
Nebula Graph Database

Manual

2.6.0

Min Wu, Yao Zhou, Cooper Liang, Foesa Yang, Max Zhu, Abby Huang

2021 Vesoft Inc.

Table of contents

61. About

72. Introduction

72.1 What is Nebula Graph

112.2 Data modeling

132.3 Path types

152.4 VID

172.5 Nebula Graph architecture

333. Quick start

333.1 Quick start workflow

343.2 Step 1: Install Nebula Graph

373.3 Step 2: Manage Nebula Graph Service

403.4 Step 3: Connect to Nebula Graph

453.5 Step 4: Use nGQL (CRUD)

543.6 nGQL cheatsheet

784. nGQL guide

784.1 nGQL overview

944.2 Data types

1124.3 Variables and composite queries

1174.4 Operators

1304.5 Functions and expressions

1574.6 General queries statements

1994.7 Clauses and options

2254.8 Space statements

2324.9 Tag statements

2404.10 Edge type statements

2464.11 Vertex statements

2534.12 Edge statements

2604.13 Native index statements

2714.14 Full-text index statements

2804.15 Subgraph and path

2854.16 Query tuning statements

2884.17 Operation and maintenance statements

2935. Deployment and installation

2935.1 Prepare resources for compiling, installing, and running Nebula Graph

3015.2 Compile and install Nebula Graph

Table of contents

- 2/629 - 2021 Vesoft Inc.

3195.3 Manage Nebula Graph Service

3225.4 Connect to Nebula Graph

3275.5 Upgrade

3345.6 Uninstall Nebula Graph

3366. Configurations and logs

3366.1 Configurations

3526.2 Log management

3547. Monitor and metrics

3547.1 Query Nebula Graph metrics

3567.2 RocksDB statistics

3588. Data security

3588.1 Authentication and authorization

3668.2 Backup and restore data with snapshots

3688.3 Group&Zone

3728.4 SSL encryption

3749. Practices

3749.1 Compaction

3769.2 Storage load balance

3809.3 Graph data modeling suggestions

3839.4 System design suggestions

3859.5 Execution plan

3869.6 Processing super vertices

3889.7 Best practices

38910. Client

38910.1 Clients overview

39010.2 Nebula CPP

39210.3 Nebula Java

39410.4 Nebula Python

39610.5 Nebula Go

39811. Nebula Graph Studio

39811.1 Change Log

39911.2 About Nebula Graph Studio

40511.3 Deploy and connect

41911.4 Quick start

42911.5 Operation guide

45511.6 Troubleshooting

45812. Nebula Importer

45812.1 Nebula Importer

Table of contents

- 3/629 - 2021 Vesoft Inc.

46512.2 Configuration with Header

46812.3 Configuration without Header

47113. Nebula Exchange

47113.1 Introduction

47413.2 Compile Exchange

47613.3 Exchange configurations

48613.4 Use Nebula Exchange

55613.5 Exchange FAQ

55914. Nebula Operator

55914.1 What is Nebula Operator

56114.2 Overview of using Nebula Operator

56214.3 Deploy Nebula Operator

56814.4 Deploy clusters

58014.5 Configure clusters

58814.6 Upgrade Nebula Graph clusters created with Nebula Operator

59114.7 Connect to Nebula Graph databases with Nebular Operator

59514.8 Self-healing

59614.9 FAQ

59715. Nebula Algorithm

59715.1 Prerequisites

59715.2 Limitations

59715.3 Supported algorithms

59815.4 Implementation methods

59815.5 Get Nebula Algorithm

59815.6 How to use

60216. Nebula Spark Connector

60216.1 Use cases

60216.2 Benefits

60316.3 Get Nebula Spark Connector

60316.4 How to use

60817. Nebula Flink Connector

60817.1 Use cases

60918. Nebula Bench

60918.1 Scenario

60918.2 Test process

61019. Appendix

61019.1 Nebula Graph 2.6.0 release notes

61219.2 FAQ

Table of contents

- 4/629 - 2021 Vesoft Inc.

62019.3 Ecosystem tools overview

62419.4 Import tools

62519.5 How to Contribute

Table of contents

- 5/629 - 2021 Vesoft Inc.

1. About

A new version has been released.

Danger

Last update: November 11, 2021

1. About

- 6/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/

2. Introduction

2.1 What is Nebula Graph

Nebula Graph is an open-source, distributed, easily scalable, and native graph database. It is capable of hosting graphs with

hundreds of billions of vertices and trillions of edges, and serving queries with millisecond-latency.

2.1.1 What is a graph database

A graph database, such as Nebula Graph, is a database that specializes in storing vast graph networks and retrieving information

from them. It efficiently stores data as vertices (nodes) and edges (relationships) in labeled property graphs. Properties can be

attached to both vertices and edges. Each vertex can have one or multiple tags (labels).

2. Introduction

- 7/629 - 2021 Vesoft Inc.

Graph databases are well suited for storing most kinds of data models abstracted from reality. Things are connected in almost all

fields in the world. Modeling systems like relational databases extract the relationships between entities and squeeze them into

table columns alone, with their types and properties stored in other columns or even other tables. This makes the data

management time-consuming and cost-ineffective.

Nebula Graph, as a typical native graph database, allows you to store the rich relationships as edges with edge types and

properties directly attached to them.

2.1.2 Benefits of Nebula Graph

Open-source

Nebula Graph is open under the Apache 2.0 license. More and more people such as database developers, data scientists, security

experts, and algorithm engineers are participating in the designing and development of Nebula Graph. To join the opening of

source code and ideas, surf the Nebula Graph GitHub page.

Outstanding performance

Written in C++ and born for graph, Nebula Graph handles graph queries in milliseconds. Among most databases, Nebula Graph

shows superior performance in providing graph data services. The larger the data size, the greater the superiority of Nebula

Graph. For more information, see Nebula Graph benchmarking.

2.1.2 Benefits of Nebula Graph

- 8/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/t/nebula-graph-1-0-benchmark-report/581

High scalability

Nebula Graph is designed in a shared-nothing architecture and supports scaling in and out without interrupting the database

service.

Developer friendly

Nebula Graph supports clients in popular programming languages like Java, Python, C++, and Go, and more are being developed.

For more information, see Nebula Graph clients.

Reliable access control

Nebula Graph supports strict role-based access control and external authentication servers such as LDAP (Lightweight Directory

Access Protocol) servers to enhance data security. For more information, see Authentication and authorization.

Diversified ecosystem

More and more native tools of Nebula Graph have been released, such as Nebula Graph Studio, Nebula Console, and Nebula

Exchange. For more ecosystem tools, see Ecosystem tools overview.

Besides, Nebula Graph has the ability to be integrated with many cutting-edge technologies, such as Spark, Flink, and HBase, for

the purpose of mutual strengthening in a world of increasing challenges and chances. For more information, see Ecosystem

development.

OpenCypher-compatible query language

The native Nebula Graph Query Language, also known as nGQL, is a declarative, openCypher-compatible textual query language.

It is easy to understand and easy to use. For more information, see nGQL guide.

Future-oriented hardware with balanced reading and writing

Solid-state drives have extremely high performance and they are getting cheaper. Nebula Graph is a product based on SSD.

Compared with products based on HDD and large memory, it is more suitable for future hardware trends and easier to achieve

balanced reading and writing.

Easy data modeling and high flexibility

You can easily model the connected data into Nebula Graph for your business without forcing them into a structure such as a

relational table, and properties can be added, updated, and deleted freely. For more information, see Data modeling.

High popularity

Nebula Graph is being used by tech leaders such as Tencent, Vivo, Meituan, and JD Digits. For more information, visit the Nebula

Graph official website.

2.1.3 Use cases

Nebula Graph can be used to support various graph-based scenarios. To spare the time spent on pushing the kinds of data

mentioned in this section into relational databases and on bothering with join queries, use Nebula Graph.

Fraud detection

Financial institutions have to traverse countless transactions to piece together potential crimes and understand how combinations

of transactions and devices might be related to a single fraud scheme. This kind of scenario can be modeled in graphs, and with

the help of Nebula Graph, fraud rings and other sophisticated scams can be easily detected.

2.1.3 Use cases

- 9/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-exchange
https://github.com/vesoft-inc/nebula-exchange
https://blocksandfiles.com/wp-content/uploads/2021/01/Wikibon-SSD-less-than-HDD-in-2026.jpg
https://nebula-graph.io/
https://nebula-graph.io/

Real-time recommendation

Nebula Graph offers the ability to instantly process the real-time information produced by a visitor and make accurate

recommendations on articles, videos, products, and services.

Intelligent question-answer system

Natural languages can be transformed into knowledge graphs and stored in Nebula Graph. A question organized in a natural

language can be resolved by a semantic parser in an intelligent question-answer system and re-organized. Then, possible answers

to the question can be retrieved from the knowledge graph and provided to the one who asked the question.

Social networking

Information on people and their relationships are typical graph data. Nebula Graph can easily handle the social networking

information of billions of people and trillions of relationships, and provide lightning-fast queries for friend recommendations and

job promotions in the case of massive concurrency.

2.1.4 Related links

Official website

Docs

Blog

Forum

GitHub

•

•

•

•

•

Last update: November 3, 2021

2.1.4 Related links

- 10/629 - 2021 Vesoft Inc.

https://www.vesoft.com/en/
https://docs.nebula-graph.io/master/
https://nebula-graph.io/posts/
https://discuss.nebula-graph.io
https://github.com/vesoft-inc

2.2 Data modeling

A data model is a model that organizes data and specifies how they are related to one another. This topic describes the

Nebula Graph data model and provides suggestions for data modeling with Nebula Graph.

2.2.1 Data structures

Nebula Graph data model uses six data structures to store data. They are graph spaces, vertices, edges, tags, edge types and

properties.

Graph spaces: Graph spaces are used to isolate data from different teams or programs. Data stored in different graph spaces

are securely isolated. Storage replications, privileges, and partitions can be assigned.

Vertices: Vertices are used to store entities.

In Nebula Graph, vertices are identified with vertex identifiers (i.e. VID). The VID must be unique in the same graph

space. VID should be int64, or fixed_string(N).

A vertex must have at least one tag or multiple tags.

Edges: Edges are used to connect vertices. An edge is a connection or behavior between two vertices.

There can be multiple edges between two vertices.

Edges are directed. -> identifies the directions of edges. Edges can be traversed in either direction.

An edge is identified uniquely with a source vertex, an edge type, a rank value, and a destination vertex. Edges have no

EID.

An edge must have one and only one edge type.

The rank value is an immutable user-assigned 64-bit signed integer. It identifies the edges with the same edge type

between two vertices. Edges are sorted by their rank values. The edge with the greatest rank value is listed first. The

default rank value is zero.

Tags: Tags are used to categorize vertices. Vertices that have the same tag share the same definition of properties.

Edge types: Edge types are used to categorize edges. Edges that have the same edge type share the same definition of

properties.

Properties: Properties are key-value pairs. Both vertices and edges are containers for properties.

2.2.2 Directed property graph

Nebula Graph stores data in directed property graphs. A directed property graph has a set of vertices connected by directed

edges. Both vertices and edges can have properties. A directed property graph is represented as:

G = < V, E, PV, PE >

V is a set of vertices.

E is a set of directed edges.

PV is the property of vertices.

PE is the property of edges.

•

•

•

•

•

•

•

•

•

•

•

•

•

Tag and Edge type are similar to the vertex table and edge table in the relational databases.

Note

•

•

•

•

2.2 Data modeling

- 11/629 - 2021 Vesoft Inc.

The following table is an example of the structure of the basketball player dataset. We have two types of vertices, that is player

and team, and two types of edges, that is serve and follow.

Element Name Property name

(Data type)

Description

Tag player name (string)

age (int)

Represents players in the team.

Tag team name (string) Represents the teams.

Edge type serve start_year (int)

end_year (int)

Represents actions taken by players in the team.

An action links a player with a team, and the direction is from

a player to a team.

Edge type follow degree (int) Represents actions taken by players in the team.

An action links a player with another player, and the direction

is from one player to the other player.

Nebula Graph supports only directed edges.

Note

Nebula Graph 2.6.0 allows dangling edges. Therefore, when adding or deleting, you need to ensure the corresponding source vertex

and destination vertex of an edge exist. For details, see INSERT VERTEX, DELETE VERTEX, INSERT EDGE, and DELETE EDGE.

The MERGE statement in openCypher is not supported.

Compatibility

Last update: August 19, 2021

2.2.2 Directed property graph

- 12/629 - 2021 Vesoft Inc.

2.3 Path types

In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. Paths are

fundamental concepts of graph theory.

Paths can be categorized into 3 types: walk , trail , and path . For more information, see Wikipedia.

The following picture is an example for a brief introduction.

2.3.1 Walk

A walk is a finite or infinite sequence of edges. Both vertices and edges can be repeatedly visited in graph traversal.

In the above picture C, D, and E form a cycle. So, this picture contains infinite paths, such as A->B->C->D->E , A->B->C->D->E->C , and

A->B->C->D->E->C->D .

2.3.2 Trail

A trail is a finite sequence of edges. Only vertices can be repeatedly visited in graph traversal. The Seven Bridges of Königsberg

is a typical trail .

In the above picture, edges cannot be repeatedly visited. So, this picture contains finite paths. The longest path in this picture

consists of 5 edges: A->B->C->D->E->C .

There are two special cases of trail, cycle , and circuit . The following picture is an example for a brief introduction.

GO statements use walk .

Note

MATCH , FIND PATH , and GET SUBGRAPH statements use trail .

Note

2.3 Path types

- 13/629 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

cycle

A cycle refers to a closed trail . Only the terminal vertices can be repeatedly visited. The longest path in this picture consists

of 3 edges: A->B->C->A or C->D->E->C .

circuit

A circuit refers to a closed trail . Edges cannot be repeatedly visited in graph traversal. Apart from the terminal vertices,

other vertices can also be repeatedly visited. The longest path in this picture: A->B->C->D->E->C->A .

2.3.3 Path

A path is a finite sequence of edges. Neither vertices nor edges can be repeatedly visited in graph traversal.

So, the above picture contains finite paths. The longest path in this picture consists of 4 edges: A->B->C->D->E .

•

•

Last update: September 6, 2021

2.3.3 Path

- 14/629 - 2021 Vesoft Inc.

2.4 VID

In Nebula Graph, a vertex is uniquely identified by its ID, which is called a VID or a Vertex ID.

2.4.1 Features

The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 ; a graph space can only select one VID type.

A VID in a graph space is unique. It functions just as a primary key in a relational database. VIDs in different graph spaces are

independent.

The VID generation method must be set by users, because Nebula Graph does not provide auto increasing ID, or UUID.

Vertices with the same VID will be identified as the same one. For example:

A VID is the unique identifier of an entity, like a person's ID card number. A tag means the type of an entity, such as driver,

and boss. Different tags define two groups of different properties, such as driving license number, driving age, order

amount, order taking alt, and job number, payroll, debt ceiling, business phone number.

When two INSERT statements (neither uses a parameter of IF NOT EXISTS) with the same VID and tag are operated at the

same time, the latter INSERT will overwrite the former.

When two INSERT statements with the same VID but different tags, like TAG A and TAG B , are operated at the same time,

the operation of Tag A will not affect Tag B .

VIDs will usually be indexed and stored into memory (in the way of LSM-tree). Thus, direct access to VIDs enjoys peak

performance.

2.4.2 VID Operation

Nebula Graph 1.x only supports INT64 while Nebula Graph 2.x supports INT64 and FIXED_STRING(<N>) . In CREATE SPACE , VID

types can be set via vid_type .

id() function can be used to specify or locate a VID.

LOOKUP or MATCH statements can be used to find a VID via property index.

Direct access to vertices statements via VIDs enjoys peak performance, such as DELETE xxx WHERE id(xxx) == "player100" or GO

FROM "player100" . Finding VIDs via properties and then operating the graph will cause poor performance, such as

LOOKUP | GO FROM $-.ids , which will run both LOOKUP and | one more time.

2.4.3 VID Generation

VIDs can be generated via applications. Here are some tips:

(Optimal) Directly take a unique primary key or property as a VID. Property access depends on the VID.

Generate a VID via a unique combination of properties. Property access depends on property index.

Generate a VID via algorithms like snowflake. Property access depends on property index.

If short primary keys greatly outnumber long primary keys, do not enlarge the N of FIXED_STRING(<N>) too much. Otherwise, it

will occupy a lot of memory and hard disks, and slow down performance. Generate VIDs via BASE64, MD5, hash by encoding

and splicing.

If you generate inte64 VID via hash, the probability of collision is about 1/10 when there are 1 billion vertices. The number of

edges has no concern with the probability of collision.

2.4.4 Define and modify the data type of VIDs

The data type of VIDs must be defined when you create the graph space. Once defined, it cannot be modified.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.4 VID

- 15/629 - 2021 Vesoft Inc.

2.4.5 Query start vid and global scan

In most cases, the execution plan of query statements in Nebula Graph (MATCH , GO , and LOOKUP) must query the start vid in a

certain way.

There are only two ways to locate start vid :

For example, GO FROM "player100" OVER explicitly indicates in the statement that start vid is "player100".

For example, LOOKUP ON player WHERE player.name == "Tony Parker" or MATCH (v:player {name:"Tony Parker"}) locates start vid by the

index of the property player.name .

1.

2.

For example, match (n) return n; returns an error because start vid cannot be located at this time. As a global scan, it is forbidden.

You cannot perform a global scan without start vid

Last update: September 23, 2021

2.4.5 Query start vid and global scan

- 16/629 - 2021 Vesoft Inc.

2.5 Nebula Graph architecture

2.5.1 Architecture overview

Nebula Graph consists of three services: the Graph Service, the Storage Service, and the Meta Service. It applies the separation of

storage and computing architecture.

Each service has its executable binaries and processes launched from the binaries. Users can deploy a Nebula Graph cluster on a

single machine or multiple machines using these binaries.

The following figure shows the architecture of a typical Nebula Graph cluster.

The Meta Service

The Meta Service in the Nebula Graph architecture is run by the nebula-metad processes. It is responsible for metadata

management, such as schema operations, cluster administration, and user privilege management.

For details on the Meta Service, see Meta Service.

2.5 Nebula Graph architecture

- 17/629 - 2021 Vesoft Inc.

The Graph Service and the Storage Service

Nebula Graph applies the separation of storage and computing architecture. The Graph Service is responsible for querying. The

Storage Service is responsible for storage. They are run by different processes, i.e., nebula-graphd and nebula-storaged. The

benefits of the separation of storage and computing architecture are as follows:

Great scalability

The separated structure makes both the Graph Service and the Storage Service flexible and easy to scale in or out.

High availability

If part of the Graph Service fails, the data stored by the Storage Service suffers no loss. And if the rest part of the Graph

Service is still able to serve the clients, service recovery can be performed quickly, even unfelt by the users.

Cost-effective

The separation of storage and computing architecture provides a higher resource utilization rate, and it enables clients to

manage the cost flexibly according to business demands. The cost savings can be more distinct if the Nebula Graph Cloud

service is used.

Open to more possibilities

With the ability to run separately, the Graph Service may work with multiple types of storage engines, and the Storage Service

may also serve more types of computing engines.

For details on the Graph Service and the Storage Service, see Graph Service and Storage Service.

•

•

•

•

Last update: July 1, 2021

2.5.1 Architecture overview

- 18/629 - 2021 Vesoft Inc.

https://www.nebula-cloud.io/

2.5.2 Meta Service

This topic introduces the architecture and functions of the Meta Service.

The architecture of the Meta Service

The architecture of the Meta Service is as follows:

The Meta Service is run by nebula-metad processes. Users can deploy nebula-metad processes according to the scenario:

In a test environment, users can deploy one or three nebula-metad processes on different machines or a single machine.

In a production environment, we recommend that users deploy three nebula-metad processes on different machines for high

availability.

All the nebula-metad processes form a Raft-based cluster, with one process as the leader and the others as the followers.

The leader is elected by the majorities and only the leader can provide service to the clients or other components of Nebula Graph.

The followers will be run in a standby way and each has a data replication of the leader. Once the leader fails, one of the followers

will be elected as the new leader.

•

•

The data of the leader and the followers will keep consistent through Raft. Thus the breakdown and election of the leader will not

cause data inconsistency. For more information on Raft, see Storage service architecture.

Note

2.5.2 Meta Service

- 19/629 - 2021 Vesoft Inc.

Functions of the Meta Service

MANAGES USER ACCOUNTS

The Meta Service stores the information of user accounts and the privileges granted to the accounts. When the clients send

queries to the Meta Service through an account, the Meta Service checks the account information and whether the account has

the right privileges to execute the queries or not.

For more information on Nebula Graph access control, see Authentication and authorization.

MANAGES PARTITIONS

The Meta Service stores and manages the locations of the storage partitions and helps balance the partitions.

MANAGES GRAPH SPACES

Nebula Graph supports multiple graph spaces. Data stored in different graph spaces are securely isolated. The Meta Service

stores the metadata of all graph spaces and tracks the changes of them, such as adding or dropping a graph space.

MANAGES SCHEMA INFORMATION

Nebula Graph is a strong-typed graph database. Its schema contains tags (i.e., the vertex types), edge types, tag properties, and

edge type properties.

The Meta Service stores the schema information. Besides, it performs the addition, modification, and deletion of the schema, and

logs the versions of them.

For more information on Nebula Graph schema, see Data model.

MANAGES TTL-BASED DATA EVICTION

The Meta Service provides automatic data eviction and space reclamation based on TTL (time to live) options for Nebula Graph.

For more information on TTL, see TTL options.

MANAGES JOBS

The Job Management module in the Meta Service is responsible for the creation, queuing, querying, and deletion of jobs.

Last update: August 24, 2021

2.5.2 Meta Service

- 20/629 - 2021 Vesoft Inc.

2.5.3 Graph Service

Graph Service is used to process the query. It has four submodules: Parser, Validator, Planner, and Executor. This topic will

describe Graph Service accordingly.

The architecture of Graph Service

After a query is sent to Graph Service, it will be processed by the following four submodules:

Parser: Performs lexical analysis and syntax analysis.

Validator: Validates the statements.

Planner: Generates and optimizes the execution plans.

Executor: Executes the operators.

Parser

After receiving a request, the statements will be parsed by the Parser composed of Flex (lexical analysis tool) and Bison (syntax

analysis tool), and its corresponding AST will be generated. Statements will be directly intercepted in this stage because of its

invalid syntax.

For example, the structure of the AST of GO FROM "Tim" OVER like WHERE properties(edge).likeness > 8.0 YIELD dst(edge) is shown in

the following picture.

1.

2.

3.

4.

2.5.3 Graph Service

- 21/629 - 2021 Vesoft Inc.

Validator

Validator performs a series of validations on the AST. It mainly works on these tasks:

Validating metadata

Validator will validate whether the metadata is correct or not.

When parsing the OVER , WHERE , and YIELD clauses, Validator looks up the Schema and verifies whether the edge type and tag

data exist or not. For an INSERT statement, Validator verifies whether the types of the inserted data are the same as the ones

defined in the Schema.

Validating contextual reference

Validator will verify whether the cited variable exists or not, or whether the cited property is variable or not.

For composite statements, like $var = GO FROM "Tim" OVER like YIELD dst(edge) AS ID; GO FROM $var.ID OVER serve YIELD dst(edge) ,

Validator verifies first to see if var is defined, and then to check if the ID property is attached to the var variable.

Validating type inference

Validator infers what type the result of an expression is and verifies the type against the specified clause.

For example, the WHERE clause requires the result to be a bool value, a NULL value, or empty .

Validating the information of *

Validator needs to verify all the Schema that involves * when verifying the clause if there is a * in the statement.

Take a statement like GO FROM "Tim" OVER * YIELD dst(edge), properties(edge).likeness, dst(edge) as an example. When verifying

the OVER clause, Validator needs to verify all the edge types. If the edge type includes like and serve , the statement would

be GO FROM "Tim" OVER like,serve YIELD dst(edge), properties(edge).likeness, dst(edge) .

Validating input and output

Validator will check the consistency of the clauses before and after the | .

In the statement GO FROM "Tim" OVER like YIELD dst(edge) AS ID | GO FROM $-.ID OVER serve YIELD dst(edge) , Validator will verify

whether $-.ID is defined in the clause before the | .

When the validation succeeds, an execution plan will be generated. Its data structure will be stored in the src/planner directory.

Planner

In the nebula-graphd.conf file, when enable_optimizer is set to be false , Planner will not optimize the execution plans generated by

Validator. It will be executed by Executor directly.

In the nebula-graphd.conf file, when enable_optimizer is set to be true , Planner will optimize the execution plans generated by

Validator. The structure is as follows.

•

•

•

•

•

2.5.3 Graph Service

- 22/629 - 2021 Vesoft Inc.

Before optimization

In the execution plan on the right side of the preceding picture, each node directly depends on other nodes. For example, the

root node Project depends on the Filter node, the Filter node depends on the GetNeighbor node, and so on, up to the leaf

node Start . Then the execution plan is (not truly) executed.

During this stage, every node has its input and output variables, which are stored in a hash table. The execution plan is not

truly executed, so the value of each key in the associated hash table is empty (except for the Start node, where the input

variables hold the starting data), and the hash table is defined in src/context/ExecutionContext.cpp under the nebula-graph

repository.

For example, if the hash table is named as ResultMap when creating the Filter node, users can determine that the node takes

data from ResultMap["GN1"] , then puts the result into ResultMap["Filter2"] , and so on. All these work as the input and output of

each node.

Process of optimization

The optimization rules that Planner has implemented so far are considered RBO (Rule-Based Optimization), namely the pre-

defined optimization rules. The CBO (Cost-Based Optimization) feature is under development. The optimized code is in the

src/optimizer/ directory under the nebula-graph repository.

RBO is a “bottom-up” exploration process. For each rule, the root node of the execution plan (in this case, the Project node) is

the entry point, and step by step along with the node dependencies, it reaches the node at the bottom to see if it matches the

rule.

As shown in the preceding figure, when the Filter node is explored, it is found that its children node is GetNeighbors , which

matches successfully with the pre-defined rules, so a transformation is initiated to integrate the Filter node into the

GetNeighbors node, the Filter node is removed, and then the process continues to the next rule. Therefore, when the

GetNeighbor operator calls interfaces of the Storage layer to get the neighboring edges of a vertex during the execution stage,

the Storage layer will directly filter out the unqualified edges internally. Such optimization greatly reduces the amount of data

transfer, which is commonly known as filter pushdown.

Executor

The Executor module consists of Scheduler and Executor. The Scheduler generates the corresponding execution operators

against the execution plan, starting from the leaf nodes and ending at the root node. The structure is as follows.

•

•

Nebula Graph 2.6.0 will not run optimization by default.

Note

2.5.3 Graph Service

- 23/629 - 2021 Vesoft Inc.

Each node of the execution plan has one execution operator node, whose input and output have been determined in the execution

plan. Each operator only needs to get the values for the input variables, compute them, and finally put the results into the

corresponding output variables. Therefore, it is only necessary to execute step by step from Start , and the result of the last

operator is returned to the user as the final result.

Source code hierarchy

The source code hierarchy under the nebula-graph repository is as follows.

|--src
 |--context //contexts for validation and execution
 |--daemons
 |--executor //execution operators
 |--mock
 |--optimizer //optimization rules
 |--parser //lexical analysis and syntax analysis
 |--planner //structure of the execution plans
 |--scheduler //scheduler
 |--service
 |--util //basic components
 |--validator //validation of the statements
 |--visitor

Last update: October 22, 2021

2.5.3 Graph Service

- 24/629 - 2021 Vesoft Inc.

2.5.4 Storage Service

The persistent data of Nebula Graph have two parts. One is the Meta Service that stores the meta-related data.

The other is the Storage Service that stores the data, which is run by the nebula-storaged process. This topic will describe the

architecture of Storage Service.

Advantages

High performance (Customized built-in KVStore)

Great scalability (Shared-nothing architecture, not rely on NAS/SAN-like devices)

Strong consistency (Raft)

High availability (Raft)

Supports synchronizing with the third party systems, such as Elasticsearch.

The architecture of Storage Service

Storage Service is run by the nebula-storaged process. Users can deploy nebula-storaged processes on different occasions. For

example, users can deploy 1 nebula-storaged process in a test environment and deploy 3 nebula-storaged processes in a

production environment.

•

•

•

•

•

2.5.4 Storage Service

- 25/629 - 2021 Vesoft Inc.

All the nebula-storaged processes consist of a Raft-based cluster. There are three layers in the Storage Service:

Storage interface

The top layer is the storage interface. It defines a set of APIs that are related to the graph concepts. These API requests will be

translated into a set of KV operations targeting the corresponding Partition. For example:

getNeighbors : query the in-edge or out-edge of a set of vertices, return the edges and the corresponding properties, and

support conditional filtering.

insert vertex/edge : insert a vertex or edge and its properties.

getProps : get the properties of a vertex or an edge.

It is this layer that makes the Storage Service a real graph storage. Otherwise, it is just a KV storage.

Consensus

Below the storage interface is the consensus layer that implements Multi Group Raft, which ensures the strong consistency

and high availability of the Storage Service.

Store engine

The bottom layer is the local storage engine library, providing operations like get , put , and scan on local disks. The related

interfaces are stored in KVStore.h and KVEngine.h files. Users can develop their own local store plugins based on their needs.

The following will describe some features of Storage Service based on the above architecture.

KVStore

Nebula Graph develops and customizes its built-in KVStore for the following reasons.

It is a high-performance KVStore.

It is provided as a (kv) library and can be easily developed for the filtering-pushdown purpose. As a strong-typed database,

how to provide Schema during pushdown is the key to efficiency for Nebula Graph.

It has strong data consistency.

Therefore, Nebula Graph develops its own KVStore with RocksDB as the local storage engine. The advantages are as follows.

For multiple local hard disks, Nebula Graph can make full use of its concurrent capacities through deploying multiple data

directories.

Meta Service manages all the Storage servers. All the partition distribution data and current machine status can be found in

the meta service. Accordingly, users can execute a manual load balancing plan in meta service.

Nebula Graph provides its own WAL mode so one can customize the WAL. Each partition owns its WAL.

One Nebula Graph KVStore cluster supports multiple graph spaces, and each graph space has its own partition number and

replica copies. Different graph spaces are isolated physically from each other in the same cluster.

Data storage formats

Nebula Graph stores vertices and edges. Efficient property filtering is critical for a Graph Database. So, Nebula Graph uses keys to

store vertices and edges, while uses values to store the related properties.

•

•

•

•

•

•

•

•

•

•

•

Nebula Graph does not support auto load balancing because auto data transfer will affect online business.

Note

•

•

2.5.4 Storage Service

- 26/629 - 2021 Vesoft Inc.

Nebula Graph 2.0 has changed a lot over its releases. The following will introduce the old and new data storage formats and cover

their differences.

Vertex format

Edge Format

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the sharding partition and to scan the partition data based on the prefix

when re-balancing the partition.

VertexID Used to indicate vertex ID. For an integer VertexID, it occupies eight bytes. However, for a string

VertexID, it is changed to fixed_string of a fixed length which needs to be specified by users when they

create the space.

TagID Four bytes, used to indicate the tags that vertex relate with.

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the sharding partition. This field can be used to scan the partition data

based on the prefix when re-balancing the partition.

VertexID Used to indicate vertex ID. The former VID refers to source VID in out-edge and dest VID in in-edge,

while the latter VID refers to dest VID in out-edge and source VID in in-edge.

Edge Type Four bytes, used to indicate edge type. Greater than zero means out-edge, less than zero means in-

edge.

Rank Eight bytes, used to indicate multiple edges in one edge type. Users can set the field based on needs

and store weight, such as transaction time and transaction number.

PlaceHolder One byte. Reserved.

2.5.4 Storage Service

- 27/629 - 2021 Vesoft Inc.

PROPERTY DESCRIPTIONS

Nebula Graph uses strong-typed Schema.

Nebula Graph will store the properties of vertex and edges in order after encoding them. Since the length of properties is fixed,

queries can be made in no time according to offset. Before decoding, Nebula Graph needs to get (and cache) the schema

information in the Meta Service. In addition, when encoding properties, Nebula Graph will add the corresponding schema version

to support online schema change.

