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Abstract—In wireless federated learning (WFL), machine learn-
ing (ML) models are trained distributively on wireless edge devices
without the need of collecting data from the devices. In such
a setting, the quality of a local model update heavily depends
on the variance of the local stochastic gradient, determined
by the mini-batch data size used to compute the update. In
this paper, we explore quality-aware distributed computation for
WFL where user devices share limited communication resources,
using mini-batch size as a “knob” to control the quality of
users’ local updates. In particular, we study joint mini-batch
size design and communication scheduling, with the goal of
minimizing the training loss as well as the training time of the
FL algorithm. For the case of IID data, we first characterize
the optimal communication scheduling and the optimal mini-
batch sizes. Then we develop a greedy algorithm that finds the
optimal set of participating users with an approximation ratio.
For the case of non-IID data, we first characterize the optimal
communication structure and the optimal mini-batch sizes. Then
we develop algorithms that find the optimal communication order
for some special cases. Our findings provide useful insights for the
computation-communication co-design for WFL. We evaluate the
proposed mini-batch size design and communication scheduling
using simulations, which corroborate improved learning accuracy
and learning time.

I. INTRODUCTION

The confluence of two transformative global trends – the
accelerating penetration of machine learning (ML) and AI in
a variety of domains and the explosive growth of wireless
applications – is creating both significant challenges and rich
opportunities. It is therefore of great interest to build a synergy
between ML/AI and wireless applications. Notably, in federated
learning (FL) which is an emerging ML paradigm, the model
training is carried out in a distributed manner [1]. One
significant advantage of using FL is to preserve the privacy of
individual users’ data. Moreover, since only local ML model
parameters, instead of the local data, are sent to the server, the
communication costs can be greatly reduced. Furthermore, FL
can exploit ubiquitous smart devices with substantial computing
capabilities, which are often under-utilized. In particular, when
FL is used in a wireless edge network, the data samples
generated at individual wireless devices can be exploited via
local computation and global aggregation based on distributed
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ML. As a result, wireless federated learning (WFL) can achieve
collaborative intelligence in wireless edge networks. A general
consensus is that WFL can support intelligent control and
management of wireless communications and networks (such
as in [2], [3]), and can enable many AI applications based on
wireless networked systems.

As is standard, learning accuracy is a key performance metric
for FL. The accuracy of the trained machine learning model
in FL depends heavily on the quality of participating users’
local model updates. Specifically, when distributed stochastic
gradient descent (SGD) is used for FL, the quality of a local
stochastic gradient in each iteration can be measured by the
variance of the gradient, which depends on the mini-batch size
used to compute the gradient. It is important to observe that the
quality of local updates (determined by the mini-batch size) can
be treated as a design parameter and used as a control “knob”
to be adapted across users and over time. Such quality-aware
distributed computation can substantially improve the learning
accuracy of WFL.

Besides learning accuracy, another important performance
metric for FL is learning time, which plays a critical role
in real-time applications. The wall-clock learning time of a
distributed learning algorithm depends on users’ computation
and communication times of local model updates. Note that
the computations and communications of local updates need to
be carried out in a coordinated manner, within each round and
across different rounds of the learning process. As a result, there
is non-trivial interdependence between communication schedul-
ing and mini-batch sizes used in computations, indicating that
they should be designed jointly in a judicious and coordinated
manner so that they work in concert.

In this paper, we will explore quality-aware distributed com-
putation for wireless federated learning (WFL) for achieving
collaborative intelligence in wireless edge networks. We treat
mini-batch size as a key “knob” to control the quality of
users’ local stochastic gradient updates, which has substantial
impacts on the learning accuracy of FL. In particular, we study
how to jointly design users’ mini-batch sizes and schedule
their communications to reduce the wall-clock learning time
of FL, in a wireless edge network where users share limited
wireless communication resources. To this end, two significant
challenges need to be addressed: 1) The quality (quantified by
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the variance and determined by the mini-batch size) of local
stochastic gradient updates and thus its impacts on the training
loss can be heterogeneous across users and time-varying over
the training process. 2) Due to wireless interference and limited
communication resources, there is non-trivial coupling between
mini-batch size design and communication scheduling across
users. Therefore, it is desirable to take a holistic approach to
address these issues in a joint manner.

