaging will result in aggregation of channel errors
into the model weights. The erroneous model updates if shared
to the local cells may compromise the caching decisions.
Consequently, such noisy federated model will results in lower
cache hits and may leads to downloading of large volumes
of unwanted data at network edge which will consume extra
bandwidth and as a results there will be poor quality of service.

In order to mitigate the effect of aggregated model uncer-
tainty due to communication errors in unreliable channel, we
proposed a robust federated learning based content caching
(RFC) framework as shown in Figure 1. To authors’ best
knowledge this is the first study that incorporates channel
effects during federated model aggregations. Our framework
formulates a deep neural network-based federated future con-
tent score prediction model that learns contextual information
between end user and its requested previous files while restrict-
ing data locally in order to predict future content score. The
RFC framework shares the learned weights from small cells
(SCs) to fog sever for global model aggregation. Fog server
exploits these local updates to train generative adversarial
network (GAN) which performs min-max optimization to
discriminate between actual and erroneous local model updates
before global model aggregation. This GAN model introduces
robustness against channel errors for model communication
exchange. Extensive simulations have been carried out validate
the performance of the proposed RFC framework. The major
contribution of this work as follows:
• We proposed a robust federated learning based content

caching (RFC) framework that minimizes the effect errors
in the federated model aggregation under an unreliable
channel.

• Our RFC framework develops a deep neural network-
based federated future content score prediction model that
learns contextual information between end user and its
requested previous files while restricting data locally in
order to predict future content score. The RFC framework
shares the learned weights from small cells (SCs) to fog
sever for global model aggregation.

• We trained a generative adversarial network (GAN) which
performs min-max optimization to discriminate between
actual and erroneous local model updates before global
model aggregation.

• Extensive simulations carried out validate the perfor-
mance of the proposed RFC framework against the state
of the art federated learning based caching schemes.

The rest of paper is organized as follows: section II provides
research gap and literature review. Section III formulates
problem statement. Section IV explain the proposed RFC
framework. Section V contains simulation setup and, results
and discussion. Finally, section VI concludes the paper.

II. RELATED WORK

Owing to caching storage constraint, users’ future content
prediction has gained a lot of attention which aims to fetch
proactively the most likely to be asked contents at the local

caches. In last decade, several edge caching schemes have
been proposed [6]–[9], [11]–[18], [20]. These schemes can
be classified based on their mode of operation and underly-
ing performance objective. Caching decision mechanisms are
either centralized or distributed based on mode of operation.
Centralized mechanisms such as [13], [15], [16] train caching
model centrally which have scalability and data privacy issue
as all the data firstly have to send to central sever for model
training and then model decision is shared with the associated
cells.

In order to alleviate the scalability and data privacy issues
of centralized learning, federated learning is considered as
an alternative approach. Therefore, to-date various federated
learning based schemes have been introduced. Here, we dis-
cuss only closely related works in the future content caching.
Wang et al. proposed a federated learning based cooperative
content caching for internet of things networks [21]. Some
works on compressed model updates have been reported such
as Cui et al. [22] introduced a block-chain based compressed
federated caching model in which they share compressed
model with clients. Similarly, Xiao et al. proposed federated
learning-based content offloading scheme for F-RANs [23]. In
an other work, Xue et al. proposed federated learning based
edge caching for E-health system [24].

Precisely, all these works ignored the channel conditions
between cells and fog server during federated weight averaging
and reported results under ideal condition. This assumption
practically is not viable as pico and femto cell based networks
may face more signal disruptions, irregular load distributions,
and often blockage due to short height as compared to marco
cells. Thus, for federated learning based scheme cannot neglect
effects of channel noise which may impact federated averaging
of local models. Therefore, in this work we considered this
issue and proposed robust federated learning based future
content prediction scheme that mitigates the effects of channel
noise during federated averaging and share noise effect free
global model updates with local models.