Data partitioning

Since in an ultra-large-scale relational network, vertices can be as many as tens to hundreds of billions, and edges are even more

than trillions. Even if only vertices and edges are stored, the storage capacity of both exceeds that of ordinary servers. Therefore,

Nebula Graph uses hash to shard the graph elements and store them in different partitions.

EDGE AND STORAGE AMPLIFICATION

In Nebula Graph, an edge corresponds to two key-value pairs on the hard disk. When there are lots of edges and each has many

properties, storage amplification will be obvious. The storage format of edges is shown in the picture below.

The differences between Nebula Graph 1.x and 2.0 are as follows:

In Nebula Graph 1.x, a vertex and an edge have the same Type byte, while in Nebula Graph 2.0, the Type byte differs from each

other, which separates vertices and edges physically so that all tags of a vertex can be easily queried.

Nebula Graph 1.x supports only int IDs, while Nebula Graph 2.0 is compatible with both int IDs and string IDs.

Nebula Graph 2.0 removes Timestamp in both vertex and edge key formats.

Nebula Graph 2.0 adds PlaceHolder to edge key format.

Nebula Graph 2.0 has changed the formats of indexes for a range query.

Legacy version compatibility

•

•

•

•

•

2.5.4 Storage Service

- 28/629 - 2021 Vesoft Inc.

In this example, ScrVertex connects DstVertex via EdgeA, forming the path of (SrcVertex)-[EdgeA]->(DstVertex) . ScrVertex,

DstVertex, and EdgeA will all be stored in Partition x and Partition y as four key-value pairs in the storage layer. Details are as

follows:

The key value of SrcVertex is stored in Partition x. Key fields include Type, PartID(x), VID(Src), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The first key value of EdgeA, namely EdgeA_Out, is stored in the same partition as the ScrVertex. Key fields include Type,

PartID(x), VID(Src), EdgeType(+ means out-edge), Rank(0), VID(Dst), and PlaceHolder. SerializedValue, namely Value, refers

to serialized edge properties.

The key value of DstVertex is stored in Partition y. Key fields include Type, PartID(y), VID(Dst), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The second key value of EdgeA, namely EdgeA_In, is stored in the same partition as the DstVertex. Key fields include Type,

PartID(y), VID(Dst), EdgeType(- means in-edge), Rank(0), VID(Src), and PlaceHolder. SerializedValue, namely Value, refers to

serialized edge properties, which is exactly the same as that in EdgeA_Out.

EdgeA_Out and EdgeA_In are stored in storage layer with opposite directions, constituting EdgeA logically. EdgeA_Out is used for

traversal requests starting from SrcVertex, such as (a)-[]->() ; EdgeA_In is used for traversal requests starting from DstVertex,

such as ()-[]->(a) .

Like EdgeA_Out and EdgeA_In, Nebula Graph redundantly stores the information of each edge, which doubles the actual

capacities needed for edge storage. The key corresponding to the edge occupies a small hard disk space, but the space occupied

by Value is proportional to the length and amount of the property value. Therefore, it will occupy a relatively large hard disk space

if the property value of the edge is large or there are many edge property values.

To ensure the final consistency of the two key-value pairs when operating on edges, enable the TOSS function. After that, the

operation will be performed in Partition x first where the out-edge is located, and then in Partition y where the in-edge is located.

Finally, the result is returned.

PARTITION ALGORITHM

Nebula Graph uses a static Hash strategy to shard data through a modulo operation on vertex ID. All the out-keys, in-keys, and

tag data will be placed in the same partition. In this way, query efficiency is increased dramatically.

•

•

•

•

The number of partitions needs to be determined when users are creating a graph space since it cannot be changed afterward. Users

are supposed to take into consideration the demands of future business when setting it.

Note

2.5.4 Storage Service

- 29/629 - 2021 Vesoft Inc.

When inserting into Nebula Graph, vertices and edges are distributed across different partitions. And the partitions are located on

different machines. The number of partitions is set in the CREATE SPACE statement and cannot be changed afterward.

If certain vertices need to be placed on the same partition (i.e., on the same machine), see Formula/code.

The following code will briefly describe the relationship between VID and partition.

Roughly speaking, after hashing a fixed string to int64, (the hashing of int64 is the number itself), do modulo, and then plus one,

namely:

Parameters and descriptions of the preceding formula are as follows:

Suppose there are 100 partitions, the vertices with VID 1, 101, and 1001 will be stored on the same partition. But, the mapping

between the partition ID and the machine address is random. Therefore, we cannot assume that any two partitions are located on

the same machine.

Raft

RAFT IMPLEMENTATION

In a distributed system, one data usually has multiple replicas so that the system can still run normally even if a few copies fail. It

requires certain technical means to ensure consistency between replicas.

Basic principle: Raft is designed to ensure consistency between replicas. Raft uses election between replicas, and the (candidate)

replica that wins more than half of the votes will become the Leader, providing external services on behalf of all replicas. The rest

Followers will play backups. When the Leader fails (due to communication failure, operation and maintenance commands, etc.),

the rest Followers will conduct a new round of elections and vote for a new Leader. The Leader and Followers will detect each

other's survival through heartbeats and write them to the hard disk in Raft-wal mode. Replicas that do not respond to more than

multiple heartbeats will be considered faulty.

Read and write: For every writing request of the clients, the Leader will initiate a Raft-wal and synchronize it with the Followers.

Only after over half replicas have received the Raft-wal will it return to the clients successfully. For every reading request of the

clients, it will get to the Leader directly, while Followers will not be involved.

Failure: Scenario 1: Take a (space) cluster of a single replica as an example. If the system has only one replica, the Leader will be

itself. If failure happens, the system will be completely unavailable. Scenario 2: Take a (space) cluster of three replicas as an

example. If the system has three replicas, one of them will be the Leader and the rest will be the Followers. If the Leader fails, the

// If VertexID occupies 8 bytes, it will be stored in int64 to be compatible with the version 1.0.
uint64_t vid = 0;
if (id.size() == 8) {
 memcpy(static_cast<void*>(&vid), id.data(), 8);
} else {
 MurmurHash2 hash;
 vid = hash(id.data());
}
PartitionID pId = vid % numParts + 1;

pId = vid % numParts + 1;

Parameter Description

% The modulo operation.

numParts The number of partitions for the graph space where the VID is located, namely the value of partition_num in

the CREATE SPACE statement.

pId The ID for the partition where the VID is located.

Raft-wal needs to be written into the hard disk periodically. If hard disk bottlenecks to write, Raft will fail to send a heartbeat and

conduct a new round of elections. If the hard disk IO is severely blocked, there will be no Leader for a long time.

Note

2.5.4 Storage Service

- 30/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/clients/meta/MetaClient.cpp

rest two can still vote for a new Leader (and a Follower), and the system is still available. But if any of the two Followers fails again,

the system will be completely unavailable due to inadequate voters.

Listener: As is a special role in Raft, it cannot vote or keep data consistency. In Nebula Graph, it reads Raft-wal from the Leader

and synchronizes it to ElasticSearch cluster.

MULTI GROUP RAFT

Storage Service supports a distributed cluster architecture, so Nebula Graph implements Multi Group Raft according to Raft

protocol. Each Raft group stores all the replicas of each partition. One replica is the leader, while others are followers. In this way,

Nebula Graph achieves strong consistency and high availability. The functions of Raft are as follows.

Nebula Graph uses Multi Group Raft to improve performance when there are many partitions because Raft-wal cannot be NULL.

When there are too many partitions, costs will increase, such as storing information in Raft group, WAL files, or batch operation in

low load.

There are two key points to implement the Multi Raft Group:

To share transport layer

Each Raft Group sends messages to its corresponding peers. So if the transport layer cannot be shared, the connection costs

will be very high.

To share thread pool

Raft Groups share the same thread pool to prevent starting too many threads and a high context switch cost.

BATCH

For each partition, it is necessary to do a batch to improve throughput when writing the WAL serially. As Nebula Graph uses WAL

to implement some special functions, batches need to be grouped, which is a feature of Nebula Graph.

For example, lock-free CAS operations will execute after all the previous WALs are committed. So for a batch, if there are several

WALs in CAS type, we need to divide this batch into several smaller groups and make sure they are committed serially.

LISTENER

The Listener is designed for storage horizontal scaling. It takes a long time for the newly added machines to be synchronized

with data. Therefore, these machines cannot join the group followers, otherwise, the availability of the entire cluster will decrease.

The Listener will write into the command WAL. If the leader finds a command of add learner when writing the WAL, it will add the

listener to its peers and mark it as a Listener. Listeners cannot join the quorum votes, but logs will still be sent to them as usual.

Listeners themselves will not initiate elections.

Raft listener can write the data into Elasticsearch cluster after receiving them from Learner to implement full-text search. For

more information, see Deploy Raft Listener.

TRANSFER LEADERSHIP

Transfer leadership is extremely important for balance. When moving a partition from one machine to another, Nebula Graph first

checks if the source is a leader. If so, it should be moved to another peer. After data migration is completed, it is important to

balance leader distribution again.

When a transfer leadership command is committed, the leader will abandon its leadership and the followers will start a leader

election.

PEER CHANGES

To avoid split-brain, when members in a Raft Group change, an intermediate state is required. In such a state, the quorum of the

old group and new group always have an overlap. Thus it prevents the old or new group from making decisions unilaterally. To

Raft and HDFS have different modes of duplication. Raft is based on a quorum vote, so the number of replicas cannot be even.

Note

•

•

2.5.4 Storage Service

- 31/629 - 2021 Vesoft Inc.

make it even simpler, in his doctoral thesis Diego Ongaro suggests adding or removing a peer once to ensure the overlap between

the quorum of the new group and the old group. Nebula Graph also uses this approach, except that the way to add or remove a

member is different. For details, please refer to addPeer/removePeer in the Raft Part class.

Differences with HDFS

Storage Service is a Raft-based distributed architecture, which has certain differences with that of HDFS. For example:

Storage Service ensures consistency through Raft. Usually, the number of its replicas is odd to elect a leader. However,

DataNode used by HDFS ensures consistency through NameNode, which has no limit on the number of replicas.

In Storage Service, only the replicas of the leader can read and write, while in HDFS all the replicas can do so.

In Storage Service, the number of replicas needs to be determined when creating a space, since it cannot be changed

afterward. But in HDFS, the number of replicas can be changed freely.

Storage Service can access the file system directly. While the applications of HDFS (such as HBase) have to access HDFS

before the file system, which requires more RPC times.

In a word, Storage Service is more lightweight with some functions simplified and its architecture is simpler than HDFS, which

can effectively improve the read and write performance of a smaller block of data.

•

•

•

•

Last update: October 15, 2021

2.5.4 Storage Service

- 32/629 - 2021 Vesoft Inc.

3. Quick start

3.1 Quick start workflow

The quick start introduces the simplest workflow to use Nebula Graph, including deploying Nebula Graph, connecting to Nebula

Graph, and doing basic CRUD.

3.1.1 Documents

Users can quickly deploy and use Nebula Graph in the following steps.

Deploy Nebula Graph

Users can use the RPM or DEB file to quickly deploy Nebula Graph. For other ways to deploy Nebula Graph and corresponding

preparations, see deployment and installation.

Start Nebula Graph

Users need to start Nebula Graph after deployment.

Connect to Nebula Graph

Then users can use clients to connect to Nebula Graph. Nebula Graph supports a variety of clients. This topic will describe how

to use Nebula Console to connect to Nebula Graph.

CRUD in Nebula Graph

Users can use nGQL (Nebula Graph Query Language) to run CRUD after connecting to Nebula Graph.

1.

2.

3.

4.

Last update: September 6, 2021

3. Quick start

- 33/629 - 2021 Vesoft Inc.

3.2 Step 1: Install Nebula Graph

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install Nebula Graph with the

RPM or DEB package.

3.2.1 Prerequisites

Prepare the right resources.

3.2.2 Download the package from cloud service

Download the released version.

URL:

For example, download release package 2.6.0 for Centos 7.5 :

download release package 2.6.0 for Ubuntu 1804 :

The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

Note

For the Enterprise Edition, please send an email to inquiry@vesoft.com.

Enterpriseonly

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.el7.x86_64.rpm.sha256sum.txt

3.2 Step 1: Install Nebula Graph

- 34/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/4.deployment-and-installation/1.resource-preparations/
https://github.com/vesoft-inc/nebula-console

Download the nightly version.

URL:

For example, download the Centos 7.5 package developed and built in 2021.03.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.03.28 :

3.2.3 Install Nebula Graph

Use the following syntax to install with an RPM package.

For example, to install an RPM package in the default path for the 2.6.0 version.

Use the following syntax to install with a DEB package.

For example, to install a DEB package in the default path for the 2.6.0 version.

3.2.4 What's next

start Nebula Graph

connect to Nebula Graph

wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Nightly versions are usually used to test new features. Don't use it for production.

Nightly versions may not be build successfully every night. And the names may change from day to day.

Danger

•

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

sudo rpm -ivh nebula-graph-2.6.0.el7.x86_64.rpm

•

$ sudo dpkg -i --instdir==<installation_path> <package_name>

sudo dpkg -i nebula-graph-2.6.0.ubuntu1804.amd64.deb

The default installation path is /usr/local/nebula/ .

Note

•

•

3.2.3 Install Nebula Graph

- 35/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/2.6.0/2.quick-start/3.connect-to-nebula-graph/

Last update: September 2, 2021

3.2.4 What's next

- 36/629 - 2021 Vesoft Inc.

3.3 Step 2: Manage Nebula Graph Service

You can use the nebula.service script to start, stop, restart, terminate, and check the Nebula Graph services. This topic takes

starting, stopping and checking the Nebula Graph services for examples.

nebula.service is stored in the /usr/local/nebula/ directory by default, which is also the default installation path of Nebula Graph.

If you have customized the path, use the actual path in your environment.

3.3.1 Syntax

3.3.2 Start Nebula Graph

In non-container environment

Run the following command to start Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start Nebula Graph.

$ sudo /usr/local/nebula/scripts/nebula.service
[-v] [-c <config_file_path>]
<start|stop|restart|status|kill>
<metad|graphd|storaged|all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the Nebula Graph services as the target services.

$ sudo /usr/local/nebula/scripts/nebula.service start all
[INFO] Starting nebula-metad...
[INFO] Done
[INFO] Starting nebula-graphd...
[INFO] Done
[INFO] Starting nebula-storaged...
[INFO] Done

3.3 Step 2: Manage Nebula Graph Service

- 37/629 - 2021 Vesoft Inc.

3.3.3 Stop Nebula Graph

In non-container environment

Run the following command to stop Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop Nebula Graph.

If you are using a development or nightly version for testing and have compatibility issues, try to run docker-compose down -v to

DELETE all data stored in Nebula Graph and import data again.

3.3.4 Check the service status

In non-container environment

Run the following command to check the service status of Nebula Graph.

Nebula Graph is running normally if the following information is returned.

nebula-docker-compose]$ docker-compose up -d
Building with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/
Creating network "nebula-docker-compose_nebula-net" with the default driver
Creating nebula-docker-compose_metad0_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metad1_1 ... done
Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_graphd1_1 ... done
Creating nebula-docker-compose_storaged1_1 ... done
Creating nebula-docker-compose_storaged0_1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done

Don't run kill -9 to forcibly terminate the processes, otherwise, there is a low probability of data loss.

Danger

sudo /usr/local/nebula/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...
[INFO] Done
[INFO] Stopping nebula-graphd...
[INFO] Done
[INFO] Stopping nebula-storaged...
[INFO] Done

nebula-docker-compose]$ docker-compose down
Stopping nebula-docker-compose_graphd_1 ... done
Stopping nebula-docker-compose_graphd2_1 ... done
Stopping nebula-docker-compose_storaged0_1 ... done
Stopping nebula-docker-compose_storaged1_1 ... done
Stopping nebula-docker-compose_graphd1_1 ... done
Stopping nebula-docker-compose_storaged2_1 ... done
Stopping nebula-docker-compose_metad1_1 ... done
Stopping nebula-docker-compose_metad2_1 ... done
Stopping nebula-docker-compose_metad0_1 ... done
Removing nebula-docker-compose_graphd_1 ... done
Removing nebula-docker-compose_graphd2_1 ... done
Removing nebula-docker-compose_storaged0_1 ... done
Removing nebula-docker-compose_storaged1_1 ... done
Removing nebula-docker-compose_graphd1_1 ... done
Removing nebula-docker-compose_storaged2_1 ... done
Removing nebula-docker-compose_metad1_1 ... done
Removing nebula-docker-compose_metad2_1 ... done
Removing nebula-docker-compose_metad0_1 ... done
Removing network nebula-docker-compose_nebula-net

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

3.3.3 Stop Nebula Graph

- 38/629 - 2021 Vesoft Inc.

If the return information is similar to the following one, there is a problem.

The Nebula Graph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the return

information to troubleshoot problems.

You may also go to the Nebula Graph community for help.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to check the service status of Nebula Graph.

Use the CONTAINER ID to log in the container and troubleshoot.

3.3.5 What's next

Connect to Nebula Graph

[INFO] nebula-metad(3ba41bd): Running as 26601, Listening on 9559
[INFO] nebula-graphd(3ba41bd): Running as 26644, Listening on 9669
[INFO] nebula-storaged(3ba41bd): Running as 26709, Listening on 9779

•

[INFO] nebula-metad(3ba41bd): Running as 25600, Listening on 9559
[INFO] nebula-graphd(3ba41bd): Exited
[INFO] nebula-storaged(3ba41bd): Running as 25646, Listening on 9779

[nebula-docker-compose]$ docker-compose ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/
tcp, 0.0.0.0:49228->19670/tcp nebula-docker-compose_graphd2_1
7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp,
0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1
18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp,
0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1
4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/
tcp, 0.0.0.0:49222->19670/tcp nebula-docker-compose_graphd1_1
a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp,
0.0.0.0:49220->19670/tcp nebula-docker-compose_graphd_1
880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp,
0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1
45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212-
>19559/tcp, 0.0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1
3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206-
>19559/tcp, 0.0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1
7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209-
>19559/tcp, 0.0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash
[root@2a6c56c405f5 nebula]#

Last update: September 2, 2021

3.3.5 What's next

- 39/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://docs.nebula-graph.io/2.6.0/2.quick-start/3.connect-to-nebula-graph/

3.4 Step 3: Connect to Nebula Graph

Nebula Graph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. This topic provides an overview of Nebula Graph clients and basic instructions on how to use the native

CLI client, Nebula Console.

3.4.1 Nebula Graph clients

You can use supported clients or console to connect to Nebula Graph.

3.4.2 Use Nebula Console to connect to Nebula Graph

Prerequisites

You have started the Nebula Graph services. For how to start the services, see Start and Stop Nebula Graph.

The machine you plan to run Nebula Console on has network access to the Nebula Graph services.

Steps

On the nebula-console page, select a Nebula Console version and click Assets.

In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to

the machine.

•

•

1.

We recommend that you select the latest release.

Note

2.

3.4 Step 3: Connect to Nebula Graph

- 40/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/20.appendix/6.eco-tool-version/
https://docs.nebula-graph.io/2.6.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

(Optional) Rename the binary file to nebula-console for convenience.

On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Run the following command to connect to Nebula Graph.

For Linux or macOS:

For Windows:

3.

For Windows, rename the file to nebula-console.exe .

Note

4.

For Windows, skip this step.

Note

$ chmod 111 nebula-console

5.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

3.4.2 Use Nebula Console to connect to Nebula Graph

- 41/629 - 2021 Vesoft Inc.

The description of the parameters is as follows.

You can find more details in the Nebula Console Repository.

3.4.3 Nebula Console commands

Nebula Console can export CSV file, DOT file, and import too.

Export a CSV file

CSV files save the return result of a executed command.

The command to export a csv file.

Export a DOT file

DOT files save the return result of a executed command, and the result information is different from CSV files.

Option Description

-h Shows the help menu.

-addr Sets the IP address of the graphd service. The default address is 127.0.0.1.

-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your Nebula Graph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your Nebula Graph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

You'll get the return messages and the connection stops then.

The commands are case insensitive.

Note

A CSV file will be saved in the working directory, i.e., what linux command pwd show;

This command only works for the next query statement.

Note

•

•

nebula> :CSV <file_name.csv>

A DOT file will be saved in the working directory, i.e., what linux command pwd show;

You can copy the contents of DOT file, and paste in GraphvizOnline, to visualize the excution plan;

This command only works for the next query statement.

Note

•

•

•

3.4.3 Nebula Console commands

- 42/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v2.6.0
https://dreampuf.github.io/GraphvizOnline/

The command to export a DOT file.

For example,

Importing a testing dataset

The testing dataset is named nba . Details about schema and data can be seen by commands SHOW .

Using the following command to import the testing dataset,

Run a command multiple times

Sometimes, you want to run a command multiple times. Run the following command.

For example,

Sleep to wait

Sleep N seconds.

It is usually used when altering schema. Since schema is altered in async way, and take effects in the next heartbeat cycle.

3.4.4 Disconnect Nebula Console from Nebula Graph

You can use :EXIT or :QUIT to disconnect from Nebula Graph. For convenience, Nebula Console supports using these commands

in lower case without the colon (":"), such as quit .

nebula> :dot <file_name.dot>

nebula> :dot a.dot
nebula> PROFILE FORMAT="dot" GO FROM "player100" OVER follow;

nebula> :play nba

nebula> :repeat N

nebula> :repeat 3
nebula> GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 2602/3214 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 583/849 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 496/671 us)

Fri, 20 Aug 2021 06:36:05 UTC

Executed 3 times, (total time spent 3681/4734 us), (average time spent 1227/1578 us)

nebula> :sleep N

3.4.4 Disconnect Nebula Console from Nebula Graph

- 43/629 - 2021 Vesoft Inc.

3.4.5 FAQ

How can I install Nebula Console from the source code

To download and compile the latest source code of Nebula Console, follow the instructions on the nebula console GitHub page.

nebula> :QUIT

Bye root!

Last update: September 2, 2021

3.4.5 FAQ

- 44/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console#build-nebula-graph-console

3.5 Step 4: Use nGQL (CRUD)

This topic will describe the basic CRUD operations in Nebula Graph.

For more information, see nGQL guide.

3.5.1 Graph space and Nebula Graph schema

A Nebula Graph instance consists of one or more graph spaces. Graph spaces are physically isolated from each other. You can use

different graph spaces in the same instance to store different datasets.

To insert data into a graph space, define a schema for the graph database. Nebula Graph schema is based on the following

components.

For more information, see Data modeling.

In this topic, we will use the following dataset to demonstrate basic CRUD operations.

The demo dataset

3.5.2 Check the machine status in the Nebula Graph cluster

Schema

component

Description

Vertex Represents an entity in the real world. A vertex can have one or more tags.

Tag The type of the same group of vertices. It defines a set of properties that describes the types of

vertices.

Edge Represents a directed relationship between two vertices.

Edge type The type of an edge. It defines a group of properties that describes the types of edges.

First, we recommend that you check the machine status to make sure that all the Storage services are connected to the Meta

services. Run SHOW HOSTS as follows.

Note

3.5 Step 4: Use nGQL (CRUD)

- 45/629 - 2021 Vesoft Inc.

From the Status column of the table in the return results, you can see that all the Storage services are online.

Asynchronous implementation of creation and alteration

CREATE SPACE

CREATE TAG

CREATE EDGE

ALTER TAG

ALTER EDGE

CREATE TAG INDEX

CREATE EDGE INDEX

To make sure the follow-up operations work as expected, take one of the following approaches:

Run SHOW or DESCRIBE statements accordingly to check the status of the objects, and make sure the creation or alteration is

complete. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

3.5.3 Create and use a graph space

nGQL syntax

Create a graph space:

For more information on parameters, see CREATE SPACE.

List graph spaces and check if the creation is successful:

Use a graph space:

nebula> SHOW HOSTS;
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
"storaged0"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"storaged1"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"storaged2"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"Total"	__EMPTY__	__EMPTY__	0	__EMPTY__	__EMPTY__
+-------------+-----------+-----------+--------------+----------------------+------------------------+

Nebula Graph implements the following creation or alteration operations asynchronously in the next heartbeat cycle. The operations

will not take effect until they finish.

Caution

•

•

•

•

•

•

•

The default heartbeat interval is 10 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the

configuration files for all services.

Note

•

•

•

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (
[partition_num = <partition_number>,]
[replica_factor = <replica_number>,]
vid_type = {FIXED_STRING(<N>) | INT64}
)
[COMMENT = '<comment>'];

•

nebula> SHOW SPACES;

•

USE <graph_space_name>;

3.5.3 Create and use a graph space

- 46/629 - 2021 Vesoft Inc.

Examples

Use the following statement to create a graph space named basketballplayer .

Check the partition distribution with SHOW HOSTS to make sure that the partitions are distributed in a balanced way.

If the Leader distribution is uneven, use BALANCE LEADER to redistribute the partitions. For more information, see BALANCE.

Use the basketballplayer graph space.

You can use SHOW SPACES to check the graph space you created.

3.5.4 Create tags and edge types

nGQL syntax

For more information on parameters, see CREATE TAG and CREATE EDGE.

Examples

Create tags player and team , edge types follow and serve . Descriptions are as follows.

3.5.5 Insert vertices and edges

Users can use the INSERT statement to insert vertices or edges based on existing tags or edge types.

1.

nebula> CREATE SPACE basketballplayer(partition_num=15, replica_factor=1, vid_type=fixed_string(30));

2.

nebula> SHOW HOSTS;
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
"storaged0"	9779	"ONLINE"	5	"basketballplayer:5"	"basketballplayer:5"
"storaged1"	9779	"ONLINE"	5	"basketballplayer:5"	"basketballplayer:5"
"storaged2"	9779	"ONLINE"	5	"basketballplayer:5"	"basketballplayer:5"
"Total"			15	"basketballplayer:15"	"basketballplayer:15"
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+

3.

nebula[(none)]> USE basketballplayer;

nebula> SHOW SPACES;
+--------------------+
| Name |
+--------------------+
| "basketballplayer" |
+--------------------+

CREATE {TAG | EDGE} {<tag_name> | <edge_type>}(<property_name> <data_type>
[, <property_name> <data_type> ...])
[COMMENT = '<comment>'];

Component name Type Property

player Tag name (string), age (int)

team Tag name (string)

follow Edge type degree (int)

serve Edge type start_year (int), end_year (int)

nebula> CREATE TAG player(name string, age int);

nebula> CREATE TAG team(name string);

nebula> CREATE EDGE follow(degree int);

nebula> CREATE EDGE serve(start_year int, end_year int);

3.5.4 Create tags and edge types

- 47/629 - 2021 Vesoft Inc.

nGQL syntax

Insert vertices:

VID is short for Vertex ID. A VID must be a unique string value in a graph space. For details, see INSERT VERTEX.

Insert edges:

For more information on parameters, see INSERT EDGE.

Examples

Insert vertices representing basketball players and teams:

Insert edges representing the relations between basketball players and teams:

3.5.6 Read data

The GO statement can traverse the database based on specific conditions. A GO traversal starts from one or more vertices,

along one or more edges, and returns information in a form specified in the YIELD clause.

The FETCH statement is used to get properties from vertices or edges.

The LOOKUP statement is based on indexes. It is used together with the WHERE clause to search for the data that meet the

specific conditions.

The MATCH statement is the most commonly used statement for graph data querying. It can describe all kinds of graph

patterns, but it relies on indexes to match data patterns in Nebula Graph. Therefore, its performance still needs optimization.

nGQL syntax

GO

•

INSERT VERTEX [IF NOT EXISTS] <tag_name> (<property_name>[, <property_name>...])
[, <tag_name> (<property_name>[, <property_name>...]), ...]
{VALUES | VALUE} <vid>: (<property_value>[, <property_value>...])
[, <vid>: (<property_value>[, <property_value>...];

•

INSERT EDGE [IF NOT EXISTS] <edge_type> (<property_name>[, <property_name>...])
{VALUES | VALUE} <src_vid> -> <dst_vid>[@<rank>] : (<property_value>[, <property_value>...])
[, <src_vid> -> <dst_vid>[@<rank>] : (<property_name>[, <property_name>...]), ...];

•

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");

•

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

•

•

•

•

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [{REVERSELY | BIDIRECT}]
[WHERE <conditions>]
[YIELD [DISTINCT] <return_list>]
[{SAMPLE <sample_list> | LIMIT <limit_list>}]
[| GROUP BY {col_name | expr | position} YIELD <col_name>]

3.5.6 Read data

- 48/629 - 2021 Vesoft Inc.

FETCH

Fetch properties on tags:

Fetch properties on edges:

LOOKUP

MATCH

Examples of GO statement

Search for the players that the player with VID player101 follows.

[| ORDER BY <expression> [{ASC | DESC}]]
[| LIMIT [<offset>,] <number_rows>];

•

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
[YIELD <return_list> [AS <alias>]];

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]
[YIELD <output>];

•

LOOKUP ON {<vertex_tag> | <edge_type>}
[WHERE <expression> [AND <expression> ...]]
[YIELD <return_list> [AS <alias>]];

•

MATCH <pattern> [<WHERE clause>] RETURN <output>;

•

nebula> GO FROM "player101" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player100" |

3.5.6 Read data

- 49/629 - 2021 Vesoft Inc.

Filter the players that the player with VID player101 follows whose age is equal to or greater than 35. Rename the

corresponding columns in the results with Teammate and Age .

| Clause/Sign | Description | |-------------+---| | YIELD | Specifies what values or results you

want to return from the query. | | $$ | Represents the target vertices. | | \ | A line-breaker. |

Search for the players that the player with VID player101 follows. Then Retrieve the teams of the players that the player with

VID player100 follows. To combine the two queries, use a pipe or a temporary variable.

With a pipe:

With a temporary variable:

Example of FETCH statement

Use FETCH : Fetch the properties of the player with VID player100 .

| "player102" |
+-------------+

•

nebula> GO FROM "player101" OVER follow WHERE properties($$).age >= 35 \
 YIELD properties($$).name AS Teammate, properties($$).age AS Age;
+--------------+-----+
| Teammate | Age |
+--------------+-----+
| "Tim Duncan" | 42 |
+--------------+-----+

•

•

nebula> GO FROM "player101" OVER follow YIELD dst(edge) AS id | \
 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \
 properties($^).name AS Player;
+-----------------+---------------------+
| Team | Player |
+-----------------+---------------------+
| "Trail Blazers" | "LaMarcus Aldridge" |
+-----------------+---------------------+

Clause/Sign Description

$^ Represents the source vertex of the edge.

| A pipe symbol can combine multiple queries.

$- Represents the outputs of the query before the pipe symbol.

•

Once a composite statement is submitted to the server as a whole, the life cycle of the temporary variables in the statement

ends.

Note

nebula> $var = GO FROM "player101" OVER follow YIELD dst(edge) AS id; \
 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \
 properties($^).name AS Player;
+-----------------+---------------------+
| Team | Player |
+-----------------+---------------------+
| "Trail Blazers" | "LaMarcus Aldridge" |
+-----------------+---------------------+

nebula> FETCH PROP ON player "player100";
+--+
| vertices_ |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

The examples of LOOKUP and MATCH statements are in indexes.

Note

3.5.6 Read data

- 50/629 - 2021 Vesoft Inc.

3.5.7 Update vertices and edges

Users can use the UPDATE or the UPSERT statements to update existing data.

UPSERT is the combination of UPDATE and INSERT . If you update a vertex or an edge with UPSERT , the database will insert a new

vertex or edge if it does not exist.

nGQL syntax

UPDATE vertices:

UPDATE edges:

UPSERT vertices or edges:

Examples

UPDATE the name property of the vertex with VID player100 and check the result with the FETCH statement.

UPDATE the degree property of an edge and check the result with the FETCH statement.

Insert a vertex with VID player111 and UPSERT it.

UPSERT operates serially in a partition-based order. Therefore, it is slower than INSERT OR UPDATE . And UPSERT has concurrency only

between multiple partitions.