The main contributions of this paper are summarized as
follows:
• We propose quality-aware distribute computation for FL

in wireless edge networks, which controls the quality of
users’ local model updates via the mini-batch sizes used to
compute the updates. We focus on the joint optimization
of mini-batch sizes and communication scheduling, with
the goal of minimizing the training loss (quantified by an
upper bound that depends on users’ mini-batch sizes) as
well as the training time of the FL algorithm.

• For the case of IID data, we first characterize the optimal
communication scheduling, which are non-preemptive,
non-idle, and in the non-increasing order of the ratio of
a user’s computation rate and communication time. Then
we characterize individual users’ optimal mini-batch sizes
and the optimal total mini-batch size. Next we develop
a greedy algorithm that selects participating users, which
achieves an approximation ratio by exploiting the non-
monotone submodular property of the problem.

• For the case of non-IID data, we first show that the optimal
communication structure is non-preemptive and non-idle.
Then we find users’ optimal mini-batch sizes based on
the bisection method. We next develop algorithms that
finds the optimal communication order when users have
the same communication time or computation rate, which
is in the non-decreasing order of the ratio of a user’s local
data weight and her communication time or computation
rate (except the first communicating user).

• We evaluate the proposed joint mini-batch size design and
communication scheduling using simulations. The results
demonstrate that our proposed algorithms and schemes
outperform existing methods in terms of learning accuracy
and learning time.

The remainder of this paper is organized as follows. Section
II reviews related work. In Section III, we describe quality-
aware distributed computation for wireless federated learning.
In Section IV and Section V, we study the optimal communi-
cation scheduling and mini-batch size design for the cases of
IID data and non-IID data, respectively. Simulation results are
provided in Section VI.

II. RELATED WORK

Wireless Federated Learning. Most prior works on distributed
ML have focused on the algorithm design for distributed
learning [4], [5], including communication-efficient distributed
learning [5], [6]. Less attention has been paid to joint opti-
mization of computation and communication for carrying out
distributed learning algorithms. Since it was introduced in 2017,

FL has been mostly studied in the setting where nodes are
orchestrated by a cloud server. Some more recent works studied
FL in wireless networks [7]–[9], where nodes are connected
wirelessly to each other such that they share limited wireless
resources. A few of these works studied both algorithm design
as well as computation and wireless resource allocation for
WFL. For example, Tran et al [7] studied the joint design of
local learning accuracy, computation rates, and communication
times. However, all these works have not exploited mini-batch
sizes to control the quality of users’ local model updates. A
very recent work [10] has studied mini-batch size design for
minimizing users’ total training cost in WFL. However, it has
not considered joint mini-batch size design and communication
scheduling for minimizing the training time in WFL.
Wireless Network Scheduling. Wireless network scheduling
has been studied extensively for more than a decade. Most
of the works focused on maximizing the throughput of wire-
less networks [11], including those on deadline-constrained
throughput [12] and on distributed scheduling [13]. Many
other works considered the total utility of data flows in the
network [14] which depends on the throughput. Much fewer
works studied the delay performance of wireless network
scheduling [15]. On the other hand, some works studied the
cross-layer design of scheduling, routing, and/or congestion
control for the objective of improving the throughput [16],
delay, or utility. However, these works have not considered
the joint design of wireless network scheduling and distributed
computation for accelerating the convergence of distributed
learning.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the framework of quality-aware
distributed computation and communication scheduling of FL
in wireless edge networks, and formulate the joint optimization
problem of mini-batch size design and communication schedul-
ing.

A. Quality-Aware Distributed Computation for FL

Consider a FL system with an edge sever and N available
users who collaboratively train a ML model with distributed
local data in a synchronous manner. One goal of the FL system
is to minimize the training loss, which is given by the following
optimization problem:

min
www

F (www) ,
N∑
i=1

Di

D
Fi(www),

where F (www) is the global loss function, www is the model
parameter, Fi(www) is the local loss function determined by user
i’s local dataset, Di is the size of user i’s local dataset, and
D ,

∑N
i=1D

i. We make common assumptions that F (www) is
L-smooth and µ-strongly convex. The local loss function is
defined by

Fi(www) ,
1

Di

Di∑
m=1

li(www
i, δim),

where li(·) is the per-sample loss function and {δi1, δi2, ..., δiDi}
is user i’s local dataset.
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Fig. 1. Schedule of computations (C) and communications (M) for WFL where
users share limited wireless communication resources. BC is the global model
broadcast, AGG is the local update aggregation, Ci and Mi are user i’s local
update computation and communication, respectively.