III. SYSTEM MODEL

In this section, we describe our system model and the
proposed approach. In our system model, a fog sever is
supervising B dense small cells b = {1, 2, 3, ..., B}. System
has U users i.e., u = {1, 2, ..., U}. Figure 1 show the system
model. Fog sever is connected to core network functionalities
including mobility management entity (MME), and serving
gateway (S-GW). Furthermore, we define these entities: let
g = g1, g2, ..., gB ∈ {0,Z+} represent the backhaul link
capacities between cells and the fog server, where Z is system
bandwidth. Now, let f = [f1, f2, ..., fF ] shows file library in
which each file is atomic and has a size vi, and file size vector
is given as: v = [v1, v2, ..., vF ].

The signal to interference and noise ratio (SINR) ηbu
between cell b and associated UE u is given as followed:

ηbu =
PbHbu∑

j∈B/{b} PjHju + γ2
(1)

where Pb, Hbu, and γ2 is cell transmission power, channel
gain, and additive white Gaussian noise (AWGN) respectively.
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Fig. 1. Proposed federated learning based robust caching framework

Now the maximum donwlink (DL) achievable rate from cell
b to UE u given Pb is represented as:

Rbu = Slog2

(
1 +

PbHbu∑
j∈B/{b} PjHju + γ2

)
(2)

where S is bandwidth of each physical resource block (PRB)
which is typically 180kHz in orthogonal frequency division
multiple access (OFDMA) based cellular networks.

IV. PROPOSED ROBUST FEDERATED LEARNING BASED
FUTURE CONTENT PREDICTION MODEL

This section explains the federated learning based users’
future content prediction model. Each cell hosts users’ file
demand matrix D ∈ RU×F which keeps the records of various
content F asked by the users U . Each entry di,j in the matrix
D is file rating score from ith user against the file jth. If
score doesn’t exist then corresponding entry di,j will be zero.
In matrix D the most requested files will be highly rated while
the least requested files will be lowest rated or zero. We can
represent the matrix D as:

D =


D1

D2

:

DU

 =


d1,1 ... d1,F

d2,1 ... d2,F

: : :

dU,1 ... dU,F

 ∈ {0,Z+
}U×F

(3)

In matrix D we will have F � U because each user can
not request every file from the file library f. Thus, network
can rate only demanded (requested) files. Eventually, the D
will be a spare matrix will many 0 enteries. In order to
download contents proactively, we need to determine full
content score/rating matrix D

′
.

In our proposed approach each cell formulates the future
content rating score prediction problem as a supervised learn-
ing problem and exploits a deep neural network (DNN) model
to learn the contextual information between users and files.
Here, is details of the proposed DNN model: let user’s latent
feature matrix M ∈ RU×a in which the vector Mi represents

ith users’ features and a shows dimensions of the vector Mi.
Similarly, files’ latent feature matrix N ∈ RF×k with feature
vector Ni and k represents dimensions of the vector Ni. For
model feature learning, we encoded the vector M and N given
as follows:

Mi = NN (OneHot(i)) (4)

Nj = NN (OneHot(j)) (5)

where oneHot(i) represents one-hot encoding vector of Mi

and term NN(x) denotes the output of DNN model. Figure 2
the proposed DNN based model architecture which takes user
and files’ latent feature as input and predicts future file rating
score. In the proposed DNN based content prediction model,
the input vector xO is formulated using concatenation of the
latent feature vector and is given as:

x0 = concatenate (Mi,Ni) (6)

where concatenate() function joins M and N vectors and the
its output is propagated to next hidden layer which is given
as:

x1 = ReLU (W1xo + vo) (7)

where W1 and vo denotes the weight matrix been the input
and first hidden layer, and bias vector respectively. In order
to introduce non-linearity in our DNN model we used ReLU()
activation function. At final layer of DNN model we used
softmax() classification function to predict the rating terms of
matrix D

′
, i.e., d

′

i,j and is given as:

Y
′
= softmax (Woxh + vout) (8)

where xh, Wo, and vout represent output of hidden layer,
weight matrix, and bias vector respectively.