Note

•

UPDATE VERTEX <vid> SET <properties to be updated>
[WHEN <condition>] [YIELD <columns>];

•

UPDATE EDGE <source vid> -> <destination vid> [@rank] OF <edge_type>
SET <properties to be updated> [WHEN <condition>] [YIELD <columns to be output>];

•

UPSERT {VERTEX <vid> | EDGE <edge_type>} SET <update_columns>
[WHEN <condition>] [YIELD <columns>];

•

nebula> UPDATE VERTEX "player100" SET player.name = "Tim";

nebula> FETCH PROP ON player "player100";
+---+
| vertices_ |
+---+
| ("player100" :player{age: 42, name: "Tim"}) |
+---+

•

nebula> UPDATE EDGE "player101" -> "player100" OF follow SET degree = 96;

nebula> FETCH PROP ON follow "player101" -> "player100";
+--+
| edges_ |
+--+
| [:follow "player101"->"player100" @0 {degree: 96}] |
+--+

•

nebula> INSERT VERTEX player(name,age) values "player111":("David West", 38);

nebula> UPSERT VERTEX "player111" SET player.name = "David", player.age = $^.player.age + 11 \
 WHEN $^.player.name == "David West" AND $^.player.age > 20 \
 YIELD $^.player.name AS Name, $^.player.age AS Age;
+---------+-----+
| Name | Age |
+---------+-----+
| "David" | 49 |
+---------+-----+

3.5.7 Update vertices and edges

- 51/629 - 2021 Vesoft Inc.

3.5.8 Delete vertices and edges

nGQL syntax

Delete vertices:

Delete edges:

Examples

Delete vertices:

Delete edges:

3.5.9 About indexes

Users can add indexes to tags and edge types with the CREATE INDEX statement.

nGQL syntax

Create an index:

Rebuild an index:

Examples of LOOKUP and MATCH (index-based)

Make sure there is an index for LOOKUP or MATCH to use. If there is not, create an index first.

Find the information of the vertex with the tag player and its value of the name property is Tony Parker .

This example creates the index player_index_1 on the player name property.

•

DELETE VERTEX <vid1>[, <vid2>...]

•

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>]
[, <src_vid> -> <dst_vid>...]

•

nebula> DELETE VERTEX "player111", "team203";

•

nebula> DELETE EDGE follow "player101" -> "team204";

Both MATCH and LOOKUP statements depend on the indexes. But indexes can dramatically reduce the write performance (as much as

90% or even more). DO NOT use indexes in production environments unless you are fully aware of their influences on your service.

Users MUST rebuild indexes for pre-existing data. Otherwise, the pre-existing data cannot be indexed and therefore cannot be

returned in MATCH or LOOKUP statements. For more information, see REBUILD INDEX.

Must-read for using indexes

•

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name>
ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT = '<comment>'];

•

REBUILD {TAG | EDGE} INDEX <index_name>;

Define the index length when creating an index for a variable-length property. In UTF-8 encoding, a non-ascii character occupies 3

bytes. You should set an appropriate index length according to the variable-length property. For example, the index should be 30 bytes

for 10 non-ascii characters. For more information, see CREATE INDEX

Note

3.5.8 Delete vertices and edges

- 52/629 - 2021 Vesoft Inc.

This example rebuilds the index to make sure it takes effect on pre-existing data.

This example uses the LOOKUP statement to retrieve the vertex property.

This example uses the MATCH statement to retrieve the vertex property.

nebula> CREATE TAG INDEX player_index_1 ON player(name(20));

nebula> REBUILD TAG INDEX player_index_1
+------------+
| New Job Id |
+------------+
| 31 |
+------------+
Got 1 rows (time spent 2379/3033 us)

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
 YIELD properties(vertex).name AS name, properties(vertex).age AS age;
+-------------+---------------+-----+
| VertexID | name | age |
+-------------+---------------+-----+
| "player101" | "Tony Parker" | 36 |
+-------------+---------------+-----+

nebula> MATCH (v:player{name:"Tony Parker"}) RETURN v;
+---+
| v |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+

Last update: November 1, 2021

3.5.9 About indexes

- 53/629 - 2021 Vesoft Inc.

3.6 nGQL cheatsheet

3.6.1 Functions

3.6 nGQL cheatsheet

- 54/629 - 2021 Vesoft Inc.

Math functions•

3.6.1 Functions

- 55/629 - 2021 Vesoft Inc.

Function Description

double abs(double x) Returns the absolute value of the argument.

double floor(double x) Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double x) Returns the integer value nearest to the argument. Returns a number farther away from

0 if the argument is in the middle.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) sReturns the cubic root of the argument.

double hypot(double x,

double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x,

double y)

Returns the result of \(x^y\).

double exp(double x) Returns the result of \(e^x\).

double exp2(double x) Returns the result of \(2^x\).

double log(double x) Returns the base-e logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double x) Returns the base-10 logarithm of the argument.

double sin(double x) Returns the sine of the argument.

double asin(double x) Returns the inverse sine of the argument.

double cos(double x) Returns the cosine of the argument.

double acos(double x) Returns the inverse cosine of the argument.

double tan(double x) Returns the tangent of the argument.

double atan(double x) Returns the inverse tangent of the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive);

i.e.[0,1).

int rand32(int min, int max) Returns a random 32-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 32-bit integer.

int rand64(int min, int max) Returns a random 64-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 64-bit integer.

collect() Puts all the collected values into a list.

avg() Returns the average value of the argument.

count() Returns the number of records.

max() Returns the maximum value.

min() Returns the minimum value.

std() Returns the population standard deviation.

sum() Returns the sum value.

bit_and() Bitwise AND.

3.6.1 Functions

- 56/629 - 2021 Vesoft Inc.

Function Description

bit_or() Bitwise OR.

bit_xor() Bitwise XOR.

int size() Returns the number of elements in a list or a map.

int range(int start, int end,

int step)

Returns a list of integers from [start,end] in the specified steps. step is 1 by default.

int sign(double x) Returns the signum of the given number.

If the number is 0, the system returns 0.

If the number is negative, the system returns -1.

If the number is positive, the system returns 1.

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793 .

3.6.1 Functions

- 57/629 - 2021 Vesoft Inc.

String functions

Data and time functions

•

Function Description

int strcasecmp(string a,

string b)

Compares string a and b without case sensitivity. When a = b, the return value is 0.

When a > b, the return value is greater than 0. When a < b, the return value is less than

0.

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower() .

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper() .

int length(string a) Returns the length of the given string in bytes.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns a substring consisting of count characters from the left side of string a. If

string a is shorter than count , the system returns string a.

string right(string a, int

count)

Returns a substring consisting of count characters from the right side of string a. If

string a is shorter than count , the system returns string a.

string lpad(string a, int size,

string letters)

Left-pads string a with string letters and returns a substring with the length of size .

string rpad(string a, int size,

string letters)

Right-pads string a with string letters and returns a substring with the length of size .

string substr(string a, int

pos, int count)

Returns a substring extracting count characters starting from the specified position

pos of string a.

string substring(string a, int

pos, int count)

The same as substr() .

string reverse(string) Returns a string in reverse order.

string replace(string a,

string b, string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

string toString() Takes in any data type and converts it into a string.

int hash() Takes in any data type and encodes it into a hash value.

•

Function Description

int now() Returns the current date and time of the system time zone.

timestamp timestamp() Returns the current date and time of the system time zone.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

3.6.1 Functions

- 58/629 - 2021 Vesoft Inc.

Schema functions

List functions

count() function

collect() function

•

Function Description

id(vertex) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

map

properties(vertex)

Returns the properties of a vertex.

map properties(edge) Returns the properties of an edge.

string type(edge) Returns the edge type of an edge.

src(edge) Returns the source vertex ID of an edge. The data type of the result is the same as the vertex

ID.

dst(edge) Returns the destination vertex ID of an edge. The data type of the result is the same as the

vertex ID.

int rank(edge) Returns the rank value of an edge.

•

Function Description

keys(expr) Returns a list containing the string representations for all the property names of vertices,

edges, or maps.

labels(vertex) Returns the list containing all the tags of a vertex.

nodes(path) Returns the list containing all the vertices in a path.

range(start, end [,

step])

Returns the list containing all the fixed-length steps in [start,end] . step is 1 by default.

relationships(path) Returns the list containing all the relationships in a path.

reverse(list) Returns the list reversing the order of all elements in the original list.

tail(list) Returns all the elements of the original list, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

coalesce(list) Returns the first not null value in a list.

reduce() See reduce() function30
02

•

Function Description

count() Syntax: count({expr | *}) .

count() returns the number of rows (including NULL).

count(expr) returns the number of non-NULL values that meet the expression.

count() and size() are different.

•

Function Description

collect() The collect() function returns a list containing the values returned by an expression. Using this function

aggregates data by merging multiple records or values into a single list.

3.6.1 Functions

- 59/629 - 2021 Vesoft Inc.

reduce() function

hash() function

concat() function

concat_ws() function

Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

CASE expressions

The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD and RETURN

clauses. The CASE expression will traverse all the conditions. When the first condition is met, the CASE expression stops

reading the conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is no

ELSE clause and no conditions are met, it returns NULL .

Syntax:

•

Function Syntax Description

reduce() reduce(<accumulator> = <initial>,

<variable> IN <list> |

<expression>)

The reduce() function applies an expression to each element

in a list one by one, chains the result to the next iteration by

taking it as the initial value, and returns the final result.

•

Function Description

hash() The hash() function returns the hash value of the argument. The argument can be a number, a string, a

list, a boolean, null, or an expression that evaluates to a value of the preceding data types. The source

code of the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in

MurmurHash2.h .

•

Function Description

concat() The concat() function requires at least two or more strings. All the parameters are concatenated into

one string.

Syntax: concat(string1,string2,...)

•

Function Description

concat_ws() The concat_ws() function connects two or more strings with a predefined separator.

•

<predicate>(<variable> IN <list> WHERE <condition>)

Functions Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise,

returns false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns

false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns

false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list.

Otherwise, returns false .

•

CASE <comparer>
WHEN <value> THEN <result>
[WHEN ...]
[ELSE <default>]
END

3.6.1 Functions

- 60/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h

3.6.2 General queries statements

MATCH

Parameter Description

comparer A value or a valid expression that outputs a value. This value is used to compare with the value .

value It will be compared with the comparer . If the value matches the comparer , then this condition is met.

result The result is returned by the CASE expression if the value matches the comparer .

default The default is returned by the CASE expression if no conditions are met.

•

3.6.2 General queries statements

- 61/629 - 2021 Vesoft Inc.

MATCH <pattern> [<WHERE clause>] RETURN <output>

3.6.2 General queries statements

- 62/629 - 2021 Vesoft Inc.

Pattern Example Description

Match vertices (v) You can use a user-defined variable in a pair of

parentheses to represent a vertex in a pattern. For

example: (v) .

Match tags MATCH (v:player) RETURN v You can specify a tag with :<tag_name> after the vertex in a

pattern.

Match vertex

properties

MATCH (v:player{name:"Tim

Duncan"}) RETURN v

You can specify a vertex property with {<prop_name>:

<prop_value>} after the tag in a pattern.

Match a VID. MATCH (v) WHERE id(v) ==

'player101' RETURN v

You can use the VID to match a vertex. The id() function

can retrieve the VID of a vertex.

Match multiple

VIDs.

MATCH (v:player { name: 'Tim

Duncan' })--(v2) WHERE id(v2)

IN ["player101", "player102"]

RETURN v2

To match multiple VIDs, use WHERE id(v) IN [vid_list] .

Match connected

vertices

MATCH (v:player{name:"Tim

Duncan"})--(v2) RETURN v2.name

AS Name

You can use the -- symbol to represent edges of both

directions and match vertices connected by these edges.

You can add a > or < to the -- symbol to specify the

direction of an edge.

Match paths MATCH p=(v:player{name:"Tim

Duncan"})-->(v2) RETURN p

Connected vertices and edges form a path. You can use a

user-defined variable to name a path as follows.

Match edges MATCH (v:player{name:"Tim

Duncan"})-[e]-(v2) RETURN e

Besides using -- , --> , or <-- to indicate a nameless edge,

you can use a user-defined variable in a pair of square

brackets to represent a named edge. For example: -[e]- .

Match an edge

type

MATCH ()-[e:follow]-() RETURN e Just like vertices, you can specify an edge type with

:<edge_type> in a pattern. For example: -[e:follow]- .

Match edge type

properties

MATCH (v:player{name:"Tim

Duncan"})-[e:follow{degree:95}]-

>(v2) RETURN e

You can specify edge type properties with {<prop_name>:

<prop_value>} in a pattern. For example:

[e:follow{likeness:95}] .

Match multiple

edge types

MATCH (v:player{name:"Tim

Duncan"})-[e:follow | :serve]-

>(v2) RETURN e

The | symbol can help matching multiple edge types. For

example: [e:follow|:serve] . The English colon (:) before

the first edge type cannot be omitted, but the English colon

before the subsequent edge type can be omitted, such as

[e:follow|serve] .

Match multiple

edges

MATCH (v:player{name:"Tim

Duncan"})-[]->(v2)<-[e:serve]-

(v3) RETURN v2, v3

You can extend a pattern to match multiple edges in a path.

Match fixed-

length paths

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow*2]->(v2)

RETURN DISTINCT v2 AS Friends

You can use the :<edge_type>*<hop> pattern to match a

fixed-length path. hop must be a non-negative integer.

Match variable-

length paths

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow*1..3]->(v2)

RETURN v2 AS Friends

minHop : Optional. It represents the minimum length of the

path. minHop : must be a non-negative integer. The default

value is 1.

maxHop : Required. It represents the maximum length of the

path. maxHop must be a non-negative integer. It has no

default value.

Match variable-

length paths with

multiple edge

types

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow | serve*2]-

>(v2) RETURN DISTINCT v2

You can specify multiple edge types in a fixed-length or

variable-length pattern. In this case, hop , minHop , and

maxHop take effect on all edge types.

3.6.2 General queries statements

- 63/629 - 2021 Vesoft Inc.

Pattern Example Description

Retrieve vertex

or edge

information

MATCH (v:player{name:"Tim

Duncan"}) RETURN v

MATCH (v:player{name:"Tim

Duncan"})-[e]->(v2) RETURN e

Use RETURN {<vertex_name> | <edge_name>} to retrieve all

the information of a vertex or an edge.

Retrieve VIDs MATCH (v:player{name:"Tim

Duncan"}) RETURN id(v)

Use the id() function to retrieve VIDs.

Retrieve tags MATCH (v:player{name:"Tim

Duncan"}) RETURN labels(v)

Use the labels() function to retrieve the list of tags on a

vertex.

To retrieve the nth element in the labels(v) list, use

labels(v)[n-1] .

Retrieve a single

property on a

vertex or an

edge

MATCH (v:player{name:"Tim

Duncan"}) RETURN v.age

Use RETURN {<vertex_name> | <edge_name>}.<property> to

retrieve a single property.

Use AS to specify an alias for a property.

Retrieve all

properties on a

vertex or an

edge

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN

properties(v2)

Use the properties() function to retrieve all properties on

a vertex or an edge.

Retrieve edge

types

MATCH p=(v:player{name:"Tim

Duncan"})-[e]->() RETURN

DISTINCT type(e)

Use the type() function to retrieve the matched edge

types.

Retrieve paths MATCH p=(v:player{name:"Tim

Duncan"})-[*3]->() RETURN p

Use RETURN <path_name> to retrieve all the information of

the matched paths.

Retrieve vertices

in a path

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN

nodes(p)

Use the nodes() function to retrieve all vertices in a path.

Retrieve edges in

a path

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN

relationships(p)

Use the relationships() function to retrieve all edges in a

path.

Retrieve path

length

MATCH p=(v:player{name:"Tim

Duncan">})-[*..2]->(v2) RETURN

p AS Paths, length(p) AS Length

Use the length() function to retrieve the length of a path.

3.6.2 General queries statements

- 64/629 - 2021 Vesoft Inc.

LOOKUP•

LOOKUP ON {<vertex_tag> | <edge_type>}
[WHERE <expression> [AND <expression> ...]]
[YIELD <return_list> [AS <alias>]]

Pattern Example Description

Retrieve vertices LOOKUP ON player WHERE player.name ==

"Tony Parker" YIELD player.name AS name,

player.age AS age

The following example returns vertices whose

name is Tony Parker and the tag is player .

Retrieve edges LOOKUP ON follow WHERE follow.degree ==

90 YIELD follow.degree

Returns edges whose degree is 90 and the

edge type is follow .

List vertices with a

tag

LOOKUP ON player Shows how to retrieve the VID of all vertices

tagged with player .

List edges with an

edge types

LOOKUP ON like Shows how to retrieve the source Vertex IDs,

destination vertex IDs, and ranks of all edges

of the like edge type.

Count the numbers

of vertices or

edges

LOOKUP ON player | YIELD COUNT(*) AS

Player_Number

Shows how to count the number of vertices

tagged with player .

Count the numbers

of edges

LOOKUP ON like | YIELD COUNT(*) AS

Like_Number

Shows how to count the number of edges of the

like edge type.

3.6.2 General queries statements

- 65/629 - 2021 Vesoft Inc.

GO•

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [{REVERSELY | BIDIRECT}]
[WHERE <conditions>]
[YIELD [DISTINCT] <return_list>]
[| GROUP BY {col_name | expr | position} YIELD <col_name>]
[| ORDER BY <expression> [{ASC | DESC}]]
[| LIMIT [<offset_value>,] <number_rows>]

Example Description

GO FROM "player102" OVER serve Returns the teams that player 102 serves.

GO 2 STEPS FROM "player102" OVER follow Returns the friends of player 102 with 2

hops.

GO FROM "player100", "player102" OVER serve WHERE

properties(edge).start_year > 1995 YIELD DISTINCT properties($$).name AS

team_name, properties(edge).start_year AS start_year,

properties($^).name AS player_name

Adds a filter for the traversal.

GO FROM "player100" OVER follow, serve YIELD properties(edge).degree,

properties(edge).start_year

The following example traverses along

with multiple edge types. If there is no

value for a property, the output is

UNKNOWN_PROP .

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS destination The following example returns the

neighbor vertices in the incoming direction

of player 100.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO

FROM $-.id OVER serve WHERE properties($^).age > 20 YIELD

properties($^).name AS FriendOf, properties($$).name AS Team

The following example retrieves the

friends of player 100 and the teams that

they serve.

GO FROM "player102" OVER follow YIELD dst(edge) AS both The following example returns all the

neighbor vertices of player 102.

GO 2 STEPS FROM "player100" OVER follow YIELD src(edge) AS src,

dst(edge) AS dst, properties($$).age AS age | GROUP BY $-.dst YIELD

$-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age

The following example the outputs

according to age.

3.6.2 General queries statements

- 66/629 - 2021 Vesoft Inc.

FETCH

UNWIND

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
[YIELD <return_list> [AS <alias>]]

Example Description

FETCH PROP ON player "player100" Specify a tag in the FETCH statement to fetch the vertex

properties by that tag.

FETCH PROP ON player "player100" YIELD player.name AS

name

Use a YIELD clause to specify the properties to be returned.

FETCH PROP ON player "player101", "player102",

"player103"

Specify multiple VIDs (vertex IDs) to fetch properties of

multiple vertices. Separate the VIDs with commas.

FETCH PROP ON player, t1 "player100", "player103" Specify multiple tags in the FETCH statement to fetch the

vertex properties by the tags. Separate the tags with

commas.

FETCH PROP ON * "player100", "player106", "team200" Set an asterisk symbol * to fetch properties by all tags in

the current graph space.

FETCH PROP ON serve "player102" -> "player106" YIELD

dst(edge)

Syntax: FETCH PROP ON <edge_type> <src_vid> ->

<dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...] [YIELD

<output>]

FETCH PROP ON serve "player100" -> "team204" The following statement fetches all the properties of the

serve edge that connects vertex "player100" and vertex

"team204" .

FETCH PROP ON serve "player100" -> "team204" YIELD

serve.start_year

Use a YIELD clause to fetch specific properties of an edge.

FETCH PROP ON serve "player100" -> "team204",

"player133" -> "team202"

Specify multiple edge patterns (<src_vid> ->

<dst_vid>[@<rank>]) to fetch properties of multiple edges.

Separate the edge patterns with commas.

FETCH PROP ON serve "player100" -> "team204"@1 To fetch on an edge whose rank is not 0, set its rank in the

FETCH statement.

GO FROM "player101" OVER follow YIELD follow._src AS s,

follow._dst AS d | FETCH PROP ON follow $-.s -> $-.d

YIELD follow.degree

The following statement returns the degree values of the

follow edges that start from vertex "player101" .

$var = GO FROM "player101" OVER follow YIELD

follow._src AS s, follow._dst AS d; FETCH PROP ON

follow $var.s -> $var.d YIELD follow.degree

You can use user-defined variables to construct similar

queries.

•

UNWIND <list> AS <alias> <RETURN clause>

Example Description

UNWIND [1,2,3] AS n RETURN n The following example splits the list [1,2,3] into three rows.

WITH [1,1,2,2,3,3] AS n UNWIND n AS r WITH DISTINCT r

AS r ORDER BY r RETURN collect(r)

1. Splits the list [1,1,2,2,3,3] into rows. 2. Removes

duplicated rows. 3. Sorts the rows. 4. Transforms the rows to

a list.

MATCH p=(v:player{name:"Tim Duncan"})--(v2) WITH

nodes(p) AS n UNWIND n AS r WITH DISTINCT r AS r

RETURN collect(r)

1. Outputs the vertices on the matched path into a list. 2.

Splits the list into rows. 3. Removes duplicated rows. 4.

Transforms the rows to a list.

3.6.2 General queries statements

- 67/629 - 2021 Vesoft Inc.

SHOW•

Statement Syntax Example Description

SHOW

CHARSET

SHOW CHARSET SHOW CHARSET Shows the available character sets.

SHOW

COLLATION

SHOW COLLATION SHOW COLLATION Shows the collations supported by

Nebula Graph.

SHOW CREATE

SPACE

SHOW CREATE SPACE

<space_name>

SHOW CREATE SPACE

basketballplayer

Shows the creating statement of the

specified graph space.

SHOW CREATE

TAG/EDGE

SHOW CREATE {TAG

<tag_name> | EDGE

<edge_name>}

SHOW CREATE TAG

player

Shows the basic information of the

specified tag.

SHOW HOSTS SHOW HOSTS [GRAPH |

STORAGE | META]

SHOW HOSTS

SHOW HOSTS GRAPH

Shows the host and version information

of Graph Service, Storage Service, and

Meta Service.

SHOW INDEX

STATUS

SHOW {TAG | EDGE}

INDEX STATUS

SHOW TAG INDEX

STATUS

Shows the status of jobs that rebuild

native indexes, which helps check

whether a native index is successfully

rebuilt or not.

SHOW

INDEXES

SHOW {TAG | EDGE}

INDEXES

SHOW TAG INDEXES Shows the names of existing native

indexes.

SHOW PARTS SHOW PARTS

[<part_id>]

SHOW PARTS Shows the information of a specified

partition or all partitions in a graph

space.

SHOW ROLES SHOW ROLES IN

<space_name>

SHOW ROLES in

basketballplayer

Shows the roles that are assigned to a

user account.

SHOW

SNAPSHOTS

SHOW SNAPSHOTS SHOW SNAPSHOTS Shows the information of all the

snapshots.

SHOW SPACES SHOW SPACES SHOW SPACES Shows existing graph spaces in Nebula

Graph.

SHOW STATS SHOW STATS SHOW STATS Shows the statistics of the graph space

collected by the latest STATS job.

SHOW TAGS/

EDGES

SHOW TAGS | EDGES SHOW TAGS 30
01 SHOW

EDGES

Shows all the tags in the current graph

space.

SHOW USERS SHOW USERS SHOW USERS Shows the user information.

SHOW

SESSIONS

SHOW SESSIONS SHOW SESSIONS Shows the information of all the sessions.

SHOW

SESSIONS

SHOW SESSION

<Session_Id>

SHOW SESSION

1623304491050858

Shows a specified session with its ID.

SHOW

QUERIES

SHOW [ALL] QUERIES SHOW QUERIES Shows the information of working

queries in the current session.

SHOW META

LEADER

SHOW META LEADER SHOW META LEADER Shows the information of the leader in

the current Meta cluster.

3.6.2 General queries statements

- 68/629 - 2021 Vesoft Inc.

3.6.3 Clauses and options

Clause Syntax Example Description

GROUP

BY

GROUP BY <var> YIELD <var>,

<aggregation_function(var)>

GO FROM "player100" OVER

follow BIDIRECT YIELD $

$.player.name as Name | GROUP

BY $-.Name YIELD $-.Name as

Player, count(*) AS Name_Count

Finds all the vertices

connected directly to vertex

"player100" , groups the

result set by player names,

and counts how many times

the name shows up in the

result set.

LIMIT YIELD <var> [| LIMIT

[<offset_value>,] <number_rows>]

O FROM "player100" OVER follow

REVERSELY YIELD $$.player.name

AS Friend, $$.player.age AS

Age | ORDER BY $-.Age,

$-.Friend | LIMIT 1, 3

Returns the 3 rows of data

starting from the second

row of the sorted output.

SKIP RETURN <var> [SKIP <offset>] [LIMIT

<number_rows>]

MATCH (v:player{name:"Tim

Duncan"}) --> (v2) RETURN

v2.name AS Name, v2.age AS Age

ORDER BY Age DESC SKIP 1

SKIP can be used alone to

set the offset and return the

data after the specified

position.

ORDER

BY

<YIELD clause> ORDER BY <expression>

[ASC | DESC] [, <expression> [ASC |

DESC] ...]

FETCH PROP ON player

"player100", "player101",

"player102", "player103" YIELD

player.age AS age, player.name

AS name | ORDER BY $-.age ASC,

$-.name DESC

The ORDER BY clause

specifies the order of the

rows in the output.

RETURN RETURN {<vertex_name>|<edge_name>|

<vertex_name>.<property>|

<edge_name>.<property>|...}

MATCH (v:player) RETURN

v.name, v.age LIMIT 3

Returns the first three rows

with values of the vertex

properties name and age .

TTL CREATE TAG

<tag_name>(<property_name_1>

<property_value_1>,

<property_name_2>

<property_value_2>, ...)

ttl_duration= <value_int>, ttl_col =

<property_name>

CREATE TAG t2(a int, b int, c

string) ttl_duration= 100,

ttl_col = "a"

Create a tag and set the TTL

options.

WHERE WHERE {<vertex|

edge_alias>.<property_name> {>|==|

<|...} <value>...}

MATCH (v:player) WHERE v.name

== "Tim Duncan" XOR (v.age <

30 AND v.name == "Yao Ming")

OR NOT (v.name == "Yao Ming"

OR v.name == "Tim Duncan")

RETURN v.name, v.age

The WHERE clause filters the

output by conditions. The

WHERE clause usually works

in Native nGQL GO and

LOOKUP statements, and

OpenCypher MATCH and

WITH statements.

YIELD YIELD [DISTINCT] <col> [AS <alias>]

[, <col> [AS <alias>] ...] [WHERE

<conditions>];

GO FROM "player100" OVER

follow YIELD dst(edge) AS ID |

FETCH PROP ON player $-.ID

YIELD player.age AS Age |

YIELD AVG($-.Age) as Avg_age,

count(*)as Num_friends

Finds the players that

"player100" follows and

calculates their average

age.

WITH MATCH $expressions WITH {nodes()|

labels()|...}

MATCH p=(v:player{name:"Tim

Duncan"})--() WITH nodes(p) AS

n UNWIND n AS n1 RETURN

DISTINCT n1

The WITH clause can

retrieve the output from a

query part, process it, and

pass it to the next query

part as the input.

3.6.3 Clauses and options

- 69/629 - 2021 Vesoft Inc.

3.6.4 Space statements

Statement Syntax Example Description

CREATE

SPACE

CREATE SPACE [IF NOT EXISTS]

<graph_space_name> ([partition_num =

<partition_number>,] [replica_factor =

<replica_number>,] vid_type =

{FIXED_STRING(<N>)| INT[64]}) [COMMENT =

'<comment>']

CREATE SPACE my_space_1

(vid_type=FIXED_STRING(30))

Creates a graph

space with

CREATE

SPACE

CREATE SPACE <new_graph_space_name> AS

<old_graph_space_name>

CREATE SPACE my_space_4 as

my_space_3

Clone a graph space.

USE USE <graph_space_name> USE space1 Specifies a graph

space as the current

working graph space

for subsequent

queries.

SHOW

SPACES

SHOW SPACES SHOW SPACES Lists all the graph

spaces in the Nebula

Graph examples.

DESCRIBE

SPACE

DESC[RIBE] SPACE <graph_space_name> DESCRIBE SPACE

basketballplayer

Returns the

information about

the specified graph

space.606F 30
02

DROP

SPACE

DROP SPACE [IF EXISTS] <graph_space_name> DROP SPACE basketballplayer Deletes everything

in the specified

graph space.

3.6.4 Space statements

- 70/629 - 2021 Vesoft Inc.

3.6.5 TAG statements

Statement Syntax Example Description

CREATE

TAG

CREATE TAG [IF NOT EXISTS] <tag_name>

(<prop_name> <data_type> [NULL | NOT

NULL] [DEFAULT <default_value>] [COMMENT

'<comment>'] [{, <prop_name> <data_type>

[NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT

'<comment>']} ...]) [TTL_DURATION =

<ttl_duration>] [TTL_COL = <prop_name>]

[COMMENT = '<comment>']

CREATE TAG

woman(name string,

age int, married

bool, salary

double, create_time

timestamp)

TTL_DURATION = 100,

TTL_COL =

"create_time"

Creates a tag with the given

name in a graph space.

DROP TAG DROP TAG [IF EXISTS] <tag_name> CREATE TAG test(p1

string, p2 int)

Drops a tag with the given name

in the current working graph

space.

ALTER

TAG

ALTER TAG <tag_name>

<alter_definition> [,

alter_definition] ...] [ttl_definition

[, ttl_definition] ...] [COMMENT =

'<comment>']

ALTER TAG t1 ADD

(p3 int, p4 string)

Alters the structure of a tag

with the given name in a graph

space. You can add or drop

properties, and change the data

type of an existing property. You

can also set a [TTL](../3.ngql-

guide/8.clauses-and-options/ttl-
FF
08

FF
09options.md Time-To-Live on a

property, or change its TTL

duration.

SHOW

TAGS

SHOW TAGS SHOW TAGS Shows the name of all tags in

the current graph space.

DESCRIBE

TAG

DESC[RIBE] TAG <tag_name> DESCRIBE TAG player Returns the information about a

tag with the given name in a

graph space, such as field

names, data type, and so on.

DELETE

TAG

DELETE TAG <tag_name_list> FROM <VID> DELETE TAG test1

FROM "test"

Deletes a tag with the given

name on a specified vertex.

3.6.5 TAG statements

- 71/629 - 2021 Vesoft Inc.

3.6.6 Edge type statements

3.6.7 Vertex statements

Statement Syntax Example Description

CREATE

EDGE

CREATE EDGE [IF NOT EXISTS] <edge_type_name>

(<prop_name> <data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>'] [{,

<prop_name> <data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>']} ...])

[TTL_DURATION = <ttl_duration>] [TTL_COL =

<prop_name>] [COMMENT = '<comment>']

CREATE EDGE e1(p1

string, p2 int, p3

timestamp)

TTL_DURATION =

100, TTL_COL =

"p2"

Creates an edge type

with the given name in

a graph space.type 30
02

DROP

EDGE

DROP EDGE [IF EXISTS] <edge_type_name> DROP EDGE e1 Drops an edge type

with the given name in

a graph space.

ALTER

EDGE

ALTER EDGE <edge_type_name> <alter_definition> [,

alter_definition] ...] [ttl_definition [,

ttl_definition] ...] [COMMENT = '<comment>']

ALTER EDGE e1 ADD

(p3 int, p4

string)

Alters the structure of

an edge type with the

given name in a graph

space.

SHOW

EDGES

SHOW EDGES SHOW EDGES Shows all edge types

in the current graph

space.

DESCRIBE

EDGE

DESC[RIBE] EDGE <edge_type_name> DESCRIBE EDGE

follow

Returns the

information about an

edge type with the

given name in a graph

space, such as field

names, data type, and

so on.