In each round t of the FL algorithm, the sever first broadcasts
the current global model wwwt−1 to a set of users St selected to
participate in round t. Then each participating user i computes
the gradient git of her local loss function using a set of
data samples randomly drawn from her local dataset, based
on the global model wwwt−1, and updates her local model as
wwwit = wwwt−1 − ηgit, where

git ,
1

Di
t

Di
t∑

m=1

li(wwwt−1, δ
i
m,t),

Di
t is user i’s mini-batch size in round t, η is the stepsize,

δim,t is the mth data sample randomly drawn from user i’s
local dataset. Next, each participating user i communicates her
local model update to the server. Finally, the server updates the
global model with the aggregated local updates received from
the users as wwwt =

∑
i∈St

Di
t

Dt
wwwit, where St is the set of users

selected to participate in round t, and Dt ,
∑
i∈St

Di
t.

The quality of a user’s local update is quantified by the
variance of the local stochastic gradient, given by

qi , E
î∥∥git − ḡt∥∥2ó , (1)

where ḡt , E[git]. Assume that the loss function f satisfies
E
∥∥∇li (wt, δ

i
m

)
− E[∇li (wt, δ)]

∥∥2 ≤ σ2, ∀t. It can be shown
that E

î∥∥git − ḡt∥∥2ó ≤ σ2/Di
t. Note that a user’s quality is

determined by the mini-batch size Di
t used to update her local

model. Thus, a local update computed with a larger mini-batch
size has higher quality.

B. FL in Wireless Edge Network

We focus on the situation where the users are connected to
the edge server in a wireless edge network where they share
limited wireless communication resources. Due to interference
among the wireless users, they need to communicate in a
time-division manner to avoid mutual interference, i.e., users’
communications cannot overlap in time.

We notice that over-the-air computation (e.g., [17]–[19]) has
been recently studied in some works for WFL, which allows
users to transmit their local updates to the server simultaneously
by taking advantage of the superposition property of wireless

signals. However, this scheme requires substantial modification
to the physical layer communication protocol (e.g., scaling
transmitted data based on wireless channel states), which is
difficult to achieve on existing end user devices. Therefore, in
this paper, we focus on the time-sharing based wireless multi-
access, which is easy to implement on off-the-shelf devices.

The completion time V (St, Dt) of round t is the total time
it takes to complete all computations and communications of
participating users St in the round, i.e., the time span from
when the first user starts computation to when the last user
ends communication (as illustrated in Fig. 1). Note that the
completion time depends on users’ mini-batch sizes for com-
puting their local updates (which determine their computation
workloads), and also on the schedule of users’ communications
of their local updates. Let Cit and M i

t be user i’s computation
rate (i.e., computation workload completed per unit time) and
communication time, respectively, which generally vary across
users and over rounds.

C. Problem Formulation

We aim to minimize the training loss as well as the training
time of the FL algorithm, by jointly optimizing user selec-
tion, communication scheduling and users’ mini-batch sizes.
The mathematical formulation of the optimal communication
scheduling problem is very complex (due to the very large
space of possible communication scheduling policies), and thus
is omitted here for brevity. Given the optimal communication
scheduling, the problem of user selection and mini-batch size
design is formulated as

min
{St},{Di

t}
ξE[F (wwwT )− F (www∗)] + (1− ξ)

T∑
t=1

V (St, {Di
t})

(2)
where ξ ∈ [0, 1] is the weight that balances the training loss
and the training time.

Note that we treat mini-batch sizes as continuous-valued
variables in our problem formulation, which can be converted
back to the nearest integer values when used in practice. Also
note that problem (2) involves multi-objective optimization of
the training loss and training time: By controlling the weight
ξ, any Pareto-optimal solution of these two objectives can
be reached by solving problem (2). A variant formulation of
problem (2) is a constrained optimization problem, where the
objective function is the training loss while the training time
is subject to a constraint (or vice versa). The solution of this
variant problem can be derived from that of problem (2).