Each cell host local DNN content future score prediction
model of configuration: at input layer users’ latent vector Mi

and files’ latent feature vector Ni are fed into model after
concatenation. Model contains five hidden layers with these
respective number of neurons in each layer 200, 100, 50,
20, 10. Output layer contain softmax() probabilities vector of
predicted users’ future content rating score d

′

i,j . Each local
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model tries to minimize categorical cross-entropy loss which
is given as:

ψ = −
K∑
k=1

yklog(y
′

k) (9)

where K represents the total number of classes in the score
rating matrix. Each local model perform training on the
local data up-to specified number of Epochs and forwards its
weights WLb to fog sever, where federated weight averaging
is performed. The global model hosted at fog server gets all
local model weights and performs federated weight averaging
which is given as:

WG = WL1 +WL2 + ...+WLB (10)

where WG and WLb represent weights of global model and
weights of local model respectively. As each local model
weight WLb is transmitted to fog server via noisy channel
then there will be notable amount of noisy in each weight
matrix which is expressed as:

W
′

Lb = WLb + β (11)

where β represents the noise in the aggregated federated
weight averaging matrix due to poor communication channel.
The term β will impact on actual learned weight matrix WLb

and may leads to longer convergence times. Thus, there is
need to mitigate this noise impact at fog server. In order to
tackle this issue we proposed a generative adversarial neural
networks (GANs) based noise mitigation model that learns
actual distribution of WLb weight matrix and results in the
noise-free weight matrix. Figure 2 shows the proposed GANs
model. The GANs model has a generator G and discriminator
D network. The generator model takes noise β and tries to
generate samples of actual local model weight matrix WL

′

b.
The discriminator network has information of actual WLb

weight matrix, then it guides generator to produce as close
samples nearly same to WL matrix. Thus GANs model learns
actual distribution of WLb matrix and able to distinguish
between noisy wight matrix W

′

Lb and actual WL matrix. In
other words, GANs model plays minmax optimization in order

to learn true distribution of actual data, and is given as:

min max V (G,D) = Ex∼pdata [log(D(x)]+

Eβ∼pβ [log(1− (D(G(β)))]
where output of discriminator D reveals that the predicted
sample belongs to actual data or noisy data, thus discriminator
D wants to maximize classification difference between actual
and noisy data. Whereas generator G minimizes the learning
error of above objective function by producing very much
similar data to actual data distributions. Fog sever passes
each learned federated averaged weight matrix W

′

Lb and gets
noise free WL

′

b matrix which is very much near to actual
weight matrix WLb. This is how our proposed robust federated
scheme allows fog sever to mitigate the impact of noise during
federated weight averaging Eq. 10 procedure.

Here we define the training procedure of our GANs model:
model weights are taken as image data and feed into the GAN
model. Further, we trained generator with two dense layers
and with 15 latent dimensions. Generator network has ReLU()
activation function. The discriminator network contains two
layers of dense network with 25 latent dimensions and binary
cross-entropy loss function is used for the training. During the
training of GANs model we provide it the actual WLb weight
matrix when there is no noise in the channel and the noisy
W

′

Lb weight matrix. Under our small cell based system model
the channel noise between cell and fog server is sampled from
Weibull distribution [25]. The GANs model is trained for 1000
epochs with batch size of 16 samples and learning rate of
0.003.

Now on receiving corrected model weight updates WL
′

b

from fog sever, each local DNN content future score prediction
model start next communication round t + 1 and trains its
model with specified number of epochs. After robust federated
weight averaging each local model has overall network users’
and files’ context, thus it is able to rate users’ future contents
based on the learned model. Now, each local DNN model
predicts ith user’s future rating score d

′

i,j for the jjth file and
is given as:

d
′

i,j = argmax [ŷ1, ŷ2, ..., ŷK ],∀k ∈ K (12)
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where K is the total number if classes in the future content
score rating matrix D

′
. Algorithm 1 explains the implemen-

tation details of the proposed robust federated learning based
content score prediction model.