Statement Syntax Example Description

INSERT

VERTEX

INSERT VERTEX [IF NOT EXISTS] <tag_name>

(<prop_name_list>) [, <tag_name>

(<prop_name_list>), ...] {VALUES | VALUE}

VID: (<prop_value_list>[,

<prop_value_list>])

INSERT VERTEX t2

(name, age)

VALUES "13":

("n3", 12), "14":

("n4", 8)

Inserts one or more vertices into

a graph space in Nebula Graph.

DELETE

VERTEX

DELETE VERTEX <vid> [, <vid> ...] DELETE VERTEX

"team1"

Deletes vertices and the related

incoming and outgoing edges of

the vertices.

UPDATE

VERTEX

UPDATE VERTEX ON <tag_name> <vid> SET

<update_prop> [WHEN <condition>] [YIELD

<output>]

UPDATE VERTEX ON

player

"player101" SET

age = age + 2

Updates properties on tags of a

vertex.

UPSERT

VERTEX

UPSERT VERTEX ON <tag> <vid> SET

<update_prop> [WHEN <condition>] [YIELD

<output>]

UPSERT VERTEX ON

player

"player667" SET

age = 31

The UPSERT statement is a

combination of UPDATE and

INSERT . You can use UPSERT

VERTEX to update the properties

of a vertex if it exists or insert a

new vertex if it does not exist.

3.6.6 Edge type statements

- 72/629 - 2021 Vesoft Inc.

3.6.8 Edge statements

Statement Syntax Example Description

INSERT

EDGE

INSERT EDGE [IF NOT EXISTS] <edge_type>

(<prop_name_list>) {VALUES | VALUE}

<src_vid> -> <dst_vid>[@<rank>] :

(<prop_value_list>) [, <src_vid> ->

<dst_vid>[@<rank>] :

(<prop_value_list>), ...]

INSERT EDGE e2

(name, age) VALUES

"11"->"13":("n1",

1)

Inserts an edge or multiple

edges into a graph space

from a source vertex (given

by src_vid) to a destination

vertex (given by dst_vid) with

a specific rank in Nebula

Graph.

DELETE

EDGE

DELETE EDGE <edge_type> <src_vid> ->

<dst_vid>[@<rank>] [, <src_vid> ->

<dst_vid>[@<rank>] ...]

DELETE EDGE serve

"player100" ->

"team204"@0

Deletes one edge or multiple

edges at a time.

UPDATE

EDGE

UPDATE EDGE ON <edge_type> <src_vid> ->

<dst_vid> [@<rank>] SET <update_prop> [WHEN

<condition>] [YIELD <output>]

UPDATE EDGE ON

serve "player100" -

> "team204"@0 SET

start_year =

start_year + 1

Updates properties on an

edge.

UPSERT

EDGE

UPSERT EDGE ON <edge_type> <src_vid> ->

<dst_vid> [@rank] SET <update_prop> [WHEN

<condition>] [YIELD <properties>]

UPSERT EDGE on

serve "player666" -

> "team200"@0 SET

end_year = 2021

The UPSERT statement is a

combination of UPDATE and

INSERT . You can use UPSERT

EDGE to update the

properties of an edge if it

exists or insert a new edge if

it does not exist.

3.6.8 Edge statements

- 73/629 - 2021 Vesoft Inc.

3.6.9 Index

Native index

You can use native indexes together with LOOKUP and MATCH statements.

•

Statement Syntax Example Description

CREATE

INDEX

CREATE {TAG | EDGE} INDEX [IF

NOT EXISTS] <index_name> ON

{<tag_name> | <edge_name>}

([<prop_name_list>]) [COMMENT

= '<comment>']

CREATE TAG INDEX

player_index on

player()

Add native indexes for the existing

tags, edge types, or properties.

SHOW

CREATE

INDEX

SHOW CREATE {TAG | EDGE} INDEX

<index_name>

show create tag

index index_2

Shows the statement used when

creating a tag or an edge type. It

contains detailed information about

the index, such as its associated

properties.

SHOW

INDEXES

SHOW {TAG | EDGE} INDEXES SHOW TAG INDEXES Shows the defined tag or edge type

indexes names in the current graph

space.

DESCRIBE

INDEX

DESCRIBE {TAG | EDGE} INDEX

<index_name>

DESCRIBE TAG INDEX

player_index_0

Gets the information about the

index with a given name, including

the property name (Field) and the

property type (Type) of the index.

REBUILD

INDEX

REBUILD {TAG | EDGE} INDEX

[<index_name_list>]

REBUILD TAG INDEX

single_person_index

Rebuilds the created tag or edge

type index. If data is updated or

inserted before the creation of the

index, you must rebuild the indexes

manually to make sure that the

indexes contain the previously

added data.

SHOW

INDEX

STATUS

SHOW {TAG | EDGE} INDEX STATUS SHOW TAG INDEX STATUS Returns the name of the created tag

or edge type index and its status.

DROP

INDEX

DROP {TAG | EDGE} INDEX [IF

EXISTS] <index_name>

DROP TAG INDEX

player_index_0

Removes an existing index from the

current graph space.

3.6.9 Index

- 74/629 - 2021 Vesoft Inc.

Full-tex index

3.6.10 Subgraph and path statements

•

Syntax Example Description

SIGN IN TEXT SERVICE

[(<elastic_ip:port> [,<username>,

<password>]),

(<elastic_ip:port>), ...]

SIGN IN TEXT SERVICE

(127.0.0.1:9200)

The full-text indexes is implemented

based on Elasticsearch. After deploying

an Elasticsearch cluster, you can use the

SIGN IN statement to log in to the

Elasticsearch client.

SHOW TEXT SEARCH CLIENTS SHOW TEXT SEARCH CLIENTS Shows text search clients.

SIGN OUT TEXT SERVICE SIGN OUT TEXT SERVICE Signs out to the text search clients.

CREATE FULLTEXT {TAG | EDGE} INDEX

<index_name> ON {<tag_name> |

<edge_name>} ([<prop_name_list>])

CREATE FULLTEXT TAG INDEX

nebula_index_1 ON

player(name)

Creates full-text indexes.

SHOW FULLTEXT INDEXES SHOW FULLTEXT INDEXES Show full-text indexes.

REBUILD FULLTEXT INDEX REBUILD FULLTEXT INDEX Rebuild full-text indexes.

DROP FULLTEXT INDEX <index_name> DROP FULLTEXT INDEX

nebula_index_1

Drop full-text indexes.

LOOKUP ON {<tag> | <edge_type>}

WHERE <expression> [YIELD

<return_list>]

LOOKUP ON player WHERE

FUZZY(player.name, "Tim

Dunncan", AUTO, OR) YIELD

player.name

Use query options.

Type Syntax Example Description

GET

SUBGRAPH

GET SUBGRAPH [WITH PROP]

[<step_count> STEPS] FROM {<vid>,

<vid>...} [{IN | OUT | BOTH}

<edge_type>, <edge_type>...] [YIELD

[VERTICES AS <vertex_alias>]

[,EDGES AS <edge_alias>]]

GET SUBGRAPH 1

STEPS FROM

"player100" YIELD

VERTICES AS nodes,

EDGES AS

relationships

Retrieves information of vertices and

edges reachable from the source

vertices of the specified edge types

and returns information of the

subgraph.

FIND PATH FIND { SHORTEST | ALL | NOLOOP }

PATH [WITH PROP] FROM

<vertex_id_list> TO

<vertex_id_list>
OVER

<edge_type_list> [REVERSELY |

BIDIRECT] [<WHERE clause>] [UPTO

<N> STEPS] [| ORDER BY $-.path] [|

LIMIT <M>]

FIND SHORTEST PATH

FROM "player102"

TO "team204" OVER *

Finds the paths between the selected

source vertices and destination

vertices. A returned path is like

(<vertex_id>)-

[:<edge_type_name>@<rank>]-

>(<vertex_id) .

3.6.10 Subgraph and path statements

- 75/629 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch

3.6.11 Query tuning statements

Type Syntax Example Description

EXPLAIN EXPLAIN [format="row" | "dot"]

<your_nGQL_statement>

EXPLAIN

format="row" SHOW

TAGS

EXPLAIN

format="dot" SHOW

TAGS

Helps output the execution plan of an

nGQL statement without executing the

statement.

PROFILE PROFILE [format="row" | "dot"]

<your_nGQL_statement>

PROFILE

format="row" SHOW

TAGS

EXPLAIN

format="dot" SHOW

TAGS

Executes the statement, then outputs the

execution plan as well as the execution

profile.

3.6.11 Query tuning statements

- 76/629 - 2021 Vesoft Inc.

3.6.12 Operation and maintenance statements

BALANCE

Job statements

Kill queries

•

Syntax Description

BALANCE DATA Starts a task to balance the distribution of storage partitions in a Nebula Graph cluster or a

Group. It returns the task ID (balance_id).

BALANCE DATA

<balance_id>

Shows the status of the BALANCE DATA task.

BALANCE DATA STOP Stops the BALANCE DATA task.

BALANCE DATA REMOVE

<host_list>

Scales in the Nebula Graph cluster and detaches specific storage hosts.

BALANCE LEADER Balances the distribution of storage raft leaders in a Nebula Graph cluster or a Group.

•

Syntax Description

SUBMIT JOB

COMPACT

Triggers the long-term RocksDB compact operation.

SUBMIT JOB

FLUSH

Writes the RocksDB memfile in the memory to the hard disk.

SUBMIT JOB

STATS

Starts a job that makes the statistics of the current graph space. Once this job succeeds, you can use

the SHOW STATS statement to list the statistics.

SHOW JOB

<job_id>

Shows the information about a specific job and all its tasks in the current graph space. The Meta

Service parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged

processes.

SHOW JOBS Lists all the unexpired jobs in the current graph space.

STOP JOB Stops jobs that are not finished in the current graph space.

RECOVER JOB Re-executes the failed jobs in the current graph space and returns the number of recovered jobs.

•

Syntax Example Description

KILL QUERY

(session=<session_id>,

plan=<plan_id>)

KILL

QUERY(SESSION=1625553545984255,PLAN=163)

Terminates the query being

executed, and is often used to

terminate slow queries.

Last update: November 4, 2021

3.6.12 Operation and maintenance statements

- 77/629 - 2021 Vesoft Inc.

4. nGQL guide

4.1 nGQL overview

4.1.1 Nebula Graph Query Language (nGQL)

This topic gives an introduction to the query language of Nebula Graph, nGQL.

What is nGQL

nGQL is a declarative graph query language for Nebula Graph. It allows expressive and efficient graph patterns. nGQL is designed

for both developers and operations professionals. nGQL is an SQL-like query language, so it's easy to learn.

nGQL is a project in progress. New features and optimizations are done steadily. There can be differences between syntax and

implementation. Submit an issue to inform the Nebula Graph team if you find a new issue of this type. Nebula Graph 2.0 or later

releases will support openCypher 9.

What can nGQL do

Supports graph traversals

Supports pattern match

Supports aggregation

Supports graph mutation

Supports access control

Supports composite queries

Supports index

Supports most openCypher 9 graph query syntax (but mutations and controls syntax are not supported)

Example data Basketballplayer

Users can download the example data Basketballplayer in Nebula Graph. After downloading the example data, you can import it to

Nebula Graph by using the -f option in Nebula Graph Console.

Placeholder identifiers and values

Refer to the following standards in nGQL:

(Draft) ISO/IEC JTC1 N14279 SC 32 - Database_Languages - GQL

(Draft) ISO/IEC JTC1 SC32 N3228 - SQL_Property_Graph_Queries - SQLPGQ

OpenCypher 9

In template code, any token that is not a keyword, a literal value, or punctuation is a placeholder identifier or a placeholder value.

•

•

•

•

•

•

•

•

•

•

•

4. nGQL guide

- 78/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues
https://www.opencypher.org/resources
https://docs.nebula-graph.io/2.0/basketballplayer-2.X.ngql

For details of the symbols in nGQL syntax, see the following table:

For example, create vertices or edges in nGQL syntax:

Example statement:

About openCypher compatibility

NATIVE NGQL AND OPENCYPHER

Native nGQL is the part of a graph query language designed and implemented by Nebula Graph. OpenCypher is a graph query

language maintained by openCypher Implementers Group.

The latest release is openCypher 9. The compatible parts of openCypher in nGQL are called openCypher compatible sentences

(short as openCypher).

IS NGQL COMPATIBLE WITH OPENCYPHER 9 COMPLETELY?

NO.

Token Meaning

< > name of a syntactic element

::= formula that defines an element

[] optional elements

{ } explicitly specified elements

| complete alternative elements

... may be repeated any number of times

CREATE {TAG | EDGE} {<tag_name> | <edge_type>}(<property_name> <data_type>
[, <property_name> <data_type> ...]);

nebula> CREATE TAG player(name string, age int);

nGQL = native nGQL + openCypher compatible sentences

Note

Do not put together native nGQL and openCypher compatible sentences in one composite statement because this behavior is undefined.

Undefined behavior

nGQL is designed to be compatible with part of DQL (match) and is not planned to be compatible with any DDL, DML, or DCL.

Multiple known incompatible items are listed in Nebula Graph Issues. Submit an issue with the incompatible tag if you find a new

issue of this type. Users can search in this manual with the keyword compatibility to find major compatibility issues.

nGQL is partially compatible with DQL in openCypher 9

4.1.1 Nebula Graph Query Language (nGQL)

- 79/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues?q=is-3Aissue+is-3Aopen+label-3Aincompatible

WHAT ARE THE MAJOR DIFFERENCES BETWEEN NGQL AND OPENCYPHER 9?

The following are some major differences (by design incompatible) between nGQL and openCypher.

WHERE CAN I FIND MORE NGQL EXAMPLES?

Users can find more than 2500 nGQL examples in the features directory on the Nebula Graph GitHub page.

The features directory consists of .feature files. Each file records scenarios that you can use as nGQL examples. Here is an

example:

Category openCypher 9 nGQL

Schema Optional Schema Strong Schema

Equality operator = ==

Math exponentiation ^ ^ not supported. Use pow(x, y) instead.

Edge rank no such concept edge rank (reference by @)

Statement - All DMLs (CREATE , MERGE , etc) of openCypher 9, and

OPTIONAL MATCH are not supported.

Label and tag A label is used for searching a

vertex, namely an index of vertex.

A tag defines the type of a vertex and its

corresponding properties. It cannot be used as an

index.

Pre-compiling and

parameterized query

support not supported

OpenCypher 9 and Cypher have some differences in grammar and licence. For example,

Cypher requires that All Cypher statements are explicitly run within a transaction. While openCypher has no such

requirement. And nGQL does not support transactions.

Cypher has a variety of constraints, including Unique node property constraints, Node property existence constraints,

Relationship property existence constraints, and Node key constraints. While OpenCypher has no such constraints. As a strong

schema system, most of the constraints mentioned above can be solved through schema definitions (including NOT NULL) in

nGQL. The only function that cannot be supported is the UNIQUE constraint.

Cypher has APoC, while openCypher 9 does not have APoC. Cypher has Blot protocol support requirements, while openCypher 9

does not.

Compatibility

1.

2.

3.

Feature: Basic match

 Background:
 Given a graph with space named "basketballplayer"

 Scenario: Single node
 When executing query:
 """
 MATCH (v:player {name: "Yao Ming"}) RETURN v;
 """
 Then the result should be, in any order, with relax comparison:
 | v |
 | ("player133" :player{age: 38, name: "Yao Ming"}) |

 Scenario: One step
 When executing query:
 """
 MATCH (v1:player{name: "LeBron James"}) -[r]-> (v2)
 RETURN type(r) AS Type, v2.name AS Name
 """
 Then the result should be, in any order:

 | Type | Name |
 | "follow" | "Ray Allen" |
 | "serve" | "Lakers" |
 | "serve" | "Heat" |
 | "serve" | "Cavaliers" |

4.1.1 Nebula Graph Query Language (nGQL)

- 80/629 - 2021 Vesoft Inc.

http://www.opencypher.org/
https://neo4j.com/developer/cypher/
https://github.com/vesoft-inc/nebula-graph/tree/master/tests/tck/features

The keywords in the preceding example are described as follows.

Welcome to add more tck case and return automatically to the using statements in CI/CD.

DOES IT SUPPORT TINKERPOP GREMLIN?

No. And no plan to support that.

DOES NEBULA GRAPH SUPPORT W3C RDF (SPARQL) OR GRAPHQL?

No. And no plan to support that.

The data model of Nebula Graph is the property graph. And as a strong schema system, Nebula Graph does not support RDF.

Nebula Graph Query Language does not support SPARQL nor GraphQL .

Feature: Comparison of where clause

 Background:
 Given a graph with space named "basketballplayer"

 Scenario: push edge props filter down
 When profiling query:
 """
 GO FROM "player100" OVER follow
 WHERE properties(edge).degree IN [v IN [95,99] WHERE v > 0]
 YIELD dst(edge), properties(edge).degree
 """
 Then the result should be, in any order:
 | follow._dst | follow.degree |
 | "player101" | 95 |
 | "player125" | 95 |
 And the execution plan should be:
 | id | name | dependencies | operator info |
 | 0 | Project | 1 | |
 | 1 | GetNeighbors | 2 | {"filter": "(properties(edge).degree IN [v IN [95,99] WHERE (v>0)])"} |
 | 2 | Start | | |

Keyword Description

Feature Describes the topic of the current .feature file.

Background Describes the background information of the current .feature file.

Given Describes the prerequisites of running the test statements in the current .feature file.

Scenario Describes the scenarios. If there is the @skip before one Scenario , this scenario may not work and do not

use it as a working example in a production environment.

When Describes the nGQL statement to be executed. It can be a executing query or profiling query .

Then Describes the expected return results of running the statement in the When clause. If the return results in

your environment do not match the results described in the .feature file, submit an issue to inform the

Nebula Graph team.

And Describes the side effects of running the statement in the When clause.

@skip This test case will be skipped. Commonly, the to-be-tested code is not ready.

Last update: October 22, 2021

4.1.1 Nebula Graph Query Language (nGQL)

- 81/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues
https://github.com/vesoft-inc/nebula-graph/tree/master/tests

4.1.2 Patterns

Patterns and graph pattern matching are the very heart of a graph query language. This topic will describe the patterns in Nebula

Graph, some of which have not yet been implemented.

Patterns for vertices

A vertex is described using a pair of parentheses and is typically given a name. For example:

This simple pattern describes a single vertex and names that vertex using the variable a .

Patterns for related vertices

A more powerful construct is a pattern that describes multiple vertices and edges between them. Patterns describe an edge by

employing an arrow between two vertices. For example:

This pattern describes a very simple data structure: two vertices and a single edge from one to the other. In this example, the two

vertices are named as a and b respectively and the edge is directed : it goes from a to b .

This manner of describing vertices and edges can be extended to cover an arbitrary number of vertices and the edges between

them, for example:

Such a series of connected vertices and edges is called a path .

Note that the naming of the vertices in these patterns is only necessary when one needs to refer to the same vertex again, either

later in the pattern or elsewhere in the query. If not, the name may be omitted as follows:

Patterns for tags

In addition to simply describing the vertices in the graphs, patterns can also describe the tags of the vertices. For example:

Patterns can also describe a vertex that has multiple tags. For example:

(a)

(a)-[]->(b)

(a)-[]->(b)<-[]-(c)

(a)-[]->()<-[]-(c)

The concept of tag in nGQL has a few differences from that of label in openCypher. For example, users must create a tag before

using it. And a tag also defines the type of properties.

Note

(a:User)-[]->(b)

(a:User:Admin)-[]->(b)

The MATCH statement in nGQL does not support matching multiple tags with (a:User:Admin) . If users need to match multiple tags, use

filtering conditions, such as WHERE "User" IN tags(n) AND "Admin" IN tags(n) .

OpenCypher compatibility

4.1.2 Patterns

- 82/629 - 2021 Vesoft Inc.

Patterns for properties

Vertices and edges are the fundamental elements in a graph. In nGQL, properties are added to them for richer models.

In the patterns, the properties can be expressed as follows: some key-value pairs are enclosed in curly brackets and separated by

commas. For example, a vertex with two properties will be like:

One of the edges that connect to this vertex can be like:

Patterns for edges

The simplest way to describe an edge is by using the arrow between two vertices, as in the previous examples.

Users can describe an edge and its direction using the following statement. If users do not care about its direction, the arrowhead

can be omitted. For example:

Like vertices, edges can also be named. A pair of square brackets will be used to separate the arrow and the variable will be placed

between them. For example:

Like the tags on vertices, edges can also have types. To describe an edge with a specific type, use the pattern as follows:

An edge can only have one edge type. But if we'd like to describe some data such that the edge could have a set of types, then

they can all be listed in the pattern, separating them with the pipe symbol | like this:

Like vertices, the name of an edge can be omitted. For example:

Variable-length pattern

Rather than describing a long path using a sequence of many vertex and edge descriptions in a pattern, many edges (and the

intermediate vertices) can be described by specifying a length in the edge description of a pattern. For example:

The following pattern describes a graph of three vertices and two edges, all in one path (a path of length 2). It is equivalent to:

The range of lengths can also be specified. Such edge patterns are called variable-length edges . For example:

The preceding example defines a path with a minimum length of 3 and a maximum length of 5.

It describes a graph of either 4 vertices and 3 edges, 5 vertices and 4 edges, or 6 vertices and 5 edges, all connected in a single

path.

The lower bound can be omitted. For example, to describe paths of length 5 or less, use:

(a {name: 'Andres', sport: 'Brazilian Ju-Jitsu'})

(a)-[{blocked: false}]->(b)

(a)-[]-(b)

(a)-[r]->(b)

(a)-[r:REL_TYPE]->(b)

(a)-[r:TYPE1|TYPE2]->(b)

(a)-[:REL_TYPE]->(b)

(a)-[*2]->(b)

(a)-[]->()-[]->(b)

(a)-[*3..5]->(b)

4.1.2 Patterns

- 83/629 - 2021 Vesoft Inc.

Assigning to path variables

As described above, a series of connected vertices and edges is called a path . nGQL allows paths to be named using variables. For

example:

Users can do this in the MATCH statement.

(a)-[*..5]->(b)

The upper bound must be specified. The following are NOT accepted.

Note

(a)-[*3..]->(b)
(a)-[*]->(b)

p = (a)-[*3..5]->(b)

Last update: August 27, 2021

4.1.2 Patterns

- 84/629 - 2021 Vesoft Inc.

4.1.3 Comments

This topic will describe the comments in nGQL.

Legacy version compatibility

In Nebula Graph 1.0, there are four comment styles: # , -- , // , /* */ .

In Nebula Graph 2.0, -- represents an edge pattern and cannot be used as comments.

Examples

In nGQL statement, the backslash \ in a line indicates a line break.

OpenCypher compatibility

In nGQL, you must add a \ at the end of every line, even in multi-line comments /* */ .

In openCypher, there is no need to use a \ as a line break.

•

•

nebula> # Do nothing in this line
nebula> RETURN 1+1; # This comment continues to the end of this line.
nebula> RETURN 1+1; // This comment continues to the end of this line.
nebula> RETURN 1 /* This is an in-line comment. */ + 1 == 2;
nebula> RETURN 11 + \
/* Multi-line comment. \
Use a backslash as a line break. \
*/ 12;

•

•

/* openCypher style:
The following comment
spans more than
one line */
MATCH (n:label)
RETURN n;

/* nGQL style: \
The following comment \
spans more than \
one line */ \
MATCH (n:tag) \
RETURN n;

Last update: July 13, 2021

4.1.3 Comments

- 85/629 - 2021 Vesoft Inc.

4.1.4 Identifier case sensitivity

Identifiers are Case-Sensitive

The following statements will not work because they refer to two different spaces, i.e. my_space and MY_SPACE .

Keywords and Reserved Words are Case-Insensitive

The following statements are equivalent since show and spaces are keywords.

Functions are Case-Insensitive

Functions are case-insensitive. For example, count() , COUNT() , and couNT() are equivalent.

nebula> CREATE SPACE my_space (vid_type=FIXED_STRING(30));
nebula> use MY_SPACE;
[ERROR (-8)]: SpaceNotFound:

nebula> show spaces;
nebula> SHOW SPACES;
nebula> SHOW spaces;
nebula> show SPACES;

nebula> WITH [NULL, 1, 1, 2, 2] As a \
 UNWIND a AS b \
 RETURN count(b), COUNT(*), couNT(DISTINCT b);
+----------+----------+-------------------+
| count(b) | COUNT(*) | couNT(distinct b) |
+----------+----------+-------------------+
| 4 | 5 | 2 |
+----------+----------+-------------------+

Last update: July 14, 2021

4.1.4 Identifier case sensitivity

- 86/629 - 2021 Vesoft Inc.

4.1.5 Keywords

Keywords have significance in nGQL. It can be classified into reserved keywords and non-reserved keywords.

Non-reserved keywords are permitted as identifiers without quoting. To use reserved keywords as identifiers, quote them with

backticks such as AND .

TAG is a reserved keyword. To use TAG as an identifier, you must quote it with backticks.

SPACE is a non-reserved keyword. You can use it as an identifier without quoting it.

Reserved keywords

Keywords are case-insensitive.

Note

nebula> CREATE TAG TAG(name string);
[ERROR (-7)]: SyntaxError: syntax error near `TAG'

nebula> CREATE TAG `TAG` (name string);
Execution succeeded

nebula> CREATE TAG SPACE(name string);
Execution succeeded

•

•

GO
AS
TO
OR
AND
XOR
USE
SET
FROM
WHERE
MATCH
INSERT
YIELD
RETURN
DESCRIBE
DESC
VERTEX
VERTICES
EDGE
EDGES
UPDATE
UPSERT
WHEN
DELETE
FIND
LOOKUP
ALTER
STEPS
STEP
OVER
UPTO
REVERSELY
INDEX
INDEXES
REBUILD
BOOL
INT8
INT16
INT32
INT64
INT
FLOAT
DOUBLE
STRING
FIXED_STRING
TIMESTAMP
DATE
TIME
DATETIME
TAG
TAGS
UNION
INTERSECT

4.1.5 Keywords

- 87/629 - 2021 Vesoft Inc.

Non-reserved keywords

MINUS
NO
OVERWRITE
SHOW
ADD
CREATE
DROP
REMOVE
IF
NOT
EXISTS
WITH
CHANGE
GRANT
REVOKE
ON
BY
IN
NOT_IN
DOWNLOAD
GET
OF
ORDER
INGEST
COMPACT
FLUSH
SUBMIT
ASC
ASCENDING
DESCENDING
DISTINCT
FETCH
PROP
BALANCE
STOP
LIMIT
OFFSET
IS
NULL
RECOVER
EXPLAIN
PROFILE
FORMAT
CASE

HOST
HOSTS
SPACE
SPACES
VALUE
VALUES
USER
USERS
PASSWORD
ROLE
ROLES
GOD
ADMIN
DBA
GUEST
GROUP
PARTITION_NUM
REPLICA_FACTOR
VID_TYPE
CHARSET
COLLATE
COLLATION
ATOMIC_EDGE
ALL
ANY
SINGLE
NONE
REDUCE
LEADER
UUID
DATA
SNAPSHOT
SNAPSHOTS
ACCOUNT
JOBS
JOB
PATH
BIDIRECT
STATS
STATUS
FORCE
PART
PARTS
DEFAULT

4.1.5 Keywords

- 88/629 - 2021 Vesoft Inc.

HDFS
CONFIGS
TTL_DURATION
TTL_COL
GRAPH
META
STORAGE
SHORTEST
NOLOOP
OUT
BOTH
SUBGRAPH
CONTAINS
NOT_CONTAINS
STARTS
STARTS_WITH
NOT_STARTS_WITH
ENDS
ENDS_WITH
NOT_ENDS_WITH
IS_NULL
IS_NOT_NULL
IS_EMPTY
IS_NOT_EMPTY
UNWIND
SKIP
OPTIONAL
THEN
ELSE
END
GROUPS
ZONE
ZONES
INTO
LISTENER
ELASTICSEARCH
FULLTEXT
AUTO
FUZZY
PREFIX
REGEXP
WILDCARD
TEXT
SEARCH
CLIENTS
SIGN
SERVICE
TEXT_SEARCH
RESET
PLAN
COMMENT
SESSIONS
SESSION
SAMPLE
QUERIES
QUERY
KILL
TOP
TRUE
FALSE

Last update: October 18, 2021

4.1.5 Keywords

- 89/629 - 2021 Vesoft Inc.

4.1.6 nGQL style guide

nGQL does not have strict formatting requirements, but creating nGQL statements according to an appropriate and uniform style

can improve readability and avoid ambiguity. Using the same nGQL style in the same organization or project helps reduce

maintenance costs and avoid problems caused by format confusion or misunderstanding. This topic will provide a style guide for

writing nGQL statements.

Newline

Start a new line to write a clause.

Not recommended:

Recommended:

Start a new line to write different statements in a composite statement.

Not recommended:

Recommended:

If the clause exceeds 80 characters, start a new line at the appropriate place.

Not recommended:

Recommended:

The styles of nGQL and Cypher Style Guide are different.

Compatibility

1.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id;

GO FROM "player100" \
OVER follow REVERSELY \
YIELD src(edge) AS id;

2.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO FROM $-.id \
OVER serve WHERE properties($^).age > 20 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

GO FROM "player100" \
OVER follow REVERSELY \
YIELD src(edge) AS id | \
GO FROM $-.id OVER serve \
WHERE properties($^).age > 20 \
YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

3.

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
WHERE (v2.name STARTS WITH "Y" AND v2.age > 35 AND v2.age < v.age) OR (v2.name STARTS WITH "T" AND v2.age < 45 AND v2.age > v.age) \
RETURN v2;

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
WHERE (v2.name STARTS WITH "Y" AND v2.age > 35 AND v2.age < v.age) \
OR (v2.name STARTS WITH "T" AND v2.age < 45 AND v2.age > v.age) \
RETURN v2;

If needed, you can also start a new line for better understanding, even if the clause does not exceed 80 characters.

Note

4.1.6 nGQL style guide

- 90/629 - 2021 Vesoft Inc.

https://s3.amazonaws.com/artifacts.opencypher.org/M15/docs/style-guide.pdf

Identifier naming

In nGQL statements, characters other than keywords, punctuation marks, and blanks are all identifiers. Recommended methods to

name the identifiers are as follows.

Use singular nouns to name tags, and use the base form of verbs or verb phrases to form Edge types.

Not recommended:

Recommended:

Use the snake case to name identifiers, and connect words with underscores (_) with all the letters lowercase.

Not recommended:

Recommended:

Use uppercase keywords and lowercase variables.

Not recommended:

Recommended:

Pattern

Start a new line on the right side of the arrow indicating an edge when writing patterns.

Not recommended:

Recommended:

Anonymize the vertices and edges that do not need to be queried.

Not recommended:

Recommended:

Place named vertices in front of anonymous vertices.

Not recommended:

1.

MATCH p=(v:players)-[e:are_following]-(v2) \
RETURN nodes(p);

MATCH p=(v:player)-[e:follow]-(v2) \
RETURN nodes(p);

2.

MATCH (v:basketballTeam) \
RETURN v;

MATCH (v:basketball_team) \
RETURN v;

3.

go from "player100" over Follow

GO FROM "player100" OVER follow

1.

MATCH (v:player{name: "Tim Duncan", age: 42}) \
-[e:follow]->()-[e:serve]->()<--(v3) \
RETURN v, e, v2;

MATCH (v:player{name: "Tim Duncan", age: 42})-[e:follow]-> \
()-[e:serve]->()<--(v3) \
RETURN v, e, v2;

2.

MATCH (v:player)-[e:follow]->(v2) \
RETURN v;

MATCH (v:player)-[:follow]->() \
RETURN v;

3.

MATCH ()-[:follow]->(v) \
RETURN v;

4.1.6 nGQL style guide

- 91/629 - 2021 Vesoft Inc.

Recommended:

String

The strings should be surrounded by double quotes.

Not recommended:

Recommended:

Statement termination

End the nGQL statements with an English semicolon (;).