IV. OPTIMAL MINI-BATCH SIZE DESIGN AND
COMMUNICATION SCHEDULING FOR IID DATA

In this section, we study the mini-batch size design and
communication scheduling problem when users have IID data.
According to Theorem 1 in [10], the training loss is upper
bounded by

E[F (wwwT )− F (www∗)] ≤ L

2
(1− µη)T ‖www0 −www∗‖2

+
L

2

T∑
t=1

(1− µη)T−tη2
σ2∑
i∈St

Di
t

.
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Fig. 2. Schedule of the optimal communication scheduling for the IID data
case: user 1 has the largest communication time, user 4 has the largest
computation rate.

Since the first term of the upper bound does not depend on St
and Di

t, it suffices to consider the second term only. Thus, the
problem (2) is equivalent to

min
{St},{Di

t}

T∑
t=1

f(St, {Di
t}) ,

T∑
t=1

(
ξ
L

2
(1− µη)T−tη2

σ2∑
i∈St

Di
t

+ (1− ξ)V (St, {Di
t})
)
.

(3)

Note that problem (3) can be decomposed into T independent
problems, each for one of the T rounds. Thus, we focus on
finding the optimal communication scheduling, user selection
St, and mini-batch size design {Di

t} for a single round t.
Moreover, we decompose the problem in round t into three
subproblems: 1) we first study the optimal communication
scheduling given any total mini-batch size design and any
user selection; 2) then we study the optimal mini-batch size
design given the optimal communication scheduling and any
user selection; 3) last we study the optimal user selection given
the optimal communication scheduling and the optimal mini-
batch size design.

A. Optimal Communication Scheduling

We first present the optimal communication scheduling,
which consists of the optimal communication structure and the
optimal communication order.

Theorem 1: Given any total mini-batch size design and any
user selection, the optimal communication scheduling is non-
preemptive and non-idle; based on this structure, the optimal
communication order of users is in the non-decreasing order of
the ratio of a user’s computation rate and communication time.

The proof of the optimal communication structure is similar
to that in [20], which has studied the optimal joint compu-
tation workload allocation and communication scheduling for
distributed computation offloading. The proof of the optimal
communication order and the proofs of other main results in
this paper are provided in our online technical report [21] due
to space limitation.

Remark 1: Preemptive communication scheduling means a
user’s communication can be interrupted by another user’s com-
munication (such as M3 interrupted by M4 in Fig. 1). Non-idle
communication scheduling means there is no idle communica-
tion period between any two consecutive communications (such
as between M1 and M2 in Fig. 1). The optimal communication
order shows that a user with a larger communication time
should communicate earlier (such as user 1 in Fig. 2), since
it allows for more computation time for other users. Moreover,

it shows that a user with a higher computation rate should
communicate later (such as user 4 in Fig. 2), since it allows
for more computation time for this user.

B. Optimal Mini-Batch Size Design

Then we study the optimal mini-batch sizes. We decompose
this problem into two subproblems: 1) the optimal mini-batch
size of each selected user and 2) the optimal total mini-batch
size of selected users. In the rest of this section, let users in
St be indexed according to the optimal communication order
(i.e., user 1 communicates first, user 2 communicates second,
etc). Let

Dm
r ,

|St|∑
i=2

(Cit

i−1∑
j=1

M j
t )

be the maximum total mini-batch size for which the computa-
tion workload can be completed after the first communication
starts (i.e., after time t1 in Fig. 2).

Theorem 2: Given the optimal communication scheduling,
any total mini-batch size Dt, and any selected users St, user 1’s
optimal mini-batch size is

D1
t
∗

= max{0, Dt −Dm
r∑

i∈St
Cit
C1
t },

and the other users’ optimal mini-batch sizes are given by

Di
t

∗
=

{
Cit(

D1
t
∗

C1
t

+
∑i−1
j=1M

j
t ), if Dt > Dm

r

min{Dt −
∑i−1
j=1D

j
t

∗
, Cit

∑i−1
j=1M

j
t },if Dt ≤ Dm

r .