Algorithm 1: Implementation of Robust Federated
Learning based Content Caching

1 Get user feature representation vector Mi

2 Get content feature representation vector Ni

3 Perform concatenation of Mi and Ni vectors using Eq. 6
4 Initialization of learning rate α, local epochs E, and data

batch size ζ
5 Procedure GlobalUpdates(Wc, U , )
6 Wc ←W

′
c + ∆k

7 return Wc trained local weights
8 for t ∈ T do
9 for (b ∈ B) do

10 If Download global model weights if exist else
initialize weights

11 else
12 Train local DNN model as described in section IV
13 Invoke GAN model for model noise mitigation
14 Perform global federated model averaging Send

global model updates to associated cells

15 Get future file rating score d
′
i,j

16 terminate

V. PERFORMANCE EVALUATION AND RESULTS

This section describes performance evaluation of the pro-
posed robust federated based content caching. We assesses
the performance of caching model in terms of error loss
and prediction accuracy. The performance is also assessed by
varying the number of cells and observed system performance.

A. Simulation Setup

The proposed scheme is evaluated using real-world sparse
public data ML100K provided by MovieLens [26]. The dataset
contains 100, 000 rating values between [1, 5] from 943 unique
users. The number of unique files are 1682. In this data,
each user has rated at least 20 files. We used 70% of data
form model training whereas 30% data is used for caching
model assessment. The simulations are carried out Google
Colab environment [27]. For noise generation we used Weibull
distribution with a = 3.5. For GAN model training we feed
network weights as an image and also provided images with
noise.

B. Results and Discussion

In this section we cover simulation results and discussions.
We evaluated system performance under perfect channel based
federated learning, and noisy channel based federated learning.
Figure 3 shows model loss under conditions (i) perfect channel
conditions, (ii) noisy channel, and (iii) noisy channel model
with GAN-aided FL model along with communication rounds.
It can observe that lowest loss is under perfect channel
conditions and highest under noisy channel. The lowest loss
under perfect channel condition indicate that model is learning
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Fig. 3. Model loss of federated content caching model (i) perfect channel
conditions, (ii) noisy channel ,and (iii) noisy channel model with GAN-aided
FL model

very fine under federated learning and highest loss under
under noisy channel reveals that noise is impacting learning
process and thus, model is not converging. However, when
we incorporate the GAN model prior to federated weight
averaging, model performance is improved and loss is getting
lower which also indicates that model is converging.

Further, we assessed system performance under future con-
tent prediction model accuracy. Figure 4 shows the prediction
accuracy under perfect channel conditions, model with noisy
channel, and noisy channel model with GAN-aided FL model
along with communication rounds. We can see that under first
can when there is no communication noise during federated
model averaging, accuracy is higher at the end of commu-
nication rounds. This accuracy drops to 55% when there
is communication noise during federated model averaging.
However, GAN-aided model is not much effected with noise
as it can learn the actual model weight model distributions and
results better accuracy.

Furthermore, we extended the experimentation for num-
ber of cell B in the system and Figure 5 shows model
prediction accuracy along with communication rounds. Un-
der perfect channel conditions, model has the accuracy of
0.857, 0.852, 0.811,and 0.805 when number of cells are varied
from 2 to 5. Under noisy conditions without GAN model,
accuracies are 0.5803, 0.535, 0.543, and 0.533. The system
accuracy improves in the presence of communication channel
noise when we employee the proposed GAN model and
here are the accuracy results, 0.804, 0.776, 0.775, and 0.761
respectively which highlights the generalized performance of
the proposed scheme. Overall, GAN-aided federated model
yields 77.9% prediction accuracy while same federated model
under noisy channel give only 54.8% accuracy.

VI. CONCLUSION

In this paper, we introduced a novel robust federated
learning-based content caching scheme for F-RANs that mit-
igates the effect of communication channel noise. In our
proposed robust FL approach, each cell employs a deep neural
network (DNN)-based model to predict users’ future files
rating score based on user and file contextual information
and shares its learned weights to the fog server. Fog server
is responsible for global weight averaging. Prior to FL weight
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averaging fog sever feed incoming local model weights to a
generative adversarial neural network (GANs) model which
differentiates between noisy and actual federated weights,
and passes only actual weights based on the distribution of
the weight matrices. We performed extensive simulations to
validate the performance of our proposed FL-based caching
approach. Results show that the GAN-aided federated model
yields 23.1% more prediction accuracy as compared to the
federated noisy model without GANs based noise mitigation.
In the future, we aim to extend experimentation for channel
noise variations and estimation for noise tolerance levels for
federated weight averaging.
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