Not recommended:

Recommended:

Use a pipe (|) to separate a composite statement, and end the statement with an English semicolon at the end of the last line.

Using an English semicolon before a pipe will cause the statement to fail.

Not supported:

Supported:

In a composite statement that contains user-defined variables, use an English semicolon to end the statements that define the

variables. If you do not follow the rules to add a semicolon or use a pipe to end the composite statement, the execution will fail.

Not supported:

MATCH (v)<-[:follow]-() \
RETURN v;

RETURN 'Hello Nebula!';

RETURN "Hello Nebula!\"123\"";

When single or double quotes need to be nested in a string, use a backslash () to escape. For example:

Note

RETURN "\"Nebula Graph is amazing,\" the user says.";

1.

FETCH PROP ON player "player100"

FETCH PROP ON player "player100";

2.

GO FROM "player100" \
OVER follow \
YIELD dst(edge) AS id; | \
GO FROM $-.id \
OVER serve \
YIELD properties($$).name AS Team, properties($^).name AS Player;

GO FROM "player100" \
OVER follow \
YIELD dst(edge) AS id | \
GO FROM $-.id \
OVER serve \
YIELD properties($$).name AS Team, properties($^).name AS Player;

3.

$var = GO FROM "player100" \
OVER follow \
YIELD follow._dst AS id \
GO FROM $var.id \
OVER serve \
YIELD $$.team.name AS Team, $^.player.name AS Player;

4.1.6 nGQL style guide

- 92/629 - 2021 Vesoft Inc.

Not supported:

Supported:

$var = GO FROM "player100" \
OVER follow \
YIELD follow._dst AS id | \
GO FROM $var.id \
OVER serve \
YIELD $$.team.name AS Team, $^.player.name AS Player;

$var = GO FROM "player100" \
OVER follow \
YIELD follow._dst AS id; \
GO FROM $var.id \
OVER serve \
YIELD $$.team.name AS Team, $^.player.name AS Player;

Last update: October 22, 2021

4.1.6 nGQL style guide

- 93/629 - 2021 Vesoft Inc.

4.2 Data types

4.2.1 Numeric types

nGQL supports both integer and floating-point number.

Integer

Signed 64-bit integer (INT64), 32-bit integer (INT32), 16-bit integer (INT16), and 8-bit integer (INT8) are supported.

Floating-point number

Both single-precision floating-point format (FLOAT) and double-precision floating-point format (DOUBLE) are supported.

Scientific notation is also supported, such as 1e2 , 1.1e2 , .3e4 , 1.e4 , and -1234E-10 .

Reading and writing of data values

When writing and reading different types of data, nGQL complies with the following rules:

For example, nGQL does not support setting VID as INT8, but supports setting a certain property type of TAG or Edge type as

INT8. When using the nGQL statement to read the property of INT8, the resulted type is INT64.

Type Declared keywords Range

INT64 INT64 or INT -9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807

INT32 INT32 -2,147,483,648 ~ 2,147,483,647

INT16 INT16 -32,768 ~ 32,767

INT8 INT8 -128 ~ 127

Type Declared keywords Range Precision

FLOAT FLOAT 3.4E +/- 38 6~7 bits

DOUBLE DOUBLE 1.7E +/- 308 15~16 bits

The data type of DECIMAL in MySQL is not supported.

Note

Data type Set as VID Set as property Resulted data type

INT64 Supported Supported INT64

INT32 Not supported Supported INT64

INT16 Not supported Supported INT64

INT8 Not supported Supported INT64

FLOAT Not supported Supported DOUBLE

DOUBLE Not supported Supported DOUBLE

4.2 Data types

- 94/629 - 2021 Vesoft Inc.

Multiple formats are supported:

Decimal, such as 123456 .

Hexadecimal, such as 0x1e240 .

Octal, such as 0361100 .

However, Nebula Graph will parse the written non-decimal value into a decimal value and save it. The value read is decimal.

For example, the type of the property score is INT . The value of 0xb is assigned to it through the INSERT statement. If querying

the property value with statements such as FETCH, you will get the result 11 , which is the decimal result of the hexadecimal 0xb .

•

•

•

Last update: September 6, 2021

4.2.1 Numeric types

- 95/629 - 2021 Vesoft Inc.

4.2.2 Boolean

A boolean data type is declared with the bool keyword and can only take the values true or false .

nGQL supports using boolean in the following ways:

Define the data type of the property value as a boolean.

Use boolean as judgment conditions in the WHERE clause.

•

•

Last update: August 23, 2021

4.2.2 Boolean

- 96/629 - 2021 Vesoft Inc.

4.2.3 String

Fixed-length strings and variable-length strings are supported.

Declaration and literal representation

The string type is declared with the keywords of:

STRING : Variable-length strings.

FIXED_STRING(<length>) : Fixed-length strings. <length> is the length of the string, such as FIXED_STRING(32) .

A string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length

surrounded by double or single quotes. For example, "Hello, Cooper" or 'Hello, Cooper' .

String reading and writing

Nebula Graph supports using string types in the following ways:

Define the data type of VID as a fixed-length string.

Set the variable-length string as the Schema name, including the names of the graph space, tag, edge type, and property.

Define the data type of the property as a fixed-length or variable-length string.

For example:

Define the data type of the property as a fixed-length string

Define the data type of the property as a variable-length string

When the fixed-length string you try to write exceeds the length limit:

If the fixed-length string is a property, the writing will succeed, and Nebula Graph will truncate the string and only store the

part that meets the length limit.

If the fixed-length string is a VID, the writing will fail and Nebula Graph will return an error.

Escape characters

Line breaks are not allowed in a string. Escape characters are supported within strings, for example:

"\n\t\r\b\f"

"\110ello world"

OpenCypher compatibility

There are some tiny differences between openCypher and Cypher, as well as nGQL. The following is what openCypher requires.

Single quotes cannot be converted to double quotes.

•

•

•

•

•

•

nebula> CREATE TAG t1 (p1 FIXED_STRING(10));

•

nebula> CREATE TAG t2 (p2 STRING);

•

•

•

•

File: Literals.feature
Feature: Literals

Background:
 Given any graph
 Scenario: Return a single-quoted string
 When executing query:
 """
 RETURN '' AS literal
 """
 Then the result should be, in any order:
 | literal |

4.2.3 String

- 97/629 - 2021 Vesoft Inc.

While Cypher accepts both single quotes and double quotes as the return results. nGQL follows the Cypher way.

 | '' | # Note: it should return single-quotes as openCypher required.
 And no side effects

nebula > YIELD '' AS quote1, "" AS quote2, "'" AS quote3, '"' AS quote4
+--------+--------+--------+--------+
| quote1 | quote2 | quote3 | quote4 |
+--------+--------+--------+--------+
| "" | "" | "'" | """ |
+--------+--------+--------+--------+

Last update: September 6, 2021

4.2.3 String

- 98/629 - 2021 Vesoft Inc.

4.2.4 Date and time types

This topic will describe the DATE , TIME , DATETIME , and TIMESTAMP types.

While inserting time-type property values, except for TIMESTAMP , Nebula Graph transforms them to a UTC time according to the

time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries

are all UTC time.

date() , time() , datetime() , and timestamp() all accept empty parameters to return the current date, time, and datetime.

date() , time() , and datetime() all accept the property name to return a specific property value of itself. For example,

date().month returns the current month, while time("02:59:40").minute returns the minutes of the importing time.

OpenCypher Compatibility

In nGQL:

Year, month, day, hour, minute, and second are supported, while the millisecond is not supported.

localdatetime() and duration() are not supported.

Most string time formats are not supported. The exceptions are YYYY-MM-DDThh:mm:ss and YYYY-MM-DD hh:mm:ss .

DATE

The DATE type is used for values with a date part but no time part. Nebula Graph retrieves and displays DATE values in the

YYYY-MM-DD format. The supported range is -32768-01-01 to 32767-12-31 .

The properties of date() include year , month , and day .

TIME

The TIME type is used for values with a time part but no date part. Nebula Graph retrieves and displays TIME values in

hh:mm:ss.msmsmsususus format. The supported range is 00:00:00.000000 to 23:59:59.999999 .

The properties of time() include hour , minute , and second .

DATETIME

The DATETIME type is used for values that contain both date and time parts. Nebula Graph retrieves and displays DATETIME values in

YYYY-MM-DDThh:mm:ss.msmsmsususus format. The supported range is -32768-01-01T00:00:00.000000 to 32767-12-31T23:59:59.999999 .

The properties of datetime() include year , month , day , hour , minute , and second .

TIMESTAMP

The TIMESTAMP data type is used for values that contain both date and time parts. It has a range of 1970-01-01T00:00:01 UTC to

2262-04-11T23:47:16 UTC.

To change the time zone, modify the timezone_name value in the configuration files of all Nebula Graph services.

Note

•

•

•

•

•

4.2.4 Date and time types

- 99/629 - 2021 Vesoft Inc.

TIMESTAMP has the following features:

Stored and displayed in the form of a timestamp, such as 1615974839 , which means 2021-03-17T17:53:59 .

Supported TIMESTAMP querying methods: timestamp and timestamp() function.

Supported TIMESTAMP inserting methods: timestamp, timestamp() function, and now() function.

timestamp() function accepts empty parameters to get the timestamp of the current time zone and also accepts a string type

parameter.

The underlying storage data type is int64.

Examples

Create a tag named date1 with three properties: DATE , TIME , and DATETIME .

Insert a vertex named test1 .

Return the content of the property p1 on test1 .

Create a tag named school with the property of TIMESTAMP .

Insert a vertex named DUT with a found-time timestamp of "1988-03-01T08:00:00" .

Insert a vertex named dut and store time with now() or timestamp() functions.

You can also use WITH statement to set a specific date and time. For example:

•

•

•

•

Return the current time.
nebula> RETURN timestamp();
+-------------+
| timestamp() |
+-------------+
| 1625469277 |
+-------------+

Return the specified time.
nebula> RETURN timestamp("2021-07-05T06:18:43.984000");
+---+
| timestamp("2021-07-05T06:18:43.984000") |
+---+
| 1625465923 |
+---+

•

1.

nebula> CREATE TAG date1(p1 date, p2 time, p3 datetime);

2.

nebula> INSERT VERTEX date1(p1, p2, p3) VALUES "test1":(date("2021-03-17"), time("17:53:59"), datetime("2021-03-17T17:53:59"));

3.

nebula> CREATE TAG INDEX date1_index ON date1(p1);
nebula> REBUILD TAG INDEX date1_index;
nebula> MATCH (v:date1) RETURN v.p1;
+------------+
| v.p1 |
+------------+
| 2021-03-17 |
+------------+

4.

nebula> CREATE TAG school(name string , found_time timestamp);

5.

Insert as a timestamp. The corresponding timestamp of 1988-03-01T08:00:00 is 573177600, or 573206400 UTC.
nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", 573206400);

Insert in the form of date and time.
nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", timestamp("1988-03-01T08:00:00"));

6.

Use now() function to store time
nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", now());

Use timestamp() function to store time
nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", timestamp());

nebula> WITH time({hour: 12, minute: 31, second: 14, millisecond:111, microsecond: 222}) AS d RETURN d;
+-----------------+
| d |
+-----------------+

4.2.4 Date and time types

- 100/629 - 2021 Vesoft Inc.

| 12:31:14.111222 |
+-----------------+

nebula> WITH date({year: 1984, month: 10, day: 11}) AS x RETURN x + 1;
+------------+
| (x+1) |
+------------+
| 1984-10-12 |
+------------+

Last update: November 1, 2021

4.2.4 Date and time types

- 101/629 - 2021 Vesoft Inc.

4.2.5 NULL

You can set the properties for vertices or edges to NULL . Also, you can set the NOT NULL constraint to make sure that the property

values are NOT NULL . If not specified, the property is set to NULL by default.

Logical operations with NULL

Here is the truth table for AND , OR , XOR , and NOT .

OpenCypher compatibility

The comparisons and operations about NULL are different from openCypher. There may be changes later.

COMPARISONS WITH NULL

The comparison operations with NULL are incompatible with openCypher.

OPERATIONS AND RETURN WITH NULL

The NULL operations and RETURN with NULL are incompatible with openCypher.

Examples

USE NOT NULL

Create a tag named player . Specify the property name as NOT NULL .

Use SHOW to create tag statements. The property name is NOT NULL . The property age is NULL by default.

Insert the vertex Kobe . The property age can be NULL .

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

nebula> CREATE TAG player(name string NOT NULL, age int);

nebula> SHOW CREATE TAG player;
+-----------+-----------------------------------+
| Tag | Create Tag |
+-----------+-----------------------------------+
"student"	"CREATE TAG `player` (
	`name` string NOT NULL,
	`age` int64 NULL
) ttl_duration = 0, ttl_col = """
+-----------+-----------------------------------+

nebula> INSERT VERTEX player(name, age) VALUES "Kobe":("Kobe",null);

4.2.5 NULL

- 102/629 - 2021 Vesoft Inc.

USE NOT NULL AND SET THE DEFAULT

Create a tag named player . Specify the property age as NOT NULL . The default value is 18 .

Insert the vertex Kobe . Specify the property name only.

Query the vertex Kobe . The property age is 18 by default.

nebula> CREATE TAG player(name string, age int NOT NULL DEFAULT 18);

nebula> INSERT VERTEX player(name) VALUES "Kobe":("Kobe");

nebula> FETCH PROP ON player "Kobe";
+---+
| vertices_ |
+---+
| ("Kobe" :player{age: 18, name: "Kobe"}) |
+---+

Last update: November 1, 2021

4.2.5 NULL

- 103/629 - 2021 Vesoft Inc.

4.2.6 Lists

The list is a composite data type. A list is a sequence of values. Individual elements in a list can be accessed by their positions.

A list starts with a left square bracket [and ends with a right square bracket] . A list contains zero, one, or more expressions. List

elements are separated from each other with commas (,). Whitespace around elements is ignored in the list, thus line breaks, tab

stops, and blanks can be used for formatting.

List operations

You can use the preset list function to operate the list, or use the index to filter the elements in the list.

INDEX SYNTAX

The index of nGQL supports queries from front to back, starting from 0. 0 means the first element, 1 means the second element,

and so on. It also supports queries from back to front, starting from -1. -1 means the last element, -2 means the penultimate

element, and so on.

[M]: represents the element whose index is M.

[M..N]: represents the elements whose indexes are greater or equal to M but smaller than N . Return empty when N is 0.

[M..]: represents the elements whose indexes are greater or equal to M .

[..N]: represents the elements whose indexes are smaller than N . Return empty when N is 0.

Examples

[M]
[M..N]
[M..]
[..N]

•

•

•

•

Return empty if the index is out of bounds, while return normally if the index is within the bound.

Return empty if M ≥ N .

When querying a single element, if M is null, return BAD_TYPE . When conducting a range query, if M or N is null, return null .

Note

•

•

•

The following query returns the list [1,2,3].
nebula> RETURN [1, 2, 3] AS List;
+-----------+
| List |
+-----------+
| [1, 2, 3] |
+-----------+

The following query returns the element whose index is 3 in the list [1,2,3,4,5]. In a list, the index starts from 0, and thus the return element is 4.
nebula> RETURN range(1,5)[3];
+---------------+
| range(1,5)[3] |
+---------------+
| 4 |
+---------------+

The following query returns the element whose index is -2 in the list [1,2,3,4,5]. The index of the last element in a list is -1, and thus the return element is 4.
nebula> RETURN range(1,5)[-2];
+------------------+
| range(1,5)[-(2)] |
+------------------+
| 4 |
+------------------+

The following query returns the elements whose indexes are from 0 to 3 (not including 3) in the list [1,2,3,4,5].
nebula> RETURN range(1,5)[0..3];
+------------------+
| range(1,5)[0..3] |
+------------------+
| [1, 2, 3] |
+------------------+

The following query returns the elements whose indexes are greater than 2 in the list [1,2,3,4,5].

4.2.6 Lists

- 104/629 - 2021 Vesoft Inc.

nebula> RETURN range(1,5)[3..] AS a;
+--------+
| a |
+--------+
| [4, 5] |
+--------+

The following query returns the elements whose indexes are smaller than 3.
nebula> WITH [1, 2, 3, 4, 5] AS list \
 RETURN list[..3] AS r;
+-----------+
| r |
+-----------+
| [1, 2, 3] |
+-----------+

The following query filters the elements whose indexes are greater than 2 in the list [1,2,3,4,5], calculate them respectively, and returns them.
nebula> RETURN [n IN range(1,5) WHERE n > 2 | n + 10] AS a;
+--------------+
| a |
+--------------+
| [13, 14, 15] |
+--------------+

The following query returns the elements from the first to the penultimate (inclusive) in the list [1, 2, 3].
nebula> YIELD [1, 2, 3][0..-1] AS a;
+--------+
| a |
+--------+
| [1, 2] |
+--------+

The following query returns the elements from the first (exclusive) to the third backward in the list [1, 2, 3, 4, 5].
nebula> YIELD [1, 2, 3, 4, 5][-3..-1] AS a;
+--------+
| a |
+--------+
| [3, 4] |
+--------+

The following query sets the variables and returns the elements whose indexes are 1 and 2.
nebula> $var = YIELD 1 AS f, 3 AS t; \
 YIELD [1, 2, 3][$var.f..$var.t] AS a;
+--------+
| a |
+--------+
| [2, 3] |
+--------+

The following query returns empty because the index is out of bound. It will return normally when the index is within the bound.
nebula> RETURN [1, 2, 3, 4, 5] [0..10] AS a;
+-----------------+
| a |
+-----------------+
| [1, 2, 3, 4, 5] |
+-----------------+

nebula> RETURN [1, 2, 3] [-5..5] AS a;
+-----------+
| a |
+-----------+
| [1, 2, 3] |
+-----------+

The following query returns empty because there is a [0..0].
nebula> RETURN [1, 2, 3, 4, 5] [0..0] AS a;
+----+
| a |
+----+
| [] |
+----+

The following query returns empty because of M ≥ N.
nebula> RETURN [1, 2, 3, 4, 5] [3..1] AS a;
+----+
| a |
+----+
| [] |
+----+

When conduct a range query, if `M` or `N` is null, return `null`.
nebula> WITH [1,2,3] AS list \
 RETURN list[0..null] as a;
+----------+
| a |
+----------+
| __NULL__ |
+----------+

The following query calculates the elements in the list [1,2,3,4,5] respectively and returns them without the list head.
nebula> RETURN tail([n IN range(1, 5) | 2 * n - 10]) AS a;
+-----------------+
| a |
+-----------------+

4.2.6 Lists

- 105/629 - 2021 Vesoft Inc.

OpenCypher compatibility

In openCypher, return null when querying a single out-of-bound element. However, in nGQL, return OUT_OF_RANGE when

querying a single out-of-bound element.

A composite data type (i.e., set, map, and list) CAN NOT be stored as properties for vertices or edges.

It is recommended to modify the graph modeling method. The composite data type should be modeled as an adjacent edge of

a vertex, rather than its property. Each adjacent edge can be dynamically added or deleted. The rank values of the adjacent

edges can be used for sequencing.

Patterns are not supported in the list. For example, [(src)-[]->(m) | m.name] .

| [-6, -4, -2, 0] |
+-----------------+

The following query takes the elements in the list [1,2,3] as true and return.
nebula> RETURN [n IN range(1, 3) WHERE true | n] AS r;
+-----------+
| r |
+-----------+
| [1, 2, 3] |
+-----------+

The following query returns the length of the list [1,2,3].
nebula> RETURN size([1,2,3]);
+---------------+
| size([1,2,3]) |
+---------------+
| 3 |
+---------------+

The following query calculates the elements in the list [92,90] and runs a conditional judgment in a where clause.
nebula> GO FROM "player100" OVER follow WHERE properties(edge).degree NOT IN [x IN [92, 90] | x + $$.player.age] \
 YIELD dst(edge) AS id, properties(edge).degree AS degree;
+-------------+--------+
| id | degree |
+-------------+--------+
| "player101" | 95 |
| "player102" | 90 |
+-------------+--------+

The following query takes the query result of the MATCH statement as the elements in a list. Then it calculates and returns them.
nebula> MATCH p = (n:player{name:"Tim Duncan"})-[:follow]->(m) \
 RETURN [n IN nodes(p) | n.age + 100] AS r;
+------------+
| r |
+------------+
| [142, 136] |
| [142, 133] |
+------------+

•

nebula> RETURN range(0,5)[-12];
+-------------------+
| range(0,5)[-(12)] |
+-------------------+
| OUT_OF_RANGE |
+-------------------+

•

•

Last update: November 1, 2021

4.2.6 Lists

- 106/629 - 2021 Vesoft Inc.

4.2.7 Sets

The set is a composite data type.

OpenCypher compatibility

A set is not a data type in openCypher. The behavior of a set in nGQL is not determined yet.

Last update: July 14, 2021

4.2.7 Sets

- 107/629 - 2021 Vesoft Inc.

4.2.8 Maps

The map is a composite data type. Maps are unordered collections of key-value pairs. In maps, the key is a string. The value can

have any data type. You can get the map element by using map['key'] .

Literal maps

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

Map projection is not supported.

nebula> YIELD {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]};
+---+
| {key:Value,listKey:[{inner:Map1},{inner:Map2}]} |
+---+
| {key: "Value", listKey: [{inner: "Map1"}, {inner: "Map2"}]} |
+---+

•

•

Last update: October 27, 2021

4.2.8 Maps

- 108/629 - 2021 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

Converting an expression of a given type to another type is known as type conversion.

Legacy version compatibility

nGQL 1.0 adopts the C -style of type conversion (implicitly or explicitly): (type_name)expression . For example, the results of

YIELD (int)(TRUE) is 1 . But it is error-prone to users who are not familiar with the C language.

nGQL 2.0 chooses the openCypher way of type coercions.

Type coercions functions

Examples

•

•

Function Description

toBoolean() Converts a string value to a boolean value.

toFloat() Converts an integer or string value to a floating point number.

toInteger() Converts a floating point or string value to an integer value.

type() Returns the string representation of the relationship type.

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b \
 RETURN toBoolean(b) AS b;
+----------+
| b |
+----------+
| true |
| false |
| true |
| false |
| __NULL__ |
+----------+

nebula> RETURN toFloat(1), toFloat('1.3'), toFloat('1e3'), toFloat('not a number');
+------------+----------------+----------------+-------------------------+
| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number") |
+------------+----------------+----------------+-------------------------+
| 1.0 | 1.3 | 1000.0 | __NULL__ |
+------------+----------------+----------------+-------------------------+

nebula> RETURN toInteger(1), toInteger('1'), toInteger('1e3'), toInteger('not a number');
+--------------+----------------+------------------+---------------------------+
| toInteger(1) | toInteger("1") | toInteger("1e3") | toInteger("not a number") |
+--------------+----------------+------------------+---------------------------+
| 1 | 1 | 1000 | __NULL__ |
+--------------+----------------+------------------+---------------------------+

nebula> MATCH (a:player)-[e]-() \
 RETURN type(e);
+----------+
| type(e) |
+----------+
| "follow" |
| "follow" |
+----------+

nebula> MATCH (a:player {name: "Tim Duncan"}) \
 WHERE toInteger(right(id(a),3)) == 100 \
 RETURN a;
+--+
| a |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> MATCH (n:player) \
 WITH n LIMIT toInteger(ceil(1.8)) \
 RETURN count(*) AS count;
+-------+
| count |
+-------+
| 2 |
+-------+

4.2.9 Type Conversion/Type coercions

- 109/629 - 2021 Vesoft Inc.

Last update: November 1, 2021

4.2.9 Type Conversion/Type coercions

- 110/629 - 2021 Vesoft Inc.

4.2.10 Geography

Geography is a data type composed of latitude and longitude that represents geospatial information. Nebula Graph currently

supports Point, LineString, and Polygon in Simple Features and some functions in SQL-MM 3, such as part of the core geo

parsing, construction, formatting, conversion, predicates, and dimensions.

Type description

A point is the basic data type of geography, which is determined by a latitude and a longitude. For example, "POINT(3 8)" means

that the longitude is 3° and the latitude is 8° . Multiple points can form a linestring or a polygon.

Examples

For functions about the geography data type, see Geography functions.

Shape Example Description

Point "POINT(3 8)" Specifies the data type as a point.

LineString "LINESTRING(3 8, 4.7 73.23)" Specifies the data type as a linestring.

Polygon "POLYGON((0 1, 1 2, 2 3, 0 1))" Specifies the data type as a polygon.

//Create a Tag to allow storing any geography data type.
nebula> CREATE TAG any_shape(geo geography);

//Create a Tag to allow storing a point only.
nebula> CREATE TAG only_point(geo geography(point));

//Create a Tag to allow storing a linestring only.
nebula> CREATE TAG only_linestring(geo geography(linestring));

//Create a Tag to allow storing a polygon only.
nebula> CREATE TAG only_polygon(geo geography(polygon));

//Create an Edge type to allow storing any geography data type.
nebula> CREATE EDGE any_shape_edge(geo geography);

//Create a vertex to store the geography of a polygon.
nebula> INSERT VERTEX any_shape(geo) VALUES "103":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Create an edge to store the geography of a polygon.
nebula> INSERT EDGE any_shape_edge(geo) VALUES "201"->"302":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Query the geography of Vertex 103.
nebula> FETCH PROP ON any_shape "103" YIELD ST_ASText(any_shape.geo);
+----------+---------------------------------+
| VertexID | ST_ASText(any_shape.geo) |
+----------+---------------------------------+
| "103" | "POLYGON((0 1, 1 2, 2 3, 0 1))" |
+----------+---------------------------------+

//Query the geography of the edge which traverses from Vertex 201 to Vertex 302.
nebula> FETCH PROP ON any_shape_edge "201"->"302" YIELD ST_ASText(any_shape_edge.geo);
+---------------------+---------------------+----------------------+---------------------------------+
| any_shape_edge._src | any_shape_edge._dst | any_shape_edge._rank | ST_ASText(any_shape_edge.geo) |
+---------------------+---------------------+----------------------+---------------------------------+
| "201" | "302" | 0 | "POLYGON((0 1, 1 2, 2 3, 0 1))" |
+---------------------+---------------------+----------------------+---------------------------------+

//Create an index for the geography of the Tag any_shape and run LOOKUP.
nebula> CREATE TAG INDEX any_shape_geo_index ON any_shape(geo);
nebula> REBUILD TAG INDEX any_shape_geo_index;
nebula> LOOKUP ON any_shape YIELD ST_ASText(any_shape.geo);
+----------+---+
| VertexID | ST_ASText(any_shape.geo) |
+----------+---+
| "103" | "POLYGON((0 1, 1 2, 2 3, 0 1))" |
+----------+---+

Last update: November 1, 2021

4.2.10 Geography

- 111/629 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Simple_Features
https://www.techrepublic.com/index.php/resource-library/whitepapers/sql-mm-spatial-the-standard-to-manage-spatial-data-in-relational-database-systems/

4.3 Variables and composite queries

4.3.1 Composite queries (clause structure)

Composite queries put data from different queries together. They then use filters, group-bys, or sorting before returning the

combined return results.

Nebula Graph supports three methods to run composite queries (or sub-queries):

(openCypher) Clauses are chained together, and they feed intermediate result sets between each other.

(Native nGQL) More than one query can be batched together, separated by semicolons (;). The result of the last query is

returned as the result of the batch.

(Native nGQL) Queries can be piped together by using the pipe (|). The result of the previous query can be used as the input

of the next query.

OpenCypher compatibility

In a composite query, do not put together openCypher and native nGQL clauses in one statement. For example, this statement is

undefined: MATCH ... | GO ... | YIELD

If you are in the openCypher way (MATCH , RETURN , WITH , etc), do not introduce any pipe or semicolons to combine the sub-

clauses.

If you are in the native nGQL way (FETCH , GO , LOOKUP , etc), you must use pipe or semicolons to combine the sub-clauses.

Composite queries are not transactional queries (as in SQL/Cypher)

For example, a query is composed of three sub-queries: A B C , A | B | C or A; B; C . In that A is a read operation, B is a

computation operation, and C is a write operation. If any part fails in the execution, the whole result will be undefined. There is no

rollback. What is written depends on the query executor.

Examples

OpenCypher compatibility statement

•

•

•

•

•

Do not put together native nGQL and openCypher compatible sentences in one composite statement because this behavior is undefined.

Undefined behavior

OpenCypher has no requirement of transaction .

Note

•

Connect multiple queries with clauses.
nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
 WITH nodes(p) AS n \

4.3 Variables and composite queries

- 112/629 - 2021 Vesoft Inc.

Native nGQL (Semicolon queries)

Native nGQL (Pipe queries)

 UNWIND n AS n1 \
 RETURN DISTINCT n1;

•

Only return edges.
nebula> SHOW TAGS; SHOW EDGES;

Insert multiple vertices.
nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42); \
 INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36); \
 INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

•

Connect multiple queries with pipes.
nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS id | \
 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \
 properties($^).name AS Player;
+-----------+-----------------+
| Team | Player |
+-----------+-----------------+
"Spurs"	"Tony Parker"
"Hornets"	"Tony Parker"
"Spurs"	"Manu Ginobili"
+-----------+-----------------+

Last update: November 1, 2021

4.3.1 Composite queries (clause structure)

- 113/629 - 2021 Vesoft Inc.

4.3.2 User-defined variables

User-defined variables allow passing the result of one statement to another.

OpenCypher compatibility

In openCypher, when you refer to the vertex, edge, or path of a variable, you need to name it first. For example:

The user-defined variable in the preceding query is v .

Native nGQL

User-defined variables are written as $var_name . The var_name consists of letters, numbers, or underline characters. Any other

characters are not permitted.

The user-defined variables are valid only at the current execution (namely, in this composite query). When the execution ends, the

user-defined variables will be automatically expired. The user-defined variables in one statement CANNOT be used in any other

clients, executions, or sessions.

You can use user-defined variables in composite queries. Details about composite queries, see Composite queries.

Example

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;
+--+
| v |
+--+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+--+

User-defined variables are case-sensitive.

Note

nebula> $var = GO FROM "player100" OVER follow YIELD dst(edge) AS id; \
 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \
 properties($^).name AS Player;
+-----------+-----------------+
| Team | Player |
+-----------+-----------------+
"Spurs"	"Tony Parker"
"Hornets"	"Tony Parker"
"Spurs"	"Manu Ginobili"
+-----------+-----------------+

Last update: November 1, 2021

4.3.2 User-defined variables

- 114/629 - 2021 Vesoft Inc.

4.3.3 Property reference

You can refer to the properties of a vertex or an edge in WHERE and YIELD syntax.

Property reference for vertex

FOR SOURCE VERTEX

FOR DESTINATION VERTEX

Property reference for edge

FOR USER-DEFINED EDGE PROPERTY

FOR BUILT-IN PROPERTIES

Apart from the user-defined edge property, there are four built-in properties in each edge:

This function applies to native nGQL only.

Note

$^.<tag_name>.<prop_name>

Parameter Description

$^ is used to get the property of the source vertex.

tag_name is the tag name of the vertex.

prop_name specifies the property name.

$$.<tag_name>.<prop_name>

Parameter Description

$$ is used to get the property of the destination vertex.

tag_name is the tag name of the vertex.

prop_name specifies the property name.

<edge_type>.<prop_name>

Parameter Description

edge_type is the edge type of the edge.

prop_name specifies the property name of the edge type.

Parameter Description

_src source vertex ID of the edge

_dst destination vertex ID of the edge

_type edge type

_rank the rank value for the edge

4.3.3 Property reference

- 115/629 - 2021 Vesoft Inc.

Examples

The following query returns the name property of the player tag on the source vertex and the age property of the player tag on

the destination vertex.

The following query returns the degree property of the edge type follow .