Remark 2: Theorem 2 shows that Dm
r is a threshold such that

if the total mini-batch size Dt is smaller than Dm
r , then no com-

putation of any user is needed before the first communication
starts. In this case, the completion time V (St, {Di

t}) is fixed
and equal to the sum of communication times of selected users
St. If Dt > Dm

r , then users start computations at the same time,
and each user keeps computing until her communication starts
(as illustrated in Fig. 2). Moreover, each user i’s optimal mini-
batch size increases with her computation rate Cit , as she can
perform more computation per unit time; it also increases with
the total communication time before user i’s communication,
since she has more time for computation.

Theorem 3: Given the optimal communication scheduling
and any selected users St, the optimal total mini-batch size
D∗t is given by max{Dm

r , Dt
′}, where

Dt
′ , ησ

√
ξL(1− µη)T−t

∑
i∈St

Cit
2(1− ξ)

.

Remark 3: Theorem 3 shows that the optimal total mini-
batch size D∗t is affected by several factors. When

∑
i∈St

Cit is
small, i.e., the number of selected users is small or the users’
computation rates are small, then D∗t = Dm

r . When D∗t =
D′t > Dm

r , D∗t increases with the number of selected users and
their computation rates. Also observe that D∗t (and thus each
user i’s optimal mini-batch size Di

t
∗) is larger in a later round,

because the weight (1−µη)T−t of local updates on the training
loss bound increases with the round number t.
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C. Optimal User Selection

Last we study the optimal user selection. From Theorems 2
and 3, there must exist an optimal total mini-batch size D∗t
such that D∗t ≥ Dm

r . In this case, we have D∗t = D′t where
D′t is given in Theorem 3. Then substituting each Di

t in (3) as
Di
t
∗ in Theorems 2 and 3, we have

min
St

f(St) =

√
ξL(1− µη)T−t√

2
∑
i∈St

Cit
ησ
»

(1− ξ)

+(1− ξ)
∑
i∈St

M i
t + (1− ξ)

D∗t −
∑|St|
i=2 C

i
t

∑i−1
j=1M

j
t∑

i∈St
Cit

.

(4)

Next we study problem (4) first in two special cases and then
in the general case.

1) Case of Homogeneous Computation Rate or Homoge-
neous Communication Time: To obtain some useful insights,
we first consider the optimal user selection when users have
the same computation rate or communication time.

Proposition 1: When users have the same computation rate
(or communication time, respectively), the optimal user selec-
tion can be found by a greedy algorithm, which selects users
incrementally in the non-decreasing order (or non-increasing
order, respectively) of their communication times (or compu-
tation rates, respectively), until the objective value f(St) does
not decrease.

Remark 4: Proposition 1 shows that for the case of homo-
geneous computation rate, it is optimal to select users with
smaller communication times. This is because it can reduce the
total communication time, and this reduction is more than the
increase of the computation time before the first communication
starts. For the case of homogeneous communication time, we
should select users with larger computation rates, as they can
perform more computation per unit time. Note that finding
the optimal set of selected users is non-trivial: selecting more
users increases the total communication time while reducing
the computation time before the first communication starts, so
that we should strike the optimal balance between these two
effects.

2) Case of Heterogeneous Computation Rates and Heteroge-
neous Communication Times: We then study the optimal user
selection in the general case where users have heterogeneous
computation rates and communication times. We first give an
important and useful property of the problem. Let S be the set
of all N available users.

Lemma 1: h(St) , f(S) − f(St) is a non-negative, non-
monotone submodular function of the set of selected users.

Based on the submodular property given in Lemma 1, we
propose Algorithm 1 to select a set of users. This algorithm
is largely based on Algorithm DeterministicUSM developed
in [22]. It can provide performance guarantee as below.