The following query returns the source vertex, the destination vertex, the edge type, and the edge rank value of the edge type

follow .

nebula> GO FROM "player100" OVER follow YIELD $^.player.name AS startName, $$.player.age AS endAge;
+--------------+--------+
| startName | endAge |
+--------------+--------+
| "Tim Duncan" | 36 |
| "Tim Duncan" | 41 |
+--------------+--------+

nebula> GO FROM "player100" OVER follow YIELD follow.degree;
+---------------+
| follow.degree |
+---------------+
| 95 |
| 95 |
+---------------+

nebula> GO FROM "player100" OVER follow YIELD follow._src, follow._dst, follow._type, follow._rank;
+-------------+-------------+--------------+--------------+
| follow._src | follow._dst | follow._type | follow._rank |
+-------------+-------------+--------------+--------------+
| "player100" | "player101" | 17 | 0 |
| "player100" | "player125" | 17 | 0 |
+-------------+-------------+--------------+--------------+

Nebula Graph 2.6.0 and later versions support the new Schema function. The statements in the above examples are written as

follows in 2.6.0.

In 2.6.0, Nebula Graph is still compatible with the old syntax.

Legacy version compatibility

GO FROM "player100" OVER follow YIELD properties($^).name AS startName, properties($$).age AS endAge;
GO FROM "player100" OVER follow YIELD properties(edge).degree;
GO FROM "player100" OVER follow YIELD src(edge), dst(edge), type(edge), rank(edge);

Last update: November 1, 2021

4.3.3 Property reference

- 116/629 - 2021 Vesoft Inc.

4.4 Operators

4.4.1 Comparison operators

Nebula Graph supports the following comparison operators.

The result of the comparison operation is true or false .

OpenCypher compatibility

The comparison operation of NULL is different from openCypher. The behavior may also change. IS [NOT] NULL is often used

with OPTIONAL MATCH in openCypher. But OPTIONAL MATCH is not supported in nGQL.

openCypher does not have EMPTY . Thus EMPTY is not supported in MATCH statements.

Name Description

= Assigns a value

+ Addition operator

- Minus operator

* Multiplication operator

/ Division operator

== Equal operator

!= , <> Not equal operator

> Greater than operator

>= Greater than or equal operator

< Less than operator

<= Less than or equal operator

% Modulo operator

- Changes the sign of the argument

IS NULL NULL check

IS NOT NULL Not NULL check

IS EMPTY EMPTY check

IS NOT EMPTY Not EMPTY check

Comparability between values of different types is often undefined. The result could be NULL or others.

EMPTY is currently used only for checking, and does not support functions or operations such as GROUP BY , count() , sum() , max() ,

hash() , collect() , + or * .

Note

•

•

•

•

4.4 Operators

- 117/629 - 2021 Vesoft Inc.

Examples

==

String comparisons are case-sensitive. Values of different types are not equal.

>

>=

<

<=

!=

IS [NOT] NULL

The equal operator is == in nGQL, while in openCypher it is = .

Note

nebula> RETURN 'A' == 'a', toUpper('A') == toUpper('a'), toLower('A') == toLower('a');
+------------+------------------------------+------------------------------+
| ("A"=="a") | (toUpper("A")==toUpper("a")) | (toLower("A")==toLower("a")) |
+------------+------------------------------+------------------------------+
| false | true | true |
+------------+------------------------------+------------------------------+

nebula> RETURN '2' == 2, toInteger('2') == 2;
+----------+---------------------+
| ("2"==2) | (toInteger("2")==2) |
+----------+---------------------+
| false | true |
+----------+---------------------+

nebula> RETURN 3 > 2;
+-------+
| (3>2) |
+-------+
| true |
+-------+

nebula> WITH 4 AS one, 3 AS two \
 RETURN one > two AS result;
+--------+
| result |
+--------+
| true |
+--------+

nebula> RETURN 2 >= "2", 2 >= 2;
+----------+--------+
| (2>="2") | (2>=2) |
+----------+--------+
| __NULL__ | true |
+----------+--------+

nebula> YIELD 2.0 < 1.9;
+---------+
| (2<1.9) |
+---------+
| false |
+---------+

nebula> YIELD 0.11 <= 0.11;
+--------------+
| (0.11<=0.11) |
+--------------+
| true |
+--------------+

nebula> YIELD 1 != '1';
+----------+
| (1!="1") |
+----------+
| true |
+----------+

4.4.1 Comparison operators

- 118/629 - 2021 Vesoft Inc.

IS [NOT] EMPTY

nebula> RETURN null IS NULL AS value1, null == null AS value2, null != null AS value3;
+--------+----------+----------+
| value1 | value2 | value3 |
+--------+----------+----------+
| true | __NULL__ | __NULL__ |
+--------+----------+----------+

nebula> RETURN length(NULL), size(NULL), count(NULL), NULL IS NULL, NULL IS NOT NULL, sin(NULL), NULL + NULL, [1, NULL] IS NULL;
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+
| length(NULL) | size(NULL) | count(NULL) | NULL IS NULL | NULL IS NOT NULL | sin(NULL) | (NULL+NULL) | [1,NULL] IS NULL |
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+
| __NULL__ | __NULL__ | 0 | true | false | __NULL__ | __NULL__ | false |
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

nebula> WITH {name: null} AS map \
 RETURN map.name IS NOT NULL;
+----------------------+
| map.name IS NOT NULL |
+----------------------+
| false |
+----------------------+

nebula> WITH {name: 'Mats', name2: 'Pontus'} AS map1, \
 {name: null} AS map2, {notName: 0, notName2: null } AS map3 \
 RETURN map1.name IS NULL, map2.name IS NOT NULL, map3.name IS NULL;
+-------------------+-----------------------+-------------------+
| map1.name IS NULL | map2.name IS NOT NULL | map3.name IS NULL |
+-------------------+-----------------------+-------------------+
| false | false | true |
+-------------------+-----------------------+-------------------+

nebula> MATCH (n:player) \
 RETURN n.age IS NULL, n.name IS NOT NULL, n.empty IS NULL;
+---------------+--------------------+-----------------+
| n.age IS NULL | n.name IS NOT NULL | n.empty IS NULL |
+---------------+--------------------+-----------------+
false	true	true
false	true	true
false	true	true
+---------------+--------------------+-----------------+
...

nebula> RETURN null IS EMPTY;
+---------------+
| NULL IS EMPTY |
+---------------+
| false |
+---------------+

nebula> RETURN "a" IS NOT EMPTY;
+------------------+
| "a" IS NOT EMPTY |
+------------------+
| true |
+------------------+

nebula> GO FROM "player100" OVER * WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);
+-------------+
| dst(EDGE) |
+-------------+
| "team204" |
| "player101" |
| "player125" |
+-------------+

Last update: November 1, 2021

4.4.1 Comparison operators

- 119/629 - 2021 Vesoft Inc.

4.4.2 Boolean operators

Nebula Graph supports the following boolean operators.

For the precedence of the operators, refer to Operator Precedence.

For the logical operations with NULL , refer to NULL.

Legacy version compatibility

In Nebula Graph 2.0, non-zero numbers cannot be converted to boolean values.

Name Description

AND Logical AND

NOT Logical NOT

OR Logical OR

XOR Logical XOR

•

Last update: July 19, 2021

4.4.2 Boolean operators

- 120/629 - 2021 Vesoft Inc.

4.4.3 Pipe operators

Multiple queries can be combined using pipe operators in nGQL.

OpenCypher compatibility

Pipe operators apply to native nGQL only.

Syntax

One major difference between nGQL and SQL is how sub-queries are composed.

In SQL, sub-queries are nested in the query statements.

In nGQL, the shell style PIPE (|) is introduced into the sub-queries.

Examples

If there is no YIELD clause to define the output, the destination vertex ID is returned by default. If a YIELD clause is applied, the

output is defined by the YIELD clause.

Users must define aliases in the YIELD clause for the reference operator $- to use, just like $-.dstid in the preceding example.

Performance tips

In Nebula Graph, pipes will affect the performance. Take A | B as an example, the effects are as follows:

Pipe operators operate synchronously. That is, the data can enter the pipe clause as a whole after the execution of clause A

before the pipe operator is completed.

Pipe operators need to be serialized and deserialized, which is executed in a single thread.

If A sends a large amount of data to | , the entire query request may be very slow. You can try to split this statement.

Send A from the application,

Split the return results on the application,

Send to multiple graphd processes concurrently,

Every graphd process executes part of B.

This is usually much faster than executing a complete A | B with a single graphd process.

•

•

nebula> GO FROM "player100" OVER follow \
 YIELD dst(edge) AS dstid, properties($$).name AS Name | \
 GO FROM $-.dstid OVER follow;

+-------------+
| follow._dst |
+-------------+
| "player100" |
| "player102" |
| "player125" |
| "player100" |
+-------------+

1.

2.

3.

a.

b.

c.

d.

Last update: November 1, 2021

4.4.3 Pipe operators

- 121/629 - 2021 Vesoft Inc.

4.4.4 Reference operators

NGQL provides reference operators to represent a property in a WHERE or YIELD clause, or the output of the statement before the

pipe operator in a composite query.

OpenCypher compatibility

Reference operators apply to native nGQL only.

Reference operator List

| Reference operator | Description | |--------------------

+---| | $^ | Refers to a source vertex property.

For more information, see Property reference. | | $$ | Refers to a destination vertex property. For more information, see Property

reference. | | $- | Refers to the output of the statement before the pipe operator in a composite query. For more information, see

Pipe. |

Examples

The following example returns the age of the source vertex and the destination vertex.
nebula> GO FROM "player100" OVER follow YIELD properties($^).age AS SrcAge, properties($$).age AS DestAge;
+--------+---------+
| SrcAge | DestAge |
+--------+---------+
| 42 | 36 |
| 42 | 41 |
+--------+---------+

The following example returns the name and team of the players that player100 follows.
nebula> GO FROM "player100" OVER follow \
 YIELD dst(edge) AS id | \
 GO FROM $-.id OVER serve \
 YIELD $^.player.name AS Player, properties($$).name AS Team;
+-----------------+-----------+
| Player | Team |
+-----------------+-----------+
"Tony Parker"	"Spurs"
"Tony Parker"	"Hornets"
"Manu Ginobili"	"Spurs"
+-----------------+-----------+

Last update: November 1, 2021

4.4.4 Reference operators

- 122/629 - 2021 Vesoft Inc.

4.4.5 Set operators

This topic will describe the set operators, including UNION , UNION ALL , INTERSECT , and MINUS . To combine multiple queries, use these

set operators.

All set operators have equal precedence. If a nGQL statement contains multiple set operators, Nebula Graph will evaluate them

from left to right unless parentheses explicitly specify another order.

OpenCypher compatibility

Set operators apply to native nGQL only.

UNION, UNION DISTINCT, and UNION ALL

Operator UNION DISTINCT (or by short UNION) returns the union of two sets A and B without duplicated elements.

Operator UNION ALL returns the union of two sets A and B with duplicated elements.

The <left> and <right> must have the same number of columns and data types. Different data types are converted according

to the Type Conversion.

EXAMPLES

INTERSECT

<left> UNION [DISTINCT | ALL] <right> [UNION [DISTINCT | ALL] <right> ...]

•

•

•

The following statement returns the union of two query results without duplicated elements.
nebula> GO FROM "player102" OVER follow \
 UNION \
 GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player100" |
| "player101" |
| "player125" |
+-------------+

The following statement returns the union of two query results with duplicated elements.
nebula> GO FROM "player102" OVER follow \
 UNION ALL \
 GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player100" |
| "player101" |
| "player101" |
| "player125" |
+-------------+

UNION can also work with the YIELD statement. The DISTINCT keyword will check duplication by all the columns for every line, and remove duplicated lines if every
column is the same.
nebula> GO FROM "player102" OVER follow \
 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \
 UNION /* DISTINCT */ \
 GO FROM "player100" OVER follow \
 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;
+-------------+--------+-----+
| id | Degree | Age |
+-------------+--------+-----+
"player100"	75	42
"player101"	75	36
"player101"	95	36
"player125"	95	41
+-------------+--------+-----+

4.4.5 Set operators

- 123/629 - 2021 Vesoft Inc.

Operator INTERSECT returns the intersection of two sets A and B (denoted by A ⋂ B).

Similar to UNION , the left and right must have the same number of columns and data types. Different data types are

converted according to the Type Conversion.

EXAMPLE

MINUS

Operator MINUS returns the subtraction (or difference) of two sets A and B (denoted by A-B). Always pay attention to the order of

left and right . The set A-B consists of elements that are in A but not in B.

EXAMPLE

Precedence of the set operators and pipe operators

Please note that when a query contains a pipe | and a set operator, the pipe takes precedence. Refer to Pipe for details. The

query GO FROM 1 UNION GO FROM 2 | GO FROM 3 is the same as the query GO FROM 1 UNION (GO FROM 2 | GO FROM 3) .

EXAMPLES

<left> INTERSECT <right>

•

•

nebula> GO FROM "player102" OVER follow \
 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \
 INTERSECT \
 GO FROM "player100" OVER follow \
 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;
+----+--------+-----+
| id | Degree | Age |
+----+--------+-----+
+----+--------+-----+

<left> MINUS <right>

nebula> GO FROM "player100" OVER follow \
 MINUS \
 GO FROM "player102" OVER follow;
+-------------+
| dst(edge) |
+-------------+
| "player125" |
+-------------+

nebula> GO FROM "player102" OVER follow \
 MINUS \
 GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player100" |
+-------------+

nebula> GO FROM "player102" OVER follow \
 YIELD dst(edge) AS play_dst \
 UNION \
 GO FROM "team200" OVER serve REVERSELY \
 YIELD src(edge) AS play_src \
 | GO FROM $-.play_src OVER follow YIELD dst(edge) AS play_dst;

+-------------+
| play_dst |
+-------------+
| "player100" |
| "player101" |
| "player117" |
| "player105" |
+-------------+

4.4.5 Set operators

- 124/629 - 2021 Vesoft Inc.

The above query executes the statements in the red bar first and then executes the statement in the green box.

The parentheses can change the execution priority. For example:

In the above query, the statements within the parentheses take precedence. That is, the UNION operation will be executed first, and

its output will be executed as the input of the next operation with pipes.

nebula> (GO FROM "player102" OVER follow \
 YIELD dst(edge) AS play_dst \
 UNION \
 GO FROM "team200" OVER serve REVERSELY \
 YIELD src(edge) AS play_dst) \
 | GO FROM $-.play_dst OVER follow YIELD dst(edge) AS play_dst;

Last update: November 1, 2021

4.4.5 Set operators

- 125/629 - 2021 Vesoft Inc.

4.4.6 String operators

You can use the following string operators for concatenating, querying, and matching.

Examples

+

CONTAINS

The CONTAINS operator requires string types on both left and right sides.

(NOT) IN

Name Description

+ Concatenates strings.

CONTAINS Performs searchings in strings.

(NOT) IN Checks whether a value is within a set of values.

(NOT) STARTS WITH Performs matchings at the beginning of a string.

(NOT) ENDS WITH Performs matchings at the end of a string.

Regular expressions Perform string matchings using regular expressions.

All the string searchings or matchings are case-sensitive.

Note

nebula> RETURN 'a' + 'b';
+-----------+
| ("a"+"b") |
+-----------+
| "ab" |
+-----------+
nebula> UNWIND 'a' AS a UNWIND 'b' AS b RETURN a + b;
+-------+
| (a+b) |
+-------+
| "ab" |
+-------+

nebula> MATCH (s:player)-[e:serve]->(t:team) WHERE id(s) == "player101" \
 AND t.name CONTAINS "ets" RETURN s.name, e.start_year, e.end_year, t.name;
+---------------+--------------+------------+-----------+
| s.name | e.start_year | e.end_year | t.name |
+---------------+--------------+------------+-----------+
| "Tony Parker" | 2018 | 2019 | "Hornets" |
+---------------+--------------+------------+-----------+

nebula> GO FROM "player101" OVER serve WHERE (STRING)properties(edge).start_year CONTAINS "19" AND \
 properties($^).name CONTAINS "ny" \
 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;
+---------------------+-----------------------------+---------------------------+---------------------+
| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |
+---------------------+-----------------------------+---------------------------+---------------------+
| "Tony Parker" | 1999 | 2018 | "Spurs" |
+---------------------+-----------------------------+---------------------------+---------------------+

nebula> GO FROM "player101" OVER serve WHERE !(properties($$).name CONTAINS "ets") \
 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;
+---------------------+-----------------------------+---------------------------+---------------------+
| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |
+---------------------+-----------------------------+---------------------------+---------------------+
| "Tony Parker" | 1999 | 2018 | "Spurs" |
+---------------------+-----------------------------+---------------------------+---------------------+

nebula> RETURN 1 IN [1,2,3], "Yao" NOT IN ["Yi", "Tim", "Kobe"], NULL IN ["Yi", "Tim", "Kobe"];
+----------------+------------------------------------+-------------------------------+
| (1 IN [1,2,3]) | ("Yao" NOT IN ["Yi","Tim","Kobe"]) | (NULL IN ["Yi","Tim","Kobe"]) |
+----------------+------------------------------------+-------------------------------+

4.4.6 String operators

- 126/629 - 2021 Vesoft Inc.

(NOT) STARTS WITH

(NOT) ENDS WITH

REGULAR EXPRESSIONS

Nebula Graph supports filtering by using regular expressions. The regular expression syntax is inherited from std::regex . You can

match on regular expressions by using =~ 'regexp' . For example:

| true | true | __NULL__ |
+----------------+------------------------------------+-------------------------------+

nebula> RETURN 'apple' STARTS WITH 'app', 'apple' STARTS WITH 'a', 'apple' STARTS WITH toUpper('a');
+-----------------------------+---------------------------+------------------------------------+
| ("apple" STARTS WITH "app") | ("apple" STARTS WITH "a") | ("apple" STARTS WITH toUpper("a")) |
+-----------------------------+---------------------------+------------------------------------+
| true | true | false |
+-----------------------------+---------------------------+------------------------------------+

nebula> RETURN 'apple' STARTS WITH 'b','apple' NOT STARTS WITH 'app';
+---------------------------+---------------------------------+
| ("apple" STARTS WITH "b") | ("apple" NOT STARTS WITH "app") |
+---------------------------+---------------------------------+
| false | false |
+---------------------------+---------------------------------+

nebula> RETURN 'apple' ENDS WITH 'app', 'apple' ENDS WITH 'e', 'apple' ENDS WITH 'E', 'apple' ENDS WITH 'b';
+---------------------------+-------------------------+-------------------------+-------------------------+
| ("apple" ENDS WITH "app") | ("apple" ENDS WITH "e") | ("apple" ENDS WITH "E") | ("apple" ENDS WITH "b") |
+---------------------------+-------------------------+-------------------------+-------------------------+
| false | true | false | false |
+---------------------------+-------------------------+-------------------------+-------------------------+

Regular expressions cannot work with native nGQL statements (GO , FETCH , LOOKUP , etc.). Use it in openCypher only (MATCH , WHERE ,

etc.).

Note

nebula> RETURN "384748.39" =~ "\\d+(\\.\\d{2})?";
+--------------------------------+
| ("384748.39"=~"\d+(\.\d{2})?") |
+--------------------------------+
| true |
+--------------------------------+

nebula> MATCH (v:player) WHERE v.name =~ 'Tony.*' RETURN v.name;
+---------------+
| v.name |
+---------------+
| "Tony Parker" |
+---------------+

Last update: November 2, 2021

4.4.6 String operators

- 127/629 - 2021 Vesoft Inc.

4.4.7 List operators

Nebula Graph supports the following list operators:

Examples

List operator Description

+ Concatenates lists.

IN Checks if an element exists in a list.

[] Accesses an element(s) in a list using the index operator.

nebula> YIELD [1,2,3,4,5]+[6,7] AS myList;
+-----------------------+
| myList |
+-----------------------+
| [1, 2, 3, 4, 5, 6, 7] |
+-----------------------+

nebula> RETURN size([NULL, 1, 2]);
+------------------+
| size([NULL,1,2]) |
+------------------+
| 3 |
+------------------+

nebula> RETURN NULL IN [NULL, 1];
+--------------------+
| (NULL IN [NULL,1]) |
+--------------------+
| __NULL__ |
+--------------------+

nebula> WITH [2, 3, 4, 5] AS numberlist \
 UNWIND numberlist AS number \
 WITH number \
 WHERE number IN [2, 3, 8] \
 RETURN number;
+--------+
| number |
+--------+
| 2 |
| 3 |
+--------+

nebula> WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names RETURN names[1] AS result;
+--------+
| result |
+--------+
| "John" |
+--------+

Last update: November 1, 2021

4.4.7 List operators

- 128/629 - 2021 Vesoft Inc.

4.4.8 Operator precedence

The following list shows the precedence of nGQL operators in descending order. Operators that are shown together on a line have

the same precedence.

- (negative number)

! , NOT

* , / , %

- , +

== , >= , > , <= , < , <> , !=

AND

OR , XOR

= (assignment)

For operators that occur at the same precedence level within an expression, evaluation proceeds left to right, with the exception

that assignments evaluate right to left.

The precedence of operators determines the order of evaluation of terms in an expression. To modify this order and group terms

explicitly, use parentheses.

Examples

OpenCypher compatibility

In openCypher, comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z in openCypher.

But in nGQL, x < y <= z is equivalent to (x < y) <= z . The result of (x < y) is a boolean. Compare it with an integer z , and you

will get the final result NULL .

•

•

•

•

•

•

•

•

nebula> RETURN 2+3*5;
+-----------+
| (2+(3*5)) |
+-----------+
| 17 |
+-----------+

nebula> RETURN (2+3)*5;
+-----------+
| ((2+3)*5) |
+-----------+
| 25 |
+-----------+

Last update: September 6, 2021

4.4.8 Operator precedence

- 129/629 - 2021 Vesoft Inc.

4.5 Functions and expressions

4.5 Functions and expressions

- 130/629 - 2021 Vesoft Inc.

4.5.1 Built-in math functions

Function descriptions

Nebula Graph supports the following built-in math functions:

4.5.1 Built-in math functions

- 131/629 - 2021 Vesoft Inc.

Function Description

double abs(double x) Returns the absolute value of the argument.

double floor(double x) Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double x) Returns the integer value nearest to the argument. Returns a number farther away from 0 if

the argument is in the middle.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) Returns the cubic root of the argument.

double hypot(double x,

double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x, double

y)

Returns the result of \(x^y\).

double exp(double x) Returns the result of \(e^x\).

double exp2(double x) Returns the result of \(2^x\).

double log(double x) Returns the base-e logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double x) Returns the base-10 logarithm of the argument.

double sin(double x) Returns the sine of the argument.

double asin(double x) Returns the inverse sine of the argument.

double cos(double x) Returns the cosine of the argument.

double acos(double x) Returns the inverse cosine of the argument.

double tan(double x) Returns the tangent of the argument.

double atan(double x) Returns the inverse tangent of the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.

[0,1).

int rand32(int min, int max) Returns a random 32-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 32-bit integer.

int rand64(int min, int max) Returns a random 64-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 64-bit integer.

collect() Puts all the collected values into a list.

avg() Returns the average value of the argument.

count() Returns the number of records.

max() Returns the maximum value.

min() Returns the minimum value.

std() Returns the population standard deviation.

sum() Returns the sum value.

bit_and() Bitwise AND.

4.5.1 Built-in math functions

- 132/629 - 2021 Vesoft Inc.

Example

Function Description

bit_or() Bitwise OR.

bit_xor() Bitwise XOR.

int size() Returns the number of elements in a list or a map.

int range(int start, int end,

int step)

Returns a list of integers from [start,end] in the specified steps. step is 1 by default.

int sign(double x) Returns the signum of the given number.

If the number is 0, the system returns 0.

If the number is negative, the system returns -1.

If the number is positive, the system returns 1.

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793 .

If the argument is NULL , the output is undefined.

Note

The following statement supports aggregate functions.
nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS dst, properties($$).age AS age \
 | GROUP BY $-.dst \
 YIELD \
 $-.dst AS dst, \
 toInteger((sum($-.age)/count($-.age)))+avg(distinct $-.age+1)+1 AS statistics;
+-------------+------------+
| dst | statistics |
+-------------+------------+
| "player125" | 84.0 |
| "player101" | 74.0 |
+-------------+------------+
Got 2 rows (time spent 4739/5064 us)

Last update: November 1, 2021

4.5.1 Built-in math functions

- 133/629 - 2021 Vesoft Inc.

4.5.2 Built-in string functions

Nebula Graph supports the following built-in string functions:

Like SQL, the position index of nGQL starts from 1 , while in C language it starts from 0 .

Note

Function Description

int strcasecmp(string a, string

b)

Compares string a and b without case sensitivity. When a = b, the return value is 0. When a

> b, the return value is greater than 0. When a < b, the return value is less than 0.

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower() .

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper() .

int length(string a) Returns the length of the given string in bytes.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns a substring consisting of count characters from the left side of string a. If string a

is shorter than count , the system returns string a.

string right(string a, int

count)

Returns a substring consisting of count characters from the right side of string a. If string a

is shorter than count , the system returns string a.

string lpad(string a, int size,

string letters)

Left-pads string a with string letters and returns a substring with the length of size .

string rpad(string a, int size,

string letters)

Right-pads string a with string letters and returns a substring with the length of size .

string substr(string a, int pos,

int count)

Returns a substring extracting count characters starting from the specified position pos of

string a.

string substring(string a, int

pos, int count)

The same as substr() .

string reverse(string) Returns a string in reverse order.

string replace(string a, string

b, string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

string toString() Takes in any data type and converts it into a string.

int hash() Takes in any data type and encodes it into a hash value.

If the argument is NULL , the return is undefined.

Note

4.5.2 Built-in string functions

- 134/629 - 2021 Vesoft Inc.

Explanations for the return of substr() and substring()

The position index starts from 0 .

If pos is 0, the whole string is returned.

If pos is greater than the maximum string index, an empty string is returned.

If pos is a negative number, BAD_DATA is returned.

If count is omitted, the function returns the substring starting at the position given by pos and extending to the end of the

string.

If count is 0, an empty string is returned.

Using NULL as any of the argument of substr() will cause an issue.

•

•

•

•

•

•

•

In openCypher, if a is null , null is returned.

In openCypher, if pos is 0, the returned substring starts from the first character, and extend to count characters.

In openCypher, if either pos or count is null or a negative integer, an issue is raised.

OpenCypher compatibility

•

•

•

Last update: July 19, 2021

4.5.2 Built-in string functions

- 135/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/878

4.5.3 Built-in date and time functions

Nebula Graph supports the following built-in date and time functions:

The date() , time() , and datetime() functions accept three kind of parameters, namely empty, string, and map. The timestamp()

function accepts two kind of parameters, namely empty and string.

OpenCypher compatibility

Time in openCypher is measured in milliseconds.

Time in nGQL is measured in seconds. The milliseconds are displayed in 000 .

Examples

Function Description

int now() Returns the current date and time of the system time zone.

timestamp timestamp() Returns the current date and time of the system time zone.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

•

•

> RETURN now(), timestamp(), date(), time(), datetime();
+------------+-------------+------------+-----------------+----------------------------+
| now() | timestamp() | date() | time() | datetime() |
+------------+-------------+------------+-----------------+----------------------------+
| 1625470028 | 1625470028 | 2021-07-05 | 07:27:07.944000 | 2021-07-05T07:27:07.944000 |
+------------+-------------+------------+-----------------+----------------------------+

Last update: November 2, 2021

4.5.3 Built-in date and time functions

- 136/629 - 2021 Vesoft Inc.

4.5.4 Schema functions

Nebula Graph supports the following schema functions.

For nGQL statements

| Function | Description | |------------------------+---| | id(vertex) | Returns the ID

of a vertex. The data type of the result is the same as the vertex ID. | | map properties(vertex) | Returns the properties of a vertex. |

| map properties(edge) | Returns the properties of an edge. | | string type(edge) | Returns the edge type of an edge. | | src(edge) |

Returns the source vertex ID of an edge. The data type of the result is the same as the vertex ID. | | dst(edge) | Returns the

destination vertex ID of an edge. The data type of the result is the same as the vertex ID. | | int rank(edge) | Returns the rank value

of an edge. |

For statements compatible with openCypher

Examples

The following functions are available in both the WHERE and YIELD clauses in GO statements.

The following functions are only available in the YIELD clauses in LOOKUP and YIELD statements.

Note

•

•

Function Description

id(<vertex>) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

list tags(<vertex>) Returns the Tag of a vertex, which serves the same purpose as labels().

list labels(<vertex>) Returns the Tag of a vertex, which serves the same purpose as tags(). This function is

used for compatibility with openCypher syntax.

map

properties(<vertex_or_edge>)

Returns the properties of a vertex or an edge.

string type(<edge>) Returns the edge type of an edge.

src(<edge>) Returns the source vertex ID of an edge. The data type of the result is the same as the

vertex ID.

dst(<edge>) Returns the destination vertex ID of an edge. The data type of the result is the same as

the vertex ID.

vertex startNode(<path>) Visits an edge or a path and returns its source vertex ID.

string endNode(<path>) Visits an edge or a path and returns its destination vertex ID.

int rank(<edge>) Returns the rank value of an edge.

nebula> GO FROM "player100" OVER follow REVERSELY \
 YIELD src(edge) AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
| "player102" |
+-------------+
nebula> LOOKUP ON player WHERE player.age > 45 YIELD id(vertex);
+-------------+-------------+
| VertexID | id(VERTEX) |
+-------------+-------------+
| "player144" | "player144" |
| "player140" | "player140" |
+-------------+-------------+

nebula> MATCH (a:player) WHERE id(a) == "player100" \

4.5.4 Schema functions

- 137/629 - 2021 Vesoft Inc.

 RETURN tags(a), labels(a), properties(a);
+------------+------------+-------------------------------+
| tags(a) | labels(a) | properties(a) |
+------------+------------+-------------------------------+
| ["player"] | ["player"] | {age: 42, name: "Tim Duncan"} |
+------------+------------+-------------------------------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \
 RETURN type(r), rank(r);
+---------+---------+
| type(r) | rank(r) |
+---------+---------+
| "serve" | 0 |
+---------+---------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \
 RETURN startNode(p), endNode(p);
+--+----------------------------------+
| startNode(p) | endNode(p) |
+--+----------------------------------+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |
+--+----------------------------------+

Last update: November 1, 2021

4.5.4 Schema functions

- 138/629 - 2021 Vesoft Inc.

4.5.5 CASE expressions

The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD and RETURN

clauses. nGQL provides two forms of CASE expressions just like openCypher: the simple form and the generic form.

The CASE expression will traverse all the conditions. When the first condition is met, the CASE expression stops reading the

conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is no ELSE clause and no

conditions are met, it returns NULL .

The simple form of CASE expressions

SYNTAX

| Parameter | Description | |------------+---| | comparer | A value or a valid

expression that outputs a value. This value is used to compare with the value . | | value | It will be compared with the comparer . If

the value matches the comparer , then this condition is met. | | result | The result is returned by the CASE expression if the value

matches the comparer . | | default | The default is returned by the CASE expression if no conditions are met. |

EXAMPLES

The generic form of CASE expressions

SYNTAX

CASE <comparer>
WHEN <value> THEN <result>
[WHEN ...]
[ELSE <default>]
END

Always remember to end the CASE expression with an END .

Caution

nebula> RETURN \
 CASE 2+3 \
 WHEN 4 THEN 0 \
 WHEN 5 THEN 1 \
 ELSE -1 \
 END \
 AS result;
+--------+
| result |
+--------+
| 1 |
+--------+

nebula> GO FROM "player100" OVER follow \
 YIELD properties($$).name AS Name, \
 CASE properties($$).age > 35 \
 WHEN true THEN "Yes" \
 WHEN false THEN "No" \
 ELSE "Nah" \
 END \
 AS Age_above_35;
+-----------------+--------------+
| Name | Age_above_35 |
+-----------------+--------------+
| "Tony Parker" | "Yes" |
| "Manu Ginobili" | "Yes" |
+-----------------+--------------+

CASE
WHEN <condition> THEN <result>
[WHEN ...]
[ELSE <default>]
END

4.5.5 CASE expressions

- 139/629 - 2021 Vesoft Inc.

| Parameter | Description | |-------------+---| | condition | If the condition is

evaluated as true, the result is returned by the CASE expression. | | result | The result is returned by the CASE expression if the

condition is evaluated as true. | | default | The default is returned by the CASE expression if no conditions are met. |

EXAMPLES

Differences between the simple form and the generic form

To avoid the misuse of the simple form and the generic form, it is important to understand their differences. The following example

can help explain them.

The preceding GO query is intended to output Yes when the player's age is above 35. However, in this example, when the player's

age is 36, the actual output is not as expected: It is No instead of Yes .

This is because the query uses the CASE expression in the simple form, and a comparison between the values of $$.player.age and

$$.player.age > 35 is made. When the player age is 36:

The value of $$.player.age is 36 . It is an integer.

$$.player.age > 35 is evaluated to be true . It is a boolean.

The values of $$.player.age and $$.player.age > 35 do not match. Therefore, the condition is not met and No is returned.

nebula> YIELD \
 CASE WHEN 4 > 5 THEN 0 \
 WHEN 3+4==7 THEN 1 \
 ELSE 2 \
 END \
 AS result;
+--------+
| result |
+--------+
| 1 |
+--------+

nebula> MATCH (v:player) WHERE v.age > 30 \
 RETURN v.name AS Name, \
 CASE \
 WHEN v.name STARTS WITH "T" THEN "Yes" \
 ELSE "No" \
 END \
 AS Starts_with_T;
+---------------------+---------------+
| Name | Starts_with_T |
+---------------------+---------------+
"Tim"	"Yes"
"LaMarcus Aldridge"	"No"
"Tony Parker"	"Yes"
+---------------------+---------------+

nebula> GO FROM "player100" OVER follow \
 YIELD properties($$).name AS Name, properties($$).age AS Age, \
 CASE properties($$).age \
 WHEN properties($$).age > 35 THEN "Yes" \
 ELSE "No" \
 END \
 AS Age_above_35;
+-----------------+-----+--------------+
| Name | Age | Age_above_35 |
+-----------------+-----+--------------+
| "Tony Parker" | 36 | "No" |
| "Manu Ginobili" | 41 | "No" |
+-----------------+-----+--------------+

•

•

Last update: November 2, 2021

4.5.5 CASE expressions

- 140/629 - 2021 Vesoft Inc.

4.5.6 List functions

Nebula Graph supports the following list functions:

Examples

Function Description

keys(expr) Returns a list containing the string representations for all the property names of vertices, edges,

or maps.

labels(vertex) Returns the list containing all the tags of a vertex.

nodes(path) Returns the list containing all the vertices in a path.

range(start, end [,

step])

Returns the list containing all the fixed-length steps in [start,end] . step is 1 by default.

relationships(path) Returns the list containing all the relationships in a path.

reverse(list) Returns the list reversing the order of all elements in the original list.

tail(list) Returns all the elements of the original list, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

coalesce(list) Returns the first not null value in a list.

reduce() See reduce() function.

If the argument is NULL , the output is undefined.

Note

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \
 RETURN reverse(ids), tail(ids), head(ids), last(ids), coalesce(ids);
+-----------------------------------+-------------------------+-----------+-----------+---------------+
| reverse(ids) | tail(ids) | head(ids) | last(ids) | coalesce(ids) |
+-----------------------------------+-------------------------+-----------+-----------+---------------+
| [487, 521, "abc", 4923, __NULL__] | [4923, "abc", 521, 487] | __NULL__ | 487 | 4923 |
+-----------------------------------+-------------------------+-----------+-----------+---------------+

nebula> MATCH (a:player)-[r]->() \
 WHERE id(a) == "player100" \
 RETURN labels(a), keys(r);
+------------+----------------------------+
| labels(a) | keys(r) |
+------------+----------------------------+
["player"]	["degree"]
["player"]	["degree"]
["player"]	["end_year", "start_year"]
+------------+----------------------------+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) \
 WHERE a.name == "Tim Duncan" AND c.name == "Spurs" \
 RETURN nodes(p);
+---+
| nodes(p) |
+---+
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}), ("team204" :team{name: "Spurs"})] |
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player125" :player{age: 41, name: "Manu Ginobili"}), ("team204" :team{name: "Spurs"})] |
+---+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) WHERE a.name == "Tim Duncan" AND c.name == "Spurs" RETURN relationships(p);
+---+
| relationships(p) |
+---+
| [[:follow "player100"->"player101" @0 {degree: 95}], [:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |
| [[:follow "player100"->"player125" @0 {degree: 95}], [:serve "player125"->"team204" @0 {end_year: 2018, start_year: 2002}]] |
+---+

4.5.6 List functions

- 141/629 - 2021 Vesoft Inc.

Last update: November 1, 2021

4.5.6 List functions

- 142/629 - 2021 Vesoft Inc.

4.5.7 count() function

The count() function counts the number of the specified values or rows.

(Native nGQL) You can use count() and GROUP BY together to group and count the number of specific values. Use YIELD to

return.

(OpenCypher style) You can use count() and RETURN . GROUP BY is not necessary.

Syntax

count(*) returns the number of rows (including NULL).

count(expr) returns the number of non-NULL values that meet the expression.

count() and size() are different.

EXAMPLES

The preceding example retrieves two columns:

$-.Name : the names of the people.

count(*) : how many times the names show up.

Because there are no duplicate names in the basketballplayer dataset, the number 2 in the column count(*) shows that the

person in that row and player101 have followed each other.

•

•

count({expr | *})

•

•

•

nebula> WITH [NULL, 1, 1, 2, 2] As a UNWIND a AS b \
 RETURN count(b), count(*), count(DISTINCT b);
+----------+----------+-------------------+
| count(b) | count(*) | count(distinct b) |
+----------+----------+-------------------+
| 4 | 5 | 2 |
+----------+----------+-------------------+

The statement in the following example searches for the people whom `player101` follows and people who follow `player101`, i.e. a bidirectional query.
nebula> GO FROM "player101" OVER follow BIDIRECT \
 YIELD properties($$).name AS Name \
 | GROUP BY $-.Name YIELD $-.Name, count(*);
+---------------------+----------+
| $-.Name | count(*) |
+---------------------+----------+
"LaMarcus Aldridge"	2
"Tim Duncan"	2
"Marco Belinelli"	1
"Manu Ginobili"	1
"Boris Diaw"	1
"Dejounte Murray"	1
+---------------------+----------+

•

•

a: The statement in the following example retrieves the age distribution of the players in the dataset.
nebula> LOOKUP ON player \
 YIELD player.age As playerage \
 | GROUP BY $-.playerage \
 YIELD $-.playerage as age, count(*) AS number \
 | ORDER BY $-.number DESC, $-.age DESC;
+-----+--------+
| age | number |
+-----+--------+
34	4
33	4
30	4
29	4
38	3
+-----+--------+
...

b: The statement in the following example retrieves the age distribution of the players in the dataset.
nebula> MATCH (n:player) \
 RETURN n.age as age, count(*) as number \
 ORDER BY number DESC, age DESC;
+-----+--------+
| age | number |

4.5.7 count() function

- 143/629 - 2021 Vesoft Inc.

+-----+--------+
34	4
33	4
30	4
29	4
38	3
+-----+--------+
...

The statement in the following example counts the number of edges that Tim Duncan relates.
nebula> MATCH (v:player{name:"Tim Duncan"}) -- (v2) \
 RETURN count(DISTINCT v2);
+--------------------+
| count(distinct v2) |
+--------------------+
| 11 |
+--------------------+

The statement in the following example counts the number of edges that Tim Duncan relates and returns two columns (no DISTINCT and DISTINCT) in multi-hop queries.
nebula> MATCH (n:player {name : "Tim Duncan"})-[]->(friend:player)-[]->(fof:player) \
 RETURN count(fof), count(DISTINCT fof);
+------------+---------------------+
| count(fof) | count(distinct fof) |
+------------+---------------------+
| 4 | 3 |
+------------+---------------------+

Last update: November 2, 2021

4.5.7 count() function

- 144/629 - 2021 Vesoft Inc.

4.5.8 collect()

The collect() function returns a list containing the values returned by an expression. Using this function aggregates data by

merging multiple records or values into a single list.

The aggregate function collect() works like GROUP BY in SQL.

Examples

nebula> UNWIND [1, 2, 1] AS a \
 RETURN a;
+---+
| a |
+---+
| 1 |
| 2 |
| 1 |
+---+

nebula> UNWIND [1, 2, 1] AS a \
 RETURN collect(a);
+------------+
| collect(a) |
+------------+
| [1, 2, 1] |
+------------+

nebula> UNWIND [1, 2, 1] AS a \
 RETURN a, collect(a), size(collect(a));
+---+------------+------------------+
| a | collect(a) | size(COLLECT(a)) |
+---+------------+------------------+
| 2 | [2] | 1 |
| 1 | [1, 1] | 2 |
+---+------------+------------------+

The following examples sort the results in descending order, limit output rows to 3, and collect the output into a list.œ
nebula> UNWIND ["c", "b", "a", "d"] AS p \
 WITH p AS q \
 ORDER BY q DESC LIMIT 3 \
 RETURN collect(q);
+-----------------+
| collect(q) |
+-----------------+
| ["d", "c", "b"] |
+-----------------+

nebula> WITH [1, 1, 2, 2] AS coll \
 UNWIND coll AS x \
 WITH DISTINCT x \
 RETURN collect(x) AS ss;
+--------+
| ss |
+--------+
| [1, 2] |
+--------+

nebula> MATCH (n:player) \
 RETURN collect(n.age);
+---+
| collect(n.age) |
+---+
| [32, 32, 34, 29, 41, 40, 33, 25, 40, 37, ...
...

The following example aggregates all the players' names by their ages.
nebula> MATCH (n:player) \
 RETURN n.age AS age, collect(n.name);
+-----+--+
| age | collect(n.name) |
+-----+--+
24	["Giannis Antetokounmpo"]
20	["Luka Doncic"]
25	["Joel Embiid", "Kyle Anderson"]
+-----+--+
...

Last update: November 1, 2021

4.5.8 collect()

- 145/629 - 2021 Vesoft Inc.

4.5.9 reduce() function

This topic will describe the reduce function.

OpenCypher Compatibility

In openCypher, the reduce() function is not defined. nGQL will implement the reduce() function in the Cypher way.

Syntax

The reduce() function applies an expression to each element in a list one by one, chains the result to the next iteration by taking it

as the initial value, and returns the final result. This function iterates each element e in the given list, runs the expression on e ,

accumulates the result with the initial value, and store the new result in the accumulator as the initial value of the next iteration. It

works like the fold or reduce method in functional languages such as Lisp and Scala.

The type of the value returned depends on the parameters provided, along with the semantics of the expression.

Examples

reduce(<accumulator> = <initial>, <variable> IN <list> | <expression>)

Parameter Description

accumulator A variable that will hold the accumulated results as the list is iterated.

initial An expression that runs once to give an initial value to the accumulator .

variable A variable in the list that will be applied to the expression successively.

list A list or a list of expressions.

expression This expression will be run on each element in the list once and store the result value in the accumulator .

Note

nebula> RETURN reduce(totalNum = 10, n IN range(1, 3) | totalNum + n) AS r;
+----+
| r |
+----+
| 16 |
+----+

nebula> RETURN reduce(totalNum = -4 * 5, n IN [1, 2] | totalNum + n * 2) AS r;
+-----+
| r |
+-----+
| -14 |
+-----+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \
 RETURN nodes(p)[0].age AS src1, nodes(p)[1].age AS dst2, \
 reduce(totalAge = 100, n IN nodes(p) | totalAge + n.age) AS sum;
+------+------+-----+
| src1 | dst2 | sum |
+------+------+-----+
34	31	165
34	29	163
34	33	167
34	26	160
34	34	168
34	37	171
+------+------+-----+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
 | GO FROM $-.VertexID over follow \
 WHERE properties(edge).degree != reduce(totalNum = 5, n IN range(1, 3) | properties($$).age + totalNum + n) \
 YIELD properties($$).name AS id, properties($$).age AS age, properties(edge).degree AS degree;
+---------------------+-----+--------+
| id | age | degree |
+---------------------+-----+--------+
| "Tim Duncan" | 42 | 95 |

4.5.9 reduce() function

- 146/629 - 2021 Vesoft Inc.

| "LaMarcus Aldridge" | 33 | 90 |
| "Manu Ginobili" | 41 | 95 |
+---------------------+-----+--------+

Last update: November 1, 2021

4.5.9 reduce() function

- 147/629 - 2021 Vesoft Inc.

4.5.10 hash function

The hash() function returns the hash value of the argument. The argument can be a number, a string, a list, a boolean, null, or an

expression that evaluates to a value of the preceding data types.

The source code of the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in MurmurHash2.h .

For Java, the hash function operates as follows.

Legacy version compatibility

In nGQL 1.0, when nGQL does not support string VIDs, a common practice is to hash the strings first and then use the values as

VIDs. But in nGQL 2.0, both string VIDs and integer VIDs are supported, so there is no need to use hash() to set VIDs.

Hash a number

Hash a string

Hash a list

Hash a boolean

Hash NULL

MurmurHash2.hash64("to_be_hashed".getBytes(),"to_be_hashed".getBytes().length, 0xc70f6907)

nebula> YIELD hash(-123);
+--------------+
| hash(-(123)) |
+--------------+
| -123 |
+--------------+

nebula> YIELD hash("to_be_hashed");
+----------------------+
| hash(to_be_hashed) |
+----------------------+
| -1098333533029391540 |
+----------------------+

nebula> YIELD hash([1,2,3]);
+----------------+
| hash([1,2,3]) |
+----------------+
| 11093822460243 |
+----------------+

nebula> YIELD hash(true);
+------------+
| hash(true) |
+------------+
| 1 |
+------------+

nebula> YIELD hash(false);
+-------------+
| hash(false) |
+-------------+
| 0 |
+-------------+

nebula> YIELD hash(NULL);
+------------+
| hash(NULL) |
+------------+
| -1 |
+------------+

4.5.10 hash function

- 148/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h

Hash an expression

nebula> YIELD hash(toLower("HELLO NEBULA"));
+-------------------------------+
| hash(toLower("HELLO NEBULA")) |
+-------------------------------+
| -8481157362655072082 |
+-------------------------------+

Last update: August 27, 2021

4.5.10 hash function

- 149/629 - 2021 Vesoft Inc.

4.5.11 concat function

The concat() and concat_ws() functions return strings concatenated by one or more strings.

concat() function

The concat() function requires at least two or more strings. All the parameters are concatenated into one string.

If there is only one string, the string itself is returned.

If any one of the strings is NULL , NULL is returned.

SYNTAX

EXAMPLES

concat_ws() function

The concat_ws() function connects two or more strings with a predefined separator.

If the separator is NULL , the concat_ws() function returns NULL .

If the separator is not NULL and there is only one string, the string itself is returned.

If the separator is not NULL and there is a NULL in the strings, NULL is ignored during the concatenation.

SYNTAX

EXAMPLES

•

•

concat(string1,string2,...)

//This example concatenates 1, 2, and 3.
nebula> RETURN concat("1","2","3") AS r;
+-------+
| r |
+-------+
| "123" |
+-------+

//In this example, one of the string is NULL.
nebula> RETURN concat("1","2",NULL) AS r;
+----------+
| r |
+----------+
| __NULL__ |
+----------+

nebula> GO FROM "player100" over follow \
 YIELD concat(src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;
+------------------------------+
| A |
+------------------------------+
| "player10042Tony Parker95" |
| "player10042Manu Ginobili95" |
+------------------------------+

•

•

•

concat_ws(separator,string1,string2,...)

//This example concatenates a, b, and c with the separator +.
nebula> RETURN concat_ws("+","a","b","c") AS r;
+---------+
| r |
+---------+
| "a+b+c" |
+---------+

//In this example, the separator is NULL.
neubla> RETURN concat_ws(NULL,"a","b","c") AS r;
+----------+
| r |
+----------+
| __NULL__ |
+----------+

//In this example, the separator is + and there is a NULL in the strings.

4.5.11 concat function

- 150/629 - 2021 Vesoft Inc.

nebula> RETURN concat_ws("+","a",NULL,"b","c") AS r;
+---------+
| r |
+---------+
| "a+b+c" |
+---------+

//In this example, the separator is + and there is only one string.
nebula> RETURN concat_ws("+","a") AS r;
+-----+
| r |
+-----+
| "a" |
+-----+

nebula> GO FROM "player100" over follow \
 YIELD concat_ws(" ",src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;
+---------------------------------+
| A |
+---------------------------------+
| "player100 42 Tony Parker 95" |
| "player100 42 Manu Ginobili 95" |
+---------------------------------+

Last update: November 1, 2021

4.5.11 concat function

- 151/629 - 2021 Vesoft Inc.

4.5.12 Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

Nebula Graph supports the following predicate functions:

Syntax

Examples

Functions Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise, returns

false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list. Otherwise,

returns false .

NULL is returned if the list is NULL or all of its elements are NULL.

Note

In openCypher, only function exists() is defined and specified. The other functions are implement-dependent.

Compatibility

<predicate>(<variable> IN <list> WHERE <condition>)

nebula> RETURN any(n IN [1, 2, 3, 4, 5, NULL] \
 WHERE n > 2) AS r;
+------+
| r |
+------+
| true |
+------+

nebula> RETURN single(n IN range(1, 5) \
 WHERE n == 3) AS r;
+------+
| r |
+------+
| true |
+------+

nebula> RETURN none(n IN range(1, 3) \
 WHERE n == 0) AS r;
+------+
| r |
+------+
| true |
+------+

nebula> WITH [1, 2, 3, 4, 5, NULL] AS a \
 RETURN any(n IN a WHERE n > 2);
+-------------------------+
| any(n IN a WHERE (n>2)) |
+-------------------------+
| true |
+-------------------------+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \
 RETURN nodes(p)[0].name AS n1, nodes(p)[1].name AS n2, \
 all(n IN nodes(p) WHERE n.name NOT STARTS WITH "D") AS b;
+----------------+-------------------+-------+

4.5.12 Predicate functions

- 152/629 - 2021 Vesoft Inc.

| n1 | n2 | b |
+----------------+-------------------+-------+
"LeBron James"	"Danny Green"	false
"LeBron James"	"Dejounte Murray"	false
"LeBron James"	"Chris Paul"	true
"LeBron James"	"Kyrie Irving"	true
"LeBron James"	"Carmelo Anthony"	true
"LeBron James"	"Dwyane Wade"	false
+----------------+-------------------+-------+

nebula> MATCH p = (n:player{name:"LeBron James"})-[:follow]->(m) \
 RETURN single(n IN nodes(p) WHERE n.age > 40) AS b;
+------+
| b |
+------+
| true |
+------+

nebula> MATCH (n:player) \
 RETURN exists(n.id), n IS NOT NULL;
+--------------+---------------+
| exists(n.id) | n IS NOT NULL |
+--------------+---------------+
| false | true |
+--------------+---------------+
...

nebula> MATCH (n:player) \
 WHERE exists(n['name']) RETURN n;
+---+
| n |
+---+
| ("Grant Hill" :player{age: 46, name: "Grant Hill"}) |
| ("Marc Gasol" :player{age: 34, name: "Marc Gasol"}) |
+---+
...

Last update: November 1, 2021

4.5.12 Predicate functions

- 153/629 - 2021 Vesoft Inc.

4.5.13 Geography functions

Geography functions are used to generate or perform operations on the value of the geography data type.

For descriptions of the geography data types, see Geography.

Descriptions

Examples

Function Return Type Description

ST_Point(longitude, latitude) GEOGRAPHY Creates the geography that contains a point.

ST_GeogFromText(wkt_string) GEOGRAPHY Returns the geography corresponding to the input WKT

string.

ST_ASText(geography) STRING Returns the WKT string of the input geography.

ST_Centroid(geography) GEOGRAPHY Returns the centroid of the input geography in the form of

the single point geography.

ST_ISValid(geography) BOOL Returns whether the input geography is valid.

ST_Intersects(geography_1,

geography_2)

BOOL Returns whether geography_1 and geography_2 have

intersections.

ST_Covers(geography_1, geography_2) BOOL Returns whether geography_1 completely contains

geography_2. If there is no point outside geography_1 in

geography_2, return True.

ST_CoveredBy(geography_1,

geography_2)

BOOL Returns whether geography_2 completely contains

geography_1.If there is no point outside geography_2 in

geography_1, return True.

ST_DWithin(geography_1, geography_2,

distance)

BOOL If the distance between one point (at least) in geography_1

and one point in geography_2 is less than or equal to the

distance specified by the distance parameter (measured by

meters), return True.

ST_Distance(geography_1, geography_2) FLOAT Returns the smallest possible distance (measured by

meters) between two non-empty geographies.

S2_CellIdFromPoint(point_geography) INT Returns the S2 Cell ID that covers the point geography.

S2_CoveringCellIds(geography) ARRAY<INT64> Returns an array of S2 Cell IDs that cover the input

geography.

nebula> RETURN ST_ASText(ST_Point(1,1));
+--------------------------+
| ST_ASText(ST_Point(1,1)) |
+--------------------------+
| "POINT(1 1)" |
+--------------------------+

nebula> RETURN ST_ASText(ST_GeogFromText("POINT(3 8)"));
+--+
| ST_ASText(ST_GeogFromText("POINT(3 8)")) |
+--+
| "POINT(3 8)" |
+--+

nebula> RETURN ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)")));
+--+
| ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)"))) |
+--+
| "POINT(0.5000380800773782 0.5000190382261059)" |
+--+

nebula> RETURN ST_ISValid(ST_GeogFromText("POINT(3 8)"));
+---+

4.5.13 Geography functions

- 154/629 - 2021 Vesoft Inc.

https://s2geometry.io/devguide/s2cell_hierarchy

| ST_ISValid(ST_GeogFromText("POINT(3 8)")) |
+---+
| true |
+---+

nebula> RETURN ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)"));
+--+
| ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)")) |
+--+
| true |
+--+

nebula> RETURN ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2));
+--+
| ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2)) |
+--+
| true |
+--+

nebula> RETURN ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"));
+---+
| ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))")) |
+---+
| true |
+---+

nebula> RETURN ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000.0);
+---+
| ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000) |
+---+
| true |
+---+

nebula> RETURN ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"));
+--+
| ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)")) |
+--+
| 1568523.0187677438 |
+--+

nebula> RETURN S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)"));
+---+
| S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)")) |
+---+
| 1153277837650709461 |
+---+

nebula> RETURN S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));
+--
+
| S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0
1))")) |
+--
+
| [1152391494368201343, 1153466862374223872, 1153554823304445952, 1153836298281156608, 1153959443583467520, 1154240918560178176, 1160503736791990272,
1160591697722212352] |
+--
+

Last update: November 2, 2021

4.5.13 Geography functions

- 155/629 - 2021 Vesoft Inc.

4.5.14 User-defined functions

OpenCypher compatibility

User-defined functions (UDF) and storage processes are not yet supported nor designed in Nebula Graph 2.6.0.

Last update: July 19, 2021

4.5.14 User-defined functions

- 156/629 - 2021 Vesoft Inc.

4.6 General queries statements

4.6.1 MATCH

The MATCH statement supports searching based on pattern matching.

A MATCH statement defines a search pattern and uses it to match data stored in Nebula Graph and to retrieve them in the form

defined in the RETURN clause.

The examples in this topic use the basketballplayer dataset as the sample dataset.

Syntax

The syntax of MATCH is relatively more flexible compared with that of other query statements such as GO or LOOKUP . But generally, it

can be summarized as follows.

The workflow of MATCH

The MATCH statement uses a native index to locate a source vertex or an edge. The source vertex or the edge can be in any

position in the pattern. In other words, in a valid MATCH statement, there must be an indexed property, a tag, or an edge

type. Or the VID of a specific vertex must be specified with the id() function in the WHERE clause. For how to create

an index, see create native index.

The MATCH statement searches through the pattern to match edges or vertices.

The MATCH statement retrieves data according to the RETURN clause.

OpenCypher compatibility

For now, nGQL does not support traversing all vertices and edges with MATCH , such as MATCH (v) RETURN v . However, after the

index of a certain tag is created, all corresponding vertices can be traversed, such as MATCH (v:T1) RETURN v .

Graph pattern is not supported in the WHERE clause.

Using patterns in MATCH statements

PREREQUISITES

Make sure there is at least one index in the MATCH statement, or there is a specified VID. If you want to create an index, but there

are already related vertices, edges, or properties, you must rebuild indexes after creating the index to make it valid.

MATCH <pattern> [<WHERE clause>] RETURN <output>;

1.

2.

The path type of the MATCH statement is trail . That is, only vertices can be repeatedly visited in the graph traversal. Edges cannot

be repeatedly visited. For details, see path.

Note

3.

•

•

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance reduction

can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware of their influences

on your service.

Caution

The following example creates an index on both the name property of the tag player and the edge type follow.
nebula> CREATE TAG INDEX name ON player(name(20));

4.6 General queries statements

- 157/629 - 2021 Vesoft Inc.

MATCH VERTICES

You can use a user-defined variable in a pair of parentheses to represent a vertex in a pattern. For example: (v) .

MATCH TAGS

You can specify a tag with :<tag_name> after the vertex in a pattern.

MATCH VERTEX PROPERTIES

You can specify a vertex property with {<prop_name>: <prop_value>} after the tag in a pattern.

nebula> CREATE EDGE INDEX follow_index on follow();

The following example rebuilds the index.
nebula> REBUILD TAG INDEX name;
+------------+
| New Job Id |
+------------+
| 121 |
+------------+

nebula> REBUILD EDGE INDEX follow_index;
+------------+
| New Job Id |
+------------+
| 122 |
+------------+

The following example makes sure the index is rebuilt successfully.
nebula> SHOW JOB 121;
+----------------+---------------------+------------+----------------------------+----------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------------+------------+----------------------------+----------------------------+
121	"REBUILD_TAG_INDEX"	"FINISHED"	2021-05-27T02:18:02.000000	2021-05-27T02:18:02.000000
0	"storaged1"	"FINISHED"	2021-05-27T02:18:02.000000	2021-05-27T02:18:02.000000
1	"storaged0"	"FINISHED"	2021-05-27T02:18:02.000000	2021-05-27T02:18:02.000000
2	"storaged2"	"FINISHED"	2021-05-27T02:18:02.000000	2021-05-27T02:18:02.000000
+----------------+---------------------+------------+----------------------------+----------------------------+

nebula> SHOW JOB 122;
+----------------+----------------------+------------+----------------------------+----------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+----------------------+------------+----------------------------+----------------------------+
122	"REBUILD_EDGE_INDEX"	"FINISHED"	2021-05-27T02:18:11.000000	2021-05-27T02:18:11.000000
0	"storaged1"	"FINISHED"	2021-05-27T02:18:11.000000	2021-05-27T02:18:21.000000
1	"storaged0"	"FINISHED"	2021-05-27T02:18:11.000000	2021-05-27T02:18:21.000000
2	"storaged2"	"FINISHED"	2021-05-27T02:18:11.000000	2021-05-27T02:18:21.000000
+----------------+----------------------+------------+----------------------------+----------------------------+

The prerequisite for matching a tag is that the tag itself has an index or a certain property of the tag has an index. Otherwise, you

cannot execute the MATCH statement based on the tag.

Note

nebula> MATCH (v:player) \
 RETURN v;
+---+
| v |
+---+
| ("player105" :player{age: 31, name: "Danny Green"}) |
| ("player109" :player{age: 34, name: "Tiago Splitter"}) |
| ("player111" :player{age: 38, name: "David West"}) |
...

The prerequisite for matching a vertex property is that the tag itself has an index of the corresponding property. Otherwise, you

cannot execute the MATCH statement to match the property.

Note

The following example uses the name property to match a vertex.
nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN v;
+--+
| v |
+--+

4.6.1 MATCH

- 158/629 - 2021 Vesoft Inc.

The WHERE clause can do the same thing:

MATCH VIDS

You can use the VID to match a vertex. The id() function can retrieve the VID of a vertex.

To match multiple VIDs, use WHERE id(v) IN [vid_list] .

MATCH CONNECTED VERTICES

You can use the -- symbol to represent edges of both directions and match vertices connected by these edges.

You can add a > or < to the -- symbol to specify the direction of an edge.

In the following example, --> represents an edge that starts from v and points to v2 . To v , this is an outgoing edge, and to v2

this is an incoming edge.

| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> MATCH (v:player) \
 WHERE v.name == "Tim Duncan" \
 RETURN v;
+--+
| v |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

In openCypher 9, = is the equality operator. However, in nGQL, == is the equality operator and = is the assignment operator (as in

C++ or Java).

OpenCypher compatibility

nebula> MATCH (v) \
 WHERE id(v) == 'player101' \
 RETURN v;
+---+
| v |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+

nebula> MATCH (v:player { name: 'Tim Duncan' })--(v2) \
 WHERE id(v2) IN ["player101", "player102"] \
 RETURN v2;
+---+
| v2 |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
| ("player101" :player{age: 36, name: "Tony Parker"}) |
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+

In nGQL 1.x, the -- symbol is used for inline comments. Starting from nGQL 2.x, the -- symbol represents an incoming or outgoing

edge.

Legacy version compatibility

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) \
 RETURN v2.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Spurs" |
| "Tony Parker" |
| "LaMarcus Aldridge" |
| "Marco Belinelli" |
...

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2) \
 RETURN v2.name AS Name;

4.6.1 MATCH

- 159/629 - 2021 Vesoft Inc.

To extend the pattern, you can add more vertices and edges.

If you do not need to refer to a vertex, you can omit the variable representing it in the parentheses.

MATCH PATHS

Connected vertices and edges form a path. You can use a user-defined variable to name a path as follows.

MATCH EDGES

Besides using -- , --> , or <-- to indicate a nameless edge, you can use a user-defined variable in a pair of square brackets to

represent a named edge. For example: -[e]- .

MATCH EDGE TYPES

Just like vertices, you can specify edge types with :<edge_type> in a pattern. For example: -[e:follow]- .

+-----------------+
| Name |
+-----------------+
| "Spurs" |
| "Tony Parker" |
| "Manu Ginobili" |
+-----------------+

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2)<--(v3) \
 RETURN v3.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Dejounte Murray" |
| "LaMarcus Aldridge" |
| "Marco Belinelli" |
...

nebula> MATCH (v:player{name:"Tim Duncan"})-->()<--(v3) \
 RETURN v3.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Dejounte Murray" |
| "LaMarcus Aldridge" |
| "Marco Belinelli" |
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) \
 RETURN p;
+--+
| p |
+--+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})> |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})> |
+--+

In nGQL, the @ symbol represents the rank of an edge, but openCypher has no such concept.

OpenCypher compatibility

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]-(v2) \
 RETURN e;
+---+
| e |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
| [:follow "player101"->"player100" @0 {degree: 95}] |
| [:follow "player102"->"player100" @0 {degree: 75}] |
...

nebula> MATCH ()-[e:follow]-() \
 RETURN e;
+---+
| e |
+---+
| [:follow "player104"->"player105" @0 {degree: 60}] |
| [:follow "player113"->"player105" @0 {degree: 99}] |
| [:follow "player105"->"player100" @0 {degree: 70}] |
...

4.6.1 MATCH

- 160/629 - 2021 Vesoft Inc.

MATCH EDGE TYPE PROPERTIES

You can specify edge type properties with {<prop_name>: <prop_value>} in a pattern. For example: [e:follow{likeness:95}] .

MATCH MULTIPLE EDGE TYPES

The | symbol can help matching multiple edge types. For example: [e:follow|:serve] . The English colon (:) before the first edge

type cannot be omitted, but the English colon before the subsequent edge type can be omitted, such as [e:follow|serve] .

MATCH MULTIPLE EDGES

You can extend a pattern to match multiple edges in a path.

MATCH FIXED-LENGTH PATHS

You can use the :<edge_type>*<hop> pattern to match a fixed-length path. hop must be a non-negative integer.

If hop is 0, the pattern will match the source vertex of the path.

The prerequisite for matching an edge type property is that the edge type itself has an index of the corresponding property.

Otherwise, you cannot execute the MATCH statement to match the property.