Theorem 4 ([22]): Algorithm 1 finds a set of selected users
with an approximation ratio of 1/3, i.e., f(XN ) ≥ 1

3f(S∗).
Remark 5: Note that it is difficult to solve a negative, non-

monotone submodular minimization problem with performance
guarantee. To address this challenge, we transform the original
user selection problem into a non-negative non-monotone sub-
modular maximization problem, with a new objective function

Algorithm 1 Approximate optimal user selection
1: index all users in S according to the optimal communica-

tion order
2: X0 ← ∅, Y0 ← S.
3: for i = 1 to N do
4: ai ← f(Y0)− f(Xi−1 ∪ {i})− (f(Y0)− f(Xi−1));
5: bi ← f(Y0)− f(Yi−1 \ {i})− (f(Y0)− f(Yi−1));
6: if ai ≥ bi then
7: Xi ← Xi−1 ∪ {i}, Yi ← Yi−1;
8: else
9: Xi ← Xi−1, Yi ← Yi−1 \ {i};

10: end if
11: end for
12: Return set of selected users XN .

h(St). Then we can leverage the non-monotone submodular
property to find a solution with an approximation ratio.

V. OPTIMAL MINI-BATCH SIZE DESIGN AND
COMMUNICATION SCHEDULING FOR NON-IID DATA

In this section, we study the mini-batch size design and
communication scheduling problem when users have non-IID
data. According to Theorem 2 in [10], the training loss is upper
bounded by

E[F (wwwT )− F (www∗)] ≤ L

2
(1− µη)T ‖www0 −www∗‖2

+
Lη2

2

T∑
t=1

(1− µη)T−t
∑
i∈St

(pit
2 σ2

Di
t

+ 2Lpitτ
i),

where pit ,
pi∑

i∈St
pi with pi being user i’s local data’s weight

(e.g., it can be the size of user i’s local dataset), and τ i quan-
tifies the heterogeneity degree of user i’s local data compared
to other users’ local data, where τ i = E[F (www∗)]− E[Fi(www

∗
i )]

is a constant over the rounds. Since the first term of the upper
bound does not depend on St and {Di

t}, it suffices to consider
the second term only. Thus, problem (2) is equivalent to

min
{St},{Di

t}

T∑
t=1

f(St, {Di
t}) ,

Lη2

2

T∑
t=1

(1− µη)T−t

∑
i∈St

(pit
2 σ2

Di
t

+ 2Lpitτ
i) + (1− ξ)

T∑
t=1

V (St, {Di
t}).

(5)

Compared to the training loss bound for the IID data case in (3)
which depends on only the total mini-batch size of participating
users

∑
i∈St

Di
t, the training loss bound for the non-IID data

case in (5) depends on the mini-batch size of each individual
participating user (as captured by the term

∑
i∈St

pit
2 σ2

Di
t
). This

key difference substantially complicates the joint design of
mini-batch size and communication scheduling (as will be
shown later).

Like in the IID data case, we first show the optimal commu-
nication structure as below, and the proof is similar to that of
Theorem 1.

Proposition 2: The optimal communication structure is non-
preemptive and non-idle.

Similar to the IID data case, we decompose problem (5)
into T independent problems, each for one of the T rounds.
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For the problem in a single round t, we decompose it into
2 subproblems: 1) we first study the optimal mini-batch size
design given any communication order and any user selection;
2) then we study the optimal communication order given the
optimal mini-batch size design and any user selection. The
optimal user selection problem is very challenging, and will
be studied in our future work.

A. Optimal Mini-Batch Size Design

We first study the optimal mini-batch size design. Let users
in St be indexed according to their communication order.
We decompose this problem into two subproblems: 1) the
optimal mini-batch sizes of users 2, 3, · · · , |St| given the first
communicating user’s (i.e., user 1’s) mini-batch size and 2) the
first communicating user’s optimal mini-batch size.

Theorem 5: Given the optimal communication structure,
any communication order, any mini-batch size D1

t of the first
communicating user, and any selected users St, the optimal
mini-batch size for the remaining users are given by

Di
t

∗
= Cit

Ñ
D1
t

C1
t

+
i−1∑
j=1

M j
t

é
.

Remark 6: Theorem 5 shows that the optimal mini-batch
sizes have the same structure as for the IID data case: users
start computations at the same time and keep computing until
their respective communications start. This is because any idle
computation time before the communication starts reduces the
user’s mini-batch size which increases the training loss, without
increasing the completion time.

Theorem 6: Given the optimal communication structure,
any communication order, and any selected users St, the first
communicating user’s optimal mini-batch size is the solution of
D1
t to the equation (1−ξ)−z

∑|St|
i=2

pit
2

Ci
t

(
D1

t /C
1
t +

∑i−1
j=1M

j
t

)2 = 0,

where z , L
2 (1− µη)T−tη2σ2, which can be solved using the

bisection method.
The computational complexity of solving the equation above

using the bisection method is O(log2 n).

B. Optimal Communication Order

Next we study the optimal communication order. Substituting
the optimal mini-batch sizes in Theorem 5 and 6 into (5), we
can find f(St, {Di

t
∗}) for any communication order. So our

problem is to find the optimal communication order such that
f(St, {Di

t
∗}) is minimized.

In the following, to obtain some insights, we will focus on the
optimal communication order in two special cases. The general
case where users have heterogeneous communication times and
heterogeneous computation rates is a very challenging problem,
and will be studied in our future work.

1) Case of Homogeneous Communication Time: To find
the optimal communication order in this case, we develop
Algorithm 2. A key idea of this algorithm is to order the
communications of users (except the first communicating user)
in the non-decreasing order of pit

2
/Cit . We show that this

algorithm is optimal as below.

Algorithm 2 Optimal communication order for the case of
homogeneous communication time

1: index users in St in the non-decreasing order of pit
2
/Cit ;

2: for i = 1 to n do
3: y1 = Cit , y2 = pit
4: for j = i to 1 do
5: Cjt = Cj−1t , pjt = pj−1t , j = j − 1;
6: end for
7: C1

t = y1, p1t = y2

8: if Dt −
∑|St|
j=2MCjt (j − 1) ≤ 0 then

9: k(ia) = z
M

∑|St|
b=2

pb
2

Cb
t

1
(b−1) ;

10: else
11: t1 =

Dt−
∑|St|

j=2 MtC
j
t (j−1)∑|St|

b=1 C
b
t

;

12: k(ia) = t1 + z
M t

∑|St|
b=2

pbt
2

Cb
t

1
(b−1)+t1 ;

13: end if
14: end for
15: find kmin = min{{k(ia)}|St|

i=1} and determine the first
communication user according to kmin, then the remaining
users are ordered in the non-decreasing order of pit

2
/Cit ;

16: Return optimal communication order

Proposition 3: When users have the same communication
time, Algorithm 2 finds the optimal communication order.

Remark 7: The rationale of Algorithm 2 is as follows. We
can show that given the first communicating user, the objective
f(St, {Di

t
∗}) is minimized when the remaining |St| − 1 users

communicate in the non-decreasing order of pit
2
/Cit . Therefore,

it suffices to compare the minimum f(St, {Di
t
∗}) for each

possible first communicating user, for which there are |St|
number of possible choices. So the computational complexity
of the algorithm is O(n2 log n), which is substantially lower
than that of the exhaustive search.

2) Case of Homogeneous Computation Rate: To find the
optimal communication order in this case, we use an algorithm
which is similar to Algorithm 2, but with two differences. The
first difference is that we order the communications of users
(except the first communicating user) in the non-decreasing
order of pit

2
/M i

t rather than pit
2
/Cit . The second difference

is that we need to change the comparing equation k(i) =

z/Mt

∑n
i=2

pit
2

Ci
t

1
(i−1) to k(i) = z/Ct

∑n
i=2

pit
2∑n

j=2M
j
t J(i,j)

,

where J(i, j) = 1 if user j communicates before user i and
J(i, j) = 0 otherwise. This algorithm results in a larger mini-
batch size for users with larger pit

2
/M i

t .
Proposition 4: When users have the same computation rate, a

variant of Algorithm 2 finds the optimal communication order.
Remark 8: The main idea and rationale of the algorithm

above are similar to that of Algorithm 2. This is because the
computation rate and communication time play the same role
in (5). The computational complexity of the algorithm here is
also O(n2 log n).

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations to validate the the-
oretical findings and evaluate the mini-batch size design and
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Fig. 3. Impact of individual mini-batch size in
IID case
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Fig. 4. Impact of individual mini-batch size vs
loss and completion time in non-IID case
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Fig. 5. The completion time with mini-batch size
in non-IID case
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Fig. 6. Impact of communication order in non-IID
case

0 10 20 30

Mini-batch size (x100)

6

8

10

12

14

16
L
o
s
s
+

C
o
m

p
le

ti
o
n
 t
im

e
5 workers

10 workers

Fig. 7. total mini-batch size in IID case
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size in IID case
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Fig. 9. The completion time and loss function vs
selection in IID case
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Fig. 10. Completion time vs selection in IID case
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Fig. 11. The number of selected users vs selection
in IID case

communication scheduling algorithms. We first describe the
simulation setup, and then present the results and analysis.

A. Simulation Setup

We perform the simulations in terms of 4 design variables,
which are individual mini-batch size, communication order,
total mini-batch size, and user selection. For individual mini-
batch size, we study the relation between the completion time
and the total mini-batch size under the IID and non-IID data
cases, respectively. These 4 algorithms are random allocation,
average allocation, increasing with the communication order
allocation, and the optimal allocation algorithm, where the
random allocation allocates randomly to the users, the average
allocation allocates equally to the uses, the increasing allocation
allocates increasingly with the communication order to the

users and the optimal algorithm is the algorithm we present
above. We evaluate the optimal communication order which
can depend on the optimal total mini-batch size. In this case,
we consider 4 algorithms, which are the optimal algorithm,
random algorithm, decreasing with pit algorithm, and inverse
to the optimal algorithm. The decreasing with pit algorithm
allocates a larger mini-batch size to the users with a smaller
pit, and the inverse to the optimal algorithm allocates mini-
batch sizes in the non-increasing order of pit

2
/Cit . Finally, we

evaluate several user selection algorithms, where we consider
random selection, greedy selection and approximate optimal
selection in IID case. The random selection selects the number
of users under different mini-batch size randomly. The greedy
algorithm will search for the minimum completion time with
the different number of users under different mini-batch size.
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B. Simulation Results

1) Impact of Individual Mini-Batch Size: We have consid-
ered 4 different design algorithms, which are random alloca-
tion, equal allocation, increasing allocation, and the optimal
allocation algorithm. Figs. 3 and 4 show that if the mini-batch
size is randomly allocated to each user, the completion time
is the largest among the 4 algorithms. Figs. 3 and 4 show the
increasing algorithm sometimes has the same completion time
with our optimal algorithm, but for most cases it is much worse
than our optimal algorithm. Fig. 5 shows that the system loss
in problem (5) is increasingly affected by the completion time
as the total mini-batch size increases.

2) Impact of Total Mini-Batch Size: We study the changes
in our problems (3) and (5) with the total mini-batch size under
the optimal algorithm. Fig.7 shows that the objective value
is increasing with the number of selected users, because the
completion time increasing by the number of selected users
and this increase outweighs the decrease of the training loss.
Fig. 8 shows the (3) is increasingly affected by the completion
time as the mini-batch size increases. A too large mini-batch
size leads to inefficient training and the optimal algorithm can
find the optimal total mini-batch size.

3) Impact of Communication Order: Fig. 6 shows that the
optimal communication order can decrease (5). If we change
the communication order to be inverse to our optimal com-
munication order, it will lead to a much larger increase in the
objective function.

4) Impact of Users’ Selection: The (2) is similar to the
completion time function when the total mini-batch size is
larger enough. The number of selected users increases with
the total mini-batch size. It is non-optimal to select as many
users as possible to minimize the objective function. This is
because using more users incurs a larger communication time
which can increase the completion time, and this increase can
outweigh the reduction of the computation time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied quality-aware distributed com-
putation and communication scheduling for wireless federated
learning (WFL), with the goal of minimizing the training loss
and training time of WFL. For the case of IID data, we
have characterized the optimal communication scheduling and
the optimal mini-batch sizes. We have also develop a greedy
algorithm that finds the optimal set of participating users with
an approximation ratio. For the case of non-IID data, we
have characterized the optimal communication structure and the
optimal mini-batch sizes. Then we have developed algorithms
that find the optimal communication order for some special
cases. Our findings provide useful insights for the computation-
communication co-design for WFL. We have evaluated the
proposed algorithms using simulations.

For future work, one interesting direction is to consider asyn-
chronous algorithms and/or non-convex problems for WFL. In
this case, the optimal mini-batch size design and the optimal
communication scheduling problem will be very different from
in the synchronous and convex settings.
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