Note

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow{degree:95}]->(v2) \
 RETURN e;
+--+
| e |
+--+
| [:follow "player100"->"player101" @0 {degree: 95}] |
| [:follow "player100"->"player125" @0 {degree: 95}] |
+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow|:serve]->(v2) \
 RETURN e;
+---+
| e |
+---+
| [:follow "player100"->"player101" @0 {degree: 95}] |
| [:follow "player100"->"player125" @0 {degree: 95}] |
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[]->(v2)<-[e:serve]-(v3) \
 RETURN v2, v3;
+----------------------------------+---+
| v2 | v3 |
+----------------------------------+---+
("team204" :team{name: "Spurs"})	("player104" :player{age: 32, name: "Marco Belinelli"})
("team204" :team{name: "Spurs"})	("player101" :player{age: 36, name: "Tony Parker"})
("team204" :team{name: "Spurs"})	("player102" :player{age: 33, name: "LaMarcus Aldridge"})
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \
 RETURN DISTINCT v2 AS Friends;
+---+
| Friends |
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+

nebula> MATCH (v:player{name:"Tim Duncan"}) -[*0]-> (v2) \
 RETURN v2;
+--+
| v2 |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

4.6.1 MATCH

- 161/629 - 2021 Vesoft Inc.

MATCH VARIABLE-LENGTH PATHS

You can use the :<edge_type>*[minHop]..<maxHop> pattern to match variable-length paths.

You can use the DISTINCT keyword to aggregate duplicate results.

If minHop is 0 , the pattern will match the source vertex of the path. Compared to the preceding statement, the following example

uses 0 as the minHop . So in the following result set, "Tim Duncan" is counted one more time than it is in the preceding result set

because it is the source vertex.

MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

You can specify multiple edge types in a fixed-length or variable-length pattern. In this case, hop , minHop , and maxHop take effect on

all edge types.

Parameter Description

minHop Optional. It represents the minimum length of the path. minHop must be a non-negative integer. The default

value is 1.

maxHop Required. It represents the maximum length of the path. maxHop must be a non-negative integer. It has no

default value.

In openCypher, maxHop is optional and defaults to infinity. When no bounds are given, .. can be omitted. However, in nGQL, maxHop is

required. And .. cannot be omitted.

OpenCypher compatibility

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2) \
 RETURN v2 AS Friends;
+---+
| Friends |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2:player) \
 RETURN DISTINCT v2 AS Friends, count(v2);
+---+-----------+
| Friends | count(v2) |
+---+-----------+
("player102" :player{age: 33, name: "LaMarcus Aldridge"})	1
("player100" :player{age: 42, name: "Tim Duncan"})	4
("player101" :player{age: 36, name: "Tony Parker"})	3
("player125" :player{age: 41, name: "Manu Ginobili"})	3
+---+-----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*0..3]->(v2:player) \
 RETURN DISTINCT v2 AS Friends, count(v2);
+---+-----------+
| Friends | count(v2) |
+---+-----------+
("player102" :player{age: 33, name: "LaMarcus Aldridge"})	1
("player100" :player{age: 42, name: "Tim Duncan"})	5
("player125" :player{age: 41, name: "Manu Ginobili"})	3
("player101" :player{age: 36, name: "Tony Parker"})	3
+---+-----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow|serve*2]->(v2) \
 RETURN DISTINCT v2;
+---+
| v2 |
+---+
| ("team204" :team{name: "Spurs"}) |
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
| ("team215" :team{name: "Hornets"}) |
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+

4.6.1 MATCH

- 162/629 - 2021 Vesoft Inc.

Common retrieving operations

RETRIEVE VERTEX OR EDGE INFORMATION

Use RETURN {<vertex_name> | <edge_name>} to retrieve all the information of a vertex or an edge.

RETRIEVE VIDS

Use the id() function to retrieve VIDs.

RETRIEVE TAGS

Use the labels() function to retrieve the list of tags on a vertex.

To retrieve the nth element in the labels(v) list, use labels(v)[n-1] . The following example shows how to use labels(v)[0] to

retrieve the first tag in the list.

RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE

Use RETURN {<vertex_name> | <edge_name>}.<property> to retrieve a single property.

Use AS to specify an alias for a property.

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN v;
+--+
| v |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
 RETURN e;
+---+
| e |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
| [:follow "player100"->"player101" @0 {degree: 95}] |
| [:follow "player100"->"player125" @0 {degree: 95}] |
+---+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN id(v);
+-------------+
| id(v) |
+-------------+
| "player100" |
+-------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN labels(v);
+------------+
| labels(v) |
+------------+
| ["player"] |
+------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN labels(v)[0];
+--------------+
| labels(v)[0] |
+--------------+
| "player" |
+--------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN v.age;
+-------+
| v.age |
+-------+
| 42 |
+-------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN v.age AS Age;
+-----+
| Age |
+-----+
| 42 |
+-----+

4.6.1 MATCH

- 163/629 - 2021 Vesoft Inc.

RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE

Use the properties() function to retrieve all properties on a vertex or an edge.

RETRIEVE EDGE TYPES

Use the type() function to retrieve the matched edge types.

RETRIEVE PATHS

Use RETURN <path_name> to retrieve all the information of the matched paths.

RETRIEVE VERTICES IN A PATH

Use the nodes() function to retrieve all vertices in a path.

RETRIEVE EDGES IN A PATH

Use the relationships() function to retrieve all edges in a path.

RETRIEVE PATH LENGTH

Use the length() function to retrieve the length of a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \
 RETURN properties(v2);
+----------------------------------+
| properties(v2) |
+----------------------------------+
| {name: "Spurs"} |
| {age: 36, name: "Tony Parker"} |
| {age: 41, name: "Manu Ginobili"} |
+----------------------------------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e]->() \
 RETURN DISTINCT type(e);
+----------+
| type(e) |
+----------+
| "serve" |
| "follow" |
+----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*3]->() \
 RETURN p;
+--
+
|
p
|
+--
+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2019, start_year: 2015}]->("team204" :team{name: "Spurs"})> |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2015, start_year: 2006}]->("team203" :team{name: "Trail Blazers"})> |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:follow@0 {degree: 75}]->("player101" :player{age: 36, name: "Tony Parker"})> |
+--
+
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \
 RETURN nodes(p);
+---+
| nodes(p) |
+---+
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player204" :team{name: "Spurs"})] |
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player101" :player{name: "Tony Parker", age: 36})] |
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player125" :player{name: "Manu Ginobili", age: 41})] |
+---+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \
 RETURN relationships(p);
+---+
| relationships(p) |
+---+
| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |
| [[:follow "player100"->"player101" @0 {degree: 95}]] |
| [[:follow "player100"->"player125" @0 {degree: 95}]] |
+---+

4.6.1 MATCH

- 164/629 - 2021 Vesoft Inc.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*..2]->(v2) \
 RETURN p AS Paths, length(p) AS Length;
+--
+--------+
|
Paths
| Length |
+--
+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name:
"Spurs"})> | 1 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony
Parker"})> | 1 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu
Ginobili"})> | 1 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2018,
start_year: 1999}]->("team204" :team{name: "Spurs"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2019,
start_year: 2018}]->("team215" :team{name: "Hornets"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]-
>("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]-
>("player125" :player{age: 41, name: "Manu Ginobili"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:serve@0 {end_year: 2018,
start_year: 2002}]->("team204" :team{name: "Spurs"})> | 2 |
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:follow@0 {degree: 90}]-
>("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |
+--
+--------+

In Nebula Graph, the performance and resource usage of the MATCH statement have been optimized. But we still recommend to use

GO , LOOKUP , | , and FETCH instead of MATCH when high performance is required.

Performance

Last update: November 2, 2021

4.6.1 MATCH

- 165/629 - 2021 Vesoft Inc.

4.6.2 LOOKUP

The LOOKUP statement traverses data based on indexes. You can use LOOKUP for the following purposes:

Search for the specific data based on conditions defined by the WHERE clause.

List vertices with a tag: retrieve the VID of all vertices with a tag.

List edges with an edge type: retrieve the source vertex IDs, destination vertex IDs, and ranks of all edges with an edge type.

Count the number of vertices or edges with a tag or an edge type.

OpenCypher compatibility

This topic applies to native nGQL only.

Precautions

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance

reduction can be 90% or even more. DO NOT use indexes in production environments unless you are fully aware of their

influences on your service.

If the specified property is not indexed when using the LOOKUP statement, Nebula Graph randomly selects one of the available

indexes.

For example, the tag player has two properties, name and age . Both the tag player itself and the property name have indexes,

but the property age has no indexes. When running LOOKUP ON player WHERE player.age == 36 YIELD player.name; , Nebula Graph

randomly uses one of the indexes of the tag player and the property name .

Prerequisites

Before using the LOOKUP statement, make sure that at least one index is created. If there are already related vertices, edges, or

properties before an index is created, the user must rebuild the index after creating the index to make it valid.

Syntax

WHERE <expression> : filters data with specified conditions. Both AND and OR are supported between different expressions. For

more information, see WHERE.

YIELD : Define the output to be returned.

When you LOOKUP a Tag, the defined properties and VertexID are returned. If there is no YIELD clause, VertexID is

returned.

When you LOOKUP an Edge type, the defined properties, SrcVertexID , DstVertexID , and rank are returned. If there is no

YIELD clause, SrcVertexID , DstVertexID , and rank are returned.

AS : Set an alias.

•

•

•

•

•

•

In the previous releases, if the specified property is not indexed when using the LOOKUP statement, Nebula Graph reports an

error and does not use other indexes.

Legacy version compatibility

LOOKUP ON {<vertex_tag> | <edge_type>}
[WHERE <expression> [AND <expression> ...]]
[YIELD <return_list> [AS <alias>]];

<return_list>
 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];

•

•

•

•

•

4.6.2 LOOKUP

- 166/629 - 2021 Vesoft Inc.

Limitations of using WHERE in LOOKUP

The WHERE clause in a LOOKUP statement does not support the following operations:

$- and $^ .

In relational expressions, operators are not supported to have field names on both sides, such as tagName.prop1> tagName.prop2 .

Nested AliasProp expressions in operation expressions and function expressions are not supported.

The XOR and NOT operations are not supported.

Retrieve vertices

The following example returns vertices whose name is Tony Parker and the tag is player .

Retrieve edges

The following example returns edges whose degree is 90 and the edge type is follow .

•

•

•

•

nebula> CREATE TAG INDEX index_player ON player(name(30), age);

nebula> REBUILD TAG INDEX index_player;
+------------+
| New Job Id |
+------------+
| 15 |
+------------+

nebula> LOOKUP ON player \
 WHERE player.name == "Tony Parker";
+-------------+
| VertexID |
+-------------+
| "player101" |
+-------------+

nebula> LOOKUP ON player \
 WHERE player.name == "Tony Parker" \
 YIELD properties(vertex).name AS name, properties(vertex).age AS age;
+-------------+---------------+-----+
| VertexID | name | age |
+-------------+---------------+-----+
| "player101" | "Tony Parker" | 36 |
+-------------+---------------+-----+

nebula> LOOKUP ON player \
 WHERE player.age > 45;
+-------------+
| VertexID |
+-------------+
| "player140" |
| "player144" |
+-------------+

nebula> LOOKUP ON player \
 WHERE player.name STARTS WITH "B" \
 AND player.age IN [22,30] \
 YIELD properties(vertex).name, properties(vertex).age;
+-------------+-------------------------+------------------------+
| VertexID | properties(VERTEX).name | properties(VERTEX).age |
+-------------+-------------------------+------------------------+
| "player134" | "Blake Griffin" | 30 |
| "player149" | "Ben Simmons" | 22 |
+-------------+-------------------------+------------------------+

nebula> LOOKUP ON player \
 WHERE player.name == "Kobe Bryant"\
 YIELD properties(vertex).name AS name |\
 GO FROM $-.VertexID OVER serve \
 YIELD $-.name, properties(edge).start_year, properties(edge).end_year, properties($$).name;
+---------------+-----------------------------+---------------------------+---------------------+
| $-.name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |
+---------------+-----------------------------+---------------------------+---------------------+
| "Kobe Bryant" | 1996 | 2016 | "Lakers" |
+---------------+-----------------------------+---------------------------+---------------------+

nebula> CREATE EDGE INDEX index_follow ON follow(degree);

nebula> REBUILD EDGE INDEX index_follow;
+------------+
| New Job Id |
+------------+
| 62 |

4.6.2 LOOKUP

- 167/629 - 2021 Vesoft Inc.

List vertices or edges with a tag or an edge type

To list vertices or edges with a tag or an edge type, at least one index must exist on the tag, the edge type, or its property.

+------------+

nebula> LOOKUP ON follow \
 WHERE follow.degree == 90;
+-------------+-------------+---------+
| SrcVID | DstVID | Ranking |
+-------------+-------------+---------+
"player150"	"player143"	0
"player150"	"player137"	0
"player148"	"player136"	0
...

nebula> LOOKUP ON follow \
 WHERE follow.degree == 90 \
 YIELD properties(edge).degree;
+-------------+-------------+---------+-------------------------+
| SrcVID | DstVID | Ranking | properties(EDGE).degree |
+-------------+-------------+---------+-------------------------+
"player150"	"player143"	0	90
"player150"	"player137"	0	90
"player148"	"player136"	0	90
...

nebula> LOOKUP ON follow \
 WHERE follow.degree == 60 \
 YIELD properties(edge).degree AS Degree |\
 GO FROM $-.DstVID OVER serve \
 YIELD $-.DstVID, properties(edge).start_year, properties(edge).end_year, properties($$).name;
+-------------+------------------+----------------+--------------+
| $-.DstVID | serve.start_year | serve.end_year | $$.team.name |
+-------------+------------------+----------------+--------------+
"player105"	2010	2018	"Spurs"
"player105"	2009	2010	"Cavaliers"
"player105"	2018	2019	"Raptors"
+-------------+------------------+----------------+--------------+

4.6.2 LOOKUP

- 168/629 - 2021 Vesoft Inc.

For example, if there is a player tag with a name property and an age property, to retrieve the VID of all vertices tagged with

player , there has to be an index on the player tag itself, the name property, or the age property.

The following example shows how to retrieve the VID of all vertices tagged with player .

The following example shows how to retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges of the

follow edge type.

Count the numbers of vertices or edges

The following example shows how to count the number of vertices tagged with player and edges of the follow edge type.

•

nebula> CREATE TAG player(name string,age int);

nebula> CREATE TAG INDEX player_index on player();

nebula> REBUILD TAG INDEX player_index;
+------------+
| New Job Id |
+------------+
| 66 |
+------------+

nebula> INSERT VERTEX player(name,age) \
 VALUES "player100":("Tim Duncan", 42), "player101":("Tony Parker", 36);

The following statement retrieves the VID of all vertices with the tag `player`. It is similar to `MATCH (n:player) RETURN id(n) /*, n */`.

nebula> LOOKUP ON player;
+-------------+
| VertexID |
+-------------+
| "player100" |
| "player101" |
+-------------+

•

nebula> CREATE EDGE follow(degree int);

nebula> CREATE EDGE INDEX follow_index on follow();

nebula> REBUILD EDGE INDEX follow_index;
+------------+
| New Job Id |
+------------+
| 88 |
+------------+

nebula> INSERT EDGE follow(degree) \
 VALUES "player100"->"player101":(95);

The following statement retrieves all edges with the edge type `follow`. It is similar to `MATCH (s)-[e:follow]->(d) RETURN id(s), rank(e), id(d) /*, type(e) */
`.

nebula)> LOOKUP ON follow;
+-------------+-------------+---------+
| SrcVID | DstVID | Ranking |
+-------------+-------------+---------+
| "player100" | "player101" | 0 |
+-------------+-------------+---------+

nebula> LOOKUP ON player |\
 YIELD COUNT(*) AS Player_Number;
+---------------+
| Player_Number |
+---------------+
| 51 |
+---------------+

nebula> LOOKUP ON follow | \
 YIELD COUNT(*) AS Follow_Number;
+---------------+
| Follow_Number |
+---------------+
| 81 |
+---------------+

You can also use SHOW STATS to count the numbers of vertices or edges.

Note

4.6.2 LOOKUP

- 169/629 - 2021 Vesoft Inc.

Last update: November 2, 2021

4.6.2 LOOKUP

- 170/629 - 2021 Vesoft Inc.

4.6.3 GO

GO traverses in a graph with specified filters and returns results.

OpenCypher compatibility

This topic applies to native nGQL only.

Syntax

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [{REVERSELY | BIDIRECT}]
[WHERE <conditions>]
[YIELD [DISTINCT] <return_list>]
[{SAMPLE <sample_list> | LIMIT <limit_list>}]
[| GROUP BY {col_name | expr | position} YIELD <col_name>]
[| ORDER BY <expression> [{ASC | DESC}]]
[| LIMIT [<offset>,] <number_rows>];

<vertex_list> ::=
 <vid> [, <vid> ...]

<edge_type_list> ::=
 edge_type [, edge_type ...]
 | *

4.6.3 GO

- 171/629 - 2021 Vesoft Inc.

<N> STEPS : specifies the hop number. If not specified, the default value for N is one . When N is zero , Nebula Graph does not

traverse any edges and returns nothing.

M TO N STEPS : traverses from M to N hops. When M is zero , the output is the same as that of M is one . That is, the output of

GO 0 TO 2 and GO 1 TO 2 are the same.

<vertex_list> : represents a list of vertex IDs separated by commas, or a special place holder $-.id . For more information, see

Pipe.

<edge_type_list> : represents a list of edge types which the traversal can go through.

REVERSELY | BIDIRECT : defines the direction of the query. By default, the GO statement searches for outgoing edges of

<vertex_list> . If REVERSELY is set, GO searches for incoming edges. If BIDIRECT is set, GO searches for edges of both directions.

WHERE <expression> : specifies the traversal filters. You can use the WHERE clause for the source vertices, the edges, and the

destination vertices. You can use it together with AND , OR , NOT , and XOR . For more information, see WHERE.

YIELD [DISTINCT] <return_list> : defines the output to be returned. It is recommended to use the Schema function to fill in

<return_list> . src(edge) , dst(edge) , type(edge)) , rank(edge) , properties(edge) , id(vertex) , and properties(vertex) are

currently supported, while nested functions are not. For more information, see YIELD. When not specified, the destination

vertex ID of the edge will be returned by default.

SAMPLE <sample_list> : takes samples from the result set. For more information, see SAMPLE.

LIMIT <limit_list> : limits the number of outputs during the traversal process. For more information, see LIMIT.

GROUP BY : groups the output into subgroups based on the value of the specified property. For more information, see GROUP

BY. After grouping, you need to use YIELD again to define the output that needs to be returned.

ORDER BY : sorts outputs with specified orders. For more information, see ORDER BY.

LIMIT [<offset>,] <number_rows>] : limits the number of rows of the output. For more information, see LIMIT.

Examples

<return_list> ::=
 <col_name> [AS <col_alias>] [, <col_name> [AS <col_alias>] ...]

•

The path type of the GO statement is walk , which means both vertices and edges can be repeatedly visited in graph traversal.

For more information, see Path.

Note

•

•

•

•

•

There are some restrictions for the WHERE clause when you traverse along with multiple edge types. For example, WHERE

edge1.prop1 > edge2.prop2 is not supported.

Note

•

•

•

•

•

When the sorting method is not specified, the output orders can be different for the same query.

Note

•

The following example returns the teams that player 102 serves.
nebula> GO FROM "player102" OVER serve;
+------------+
| serve._dst |
+------------+
| "team203" |
| "team204" |
+------------+

4.6.3 GO

- 172/629 - 2021 Vesoft Inc.

The following example returns the friends of player 102 with 2 hops.
nebula> GO 2 STEPS FROM "player102" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
...

The following example adds a filter for the traversal.
nebula> GO FROM "player100", "player102" OVER serve \
 WHERE properties(edge).start_year > 1995 \
 YIELD DISTINCT properties($$).name AS team_name, properties(edge).start_year AS start_year, properties($^).name AS player_name;

+-----------------+------------+---------------------+
| team_name | start_year | player_name |
+-----------------+------------+---------------------+
"Spurs"	1997	"Tim Duncan"
"Trail Blazers"	2006	"LaMarcus Aldridge"
"Spurs"	2015	"LaMarcus Aldridge"
+-----------------+------------+---------------------+

The following example traverses along with multiple edge types. If there is no value for a property, the output is UNKNOWN_PROP.
nebula> GO FROM "player100" OVER follow, serve \
 YIELD properties(edge).degree, properties(edge).start_year;
+-------------------------+-----------------------------+
| properties(EDGE).degree | properties(EDGE).start_year |
+-------------------------+-----------------------------+
95	UNKNOWN_PROP
95	UNKNOWN_PROP
UNKNOWN_PROP	1997
+-------------------------+-----------------------------+

The following example returns the neighbor vertices in the incoming direction of player 100.
nebula> GO FROM "player100" OVER follow REVERSELY \
 YIELD src(edge) AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
| "player102" |
+-------------+
...

This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v)<-[e:follow]- (v2) WHERE id(v) == 'player100' \
 RETURN id(v2) AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
| "player102" |
+-------------+
...

The following example retrieves the friends of player 100 and the teams that they serve.
nebula> GO FROM "player100" OVER follow REVERSELY \
 YIELD src(edge) AS id | \
 GO FROM $-.id OVER serve \
 WHERE properties($^).age > 20 \
 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;
+---------------------+-----------------+
| FriendOf | Team |
+---------------------+-----------------+
"Boris Diaw"	"Spurs"
"Boris Diaw"	"Jazz"
"Boris Diaw"	"Suns"
...

This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v)<-[e:follow]- (v2)-[e2:serve]->(v3) \
 WHERE id(v) == 'player100' \
 RETURN v2.name AS FriendOf, v3.name AS Team;
+---------------------+-----------------+
| FriendOf | Team |
+---------------------+-----------------+
"Boris Diaw"	"Spurs"
"Boris Diaw"	"Jazz"
"Boris Diaw"	"Suns"
...

The following example retrieves the friends of player 100 within 1 or 2 hops.
nebula> GO 1 TO 2 STEPS FROM "player100" OVER follow \
 YIELD dst(edge) AS destination;
+-------------+
| destination |
+-------------+
| "player101" |

4.6.3 GO

- 173/629 - 2021 Vesoft Inc.

| "player125" |
...

This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v) -[e:follow*1..2]->(v2) \
 WHERE id(v) == "player100" \
 RETURN id(v2) AS destination;
+-------------+
| destination |
+-------------+
| "player100" |
| "player102" |
...

The following example the outputs according to age.
nebula> GO 2 STEPS FROM "player100" OVER follow \
 YIELD src(edge) AS src, dst(edge) AS dst, properties($$).age AS age \
 | GROUP BY $-.dst \
 YIELD $-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age;
+-------------+----------------------------+----------+
| dst | src | age |
+-------------+----------------------------+----------+
"player125"	["player101"]	[41]
"player100"	["player125", "player101"]	[42, 42]
"player102"	["player101"]	[33]
+-------------+----------------------------+----------+

The following example groups the outputs and restricts the number of rows of the outputs.
nebula> $a = GO FROM "player100" OVER follow YIELD src(edge) AS src, dst(edge) AS dst; \
 GO 2 STEPS FROM $a.dst OVER follow \
 YIELD $a.src AS src, $a.dst, src(edge), dst(edge) \
 | ORDER BY $-.src | OFFSET 1 LIMIT 2;
+-------------+-------------+-------------+-------------+
| src | $a.dst | follow._src | follow._dst |
+-------------+-------------+-------------+-------------+
| "player100" | "player125" | "player100" | "player101" |
| "player100" | "player101" | "player100" | "player125" |
+-------------+-------------+-------------+-------------+

The following example determines if $$.player.name IS NOT EMPTY.
nebula> GO FROM "player100" OVER follow WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);
+-------------+
| follow._dst |
+-------------+
| "player125" |
| "player101" |
+-------------+

Last update: November 2, 2021

4.6.3 GO

- 174/629 - 2021 Vesoft Inc.

4.6.4 FETCH

The FETCH statement retrieves the properties of the specified vertices or edges.

OpenCypher Compatibility

This topic applies to native nGQL only.

Fetch vertex properties

SYNTAX

FETCH VERTEX PROPERTIES BY ONE TAG

Specify a tag in the FETCH statement to fetch the vertex properties by that tag.

FETCH SPECIFIC PROPERTIES OF A VERTEX

Use a YIELD clause to specify the properties to be returned.

FETCH PROPERTIES OF MULTIPLE VERTICES

Specify multiple VIDs (vertex IDs) to fetch properties of multiple vertices. Separate the VIDs with commas.

FETCH VERTEX PROPERTIES BY MULTIPLE TAGS

Specify multiple tags in the FETCH statement to fetch the vertex properties by the tags. Separate the tags with commas.

FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
[YIELD <return_list> [AS <alias>]];

Parameter Description

tag_name The name of the tag.

* Represents all the tags in the current graph space.

vid The vertex ID.

YIELD Define the output to be returned. The defined properties and VertexID are returned. For details, see YIELD .

If there is no YIELD clause, vertices_ is returned by default, which contains all the information about the

vertex.

AS Set an alias.

nebula> FETCH PROP ON player "player100";
+--+
| vertices_ |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> FETCH PROP ON player "player100" \
 YIELD properties(vertex).name AS name;
+-------------+--------------+
| VertexID | name |
+-------------+--------------+
| "player100" | "Tim Duncan" |
+-------------+--------------+

nebula> FETCH PROP ON player "player101", "player102", "player103";
+---+
| vertices_ |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
| ("player103" :player{age: 32, name: "Rudy Gay"}) |
+---+

4.6.4 FETCH

- 175/629 - 2021 Vesoft Inc.

You can combine multiple tags with multiple VIDs in a FETCH statement.

FETCH VERTEX PROPERTIES BY ALL TAGS

Set an asterisk symbol * to fetch properties by all tags in the current graph space.

Fetch edge properties

SYNTAX

FETCH ALL PROPERTIES OF AN EDGE

The following statement fetches all the properties of the serve edge that connects vertex "player100" and vertex "team204" .

FETCH SPECIFIC PROPERTIES OF AN EDGE

Use a YIELD clause to fetch specific properties of an edge.

The following example creates a new tag t1.
nebula> CREATE TAG t1(a string, b int);

The following example attaches t1 to the vertex "player100".
nebula> INSERT VERTEX t1(a, b) VALUE "player100":("Hello", 100);

The following example fetches the properties of vertex "player100" by the tags player and t1.
nebula> FETCH PROP ON player, t1 "player100";
+--+
| vertices_ |
+--+
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> FETCH PROP ON player, t1 "player100", "player103";
+--+
| vertices_ |
+--+
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
| ("player103" :player{age: 32, name: "Rudy Gay"}) |
+--+

nebula> FETCH PROP ON * "player100", "player106", "team200";
+--+
| vertices_ |
+--+
| ("player106" :player{age: 25, name: "Kyle Anderson"}) |
| ("team200" :team{name: "Warriors"}) |
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
+--+

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]
[YIELD <output>]

Parameter Description

edge_type The name of the edge type.

src_vid The VID of the source vertex. It specifies the start of an edge.

dst_vid The VID of the destination vertex. It specifies the end of an edge.

rank The rank of the edge. It is optional and defaults to 0 . It distinguishes an edge from other edges with the

same edge type, source vertex, destination vertex, and rank.

YIELD Define the output to be returned. The defined properties, SrcVertexID , DstVertexID , and rank are returned.

For details, see YIELD . If there is no YIELD clause, edges_ is returned by default, which contains all the

information about the edge.

nebula> FETCH PROP ON serve "player100" -> "team204";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+

4.6.4 FETCH

- 176/629 - 2021 Vesoft Inc.

FETCH PROPERTIES OF MULTIPLE EDGES

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to fetch properties of multiple edges. Separate the edge patterns

with commas.

Fetch properties based on edge rank

If there are multiple edges with the same edge type, source vertex, and destination vertex, you can specify the rank to fetch the

properties on the correct edge.

Use FETCH in composite queries

A common way to use FETCH is to combine it with native nGQL such as GO .

The following statement returns the degree values of the follow edges that start from vertex "player101" .

Or you can use user-defined variables to construct similar queries.

nebula> FETCH PROP ON serve "player100" -> "team204" \
 YIELD properties(edge).start_year;
+-------------+------------+-------------+-----------------------------+
| serve._src | serve._dst | serve._rank | properties(EDGE).start_year |
+-------------+------------+-------------+-----------------------------+
| "player100" | "team204" | 0 | 1997 |
+-------------+------------+-------------+-----------------------------+

nebula> FETCH PROP ON serve "player100" -> "team204", "player133" -> "team202";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
| [:serve "player133"->"team202" @0 {end_year: 2011, start_year: 2002}] |
+---+

The following example inserts edges with different ranks and property values.
nebula> insert edge serve(start_year,end_year) \
 values "player100"->"team204"@1:(1998, 2017);

nebula> insert edge serve(start_year,end_year) \
 values "player100"->"team204"@2:(1990, 2018);

By default, the FETCH statement returns the edge whose rank is 0.
nebula> FETCH PROP ON serve "player100" -> "team204";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+

To fetch on an edge whose rank is not 0, set its rank in the FETCH statement.
nebula> FETCH PROP ON serve "player100" -> "team204"@1;
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @1 {end_year: 2017, start_year: 1998}] |
+---+

nebula> GO FROM "player101" OVER follow \
 YIELD src(edge) AS s, dst(edge) AS d \
 | FETCH PROP ON follow $-.s -> $-.d \
 YIELD properties(edge).degree;
+-------------+-------------+--------------+-------------------------+
| follow._src | follow._dst | follow._rank | properties(EDGE).degree |
+-------------+-------------+--------------+-------------------------+
"player101"	"player100"	0	95
"player101"	"player102"	0	90
"player101"	"player125"	0	95
+-------------+-------------+--------------+-------------------------+

4.6.4 FETCH

- 177/629 - 2021 Vesoft Inc.

For more information about composite queries, see Composite queries (clause structure).

nebula> $var = GO FROM "player101" OVER follow \
 YIELD src(edge) AS s, dst(edge) AS d; \
 FETCH PROP ON follow $var.s -> $var.d \
 YIELD properties(edge).degree;
+-------------+-------------+--------------+-------------------------+
| follow._src | follow._dst | follow._rank | properties(EDGE).degree |
+-------------+-------------+--------------+-------------------------+
"player101"	"player100"	0	95
"player101"	"player102"	0	90
"player101"	"player125"	0	95
+-------------+-------------+--------------+-------------------------+

Last update: November 1, 2021

4.6.4 FETCH

- 178/629 - 2021 Vesoft Inc.

4.6.5 UNWIND

The UNWIND statement splits a list into separated rows.

UNWIND can function as an individual statement or a clause in a statement.

Syntax

Split a list

The following example splits the list [1,2,3] into three rows.

Return a list with distinct items

Use WITH DISTINCT in the UNWIND statement to return a list with distinct items.

EXAMPLE 1

The following statement:

Splits the list [1,1,2,2,3,3] into rows.

Removes duplicated rows.

Sorts the rows.

Transforms the rows to a list.

Example 2

The following statement:

Outputs the vertices on the matched path into a list.

Splits the list into rows.

Removes duplicated rows.

Transforms the rows to a list.

UNWIND <list> AS <alias> <RETURN clause>;

nebula> UNWIND [1,2,3] AS n RETURN n;
+---+
| n |
+---+
| 1 |
| 2 |
| 3 |
+---+

1.

2.

3.

4.

nebula> WITH [1,1,2,2,3,3] AS n \
 UNWIND n AS r \
 WITH DISTINCT r AS r \
 ORDER BY r \
 RETURN collect(r);
+------------+
| collect(r) |
+------------+
| [1, 2, 3] |
+------------+

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--(v2) \
 WITH nodes(p) AS n \
 UNWIND n AS r \
 WITH DISTINCT r AS r \
 RETURN collect(r);
+--+
| collect(r) |
+--+
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}),
("team204" :team{name: "Spurs"}), ("player102" :player{age: 33, name: "LaMarcus Aldridge"}),

4.6.5 UNWIND

- 179/629 - 2021 Vesoft Inc.

("player125" :player{age: 41, name: "Manu Ginobili"}), ("player104" :player{age: 32, name: "Marco Belinelli"}),
("player144" :player{age: 47, name: "Shaquile O'Neal"}), ("player105" :player{age: 31, name: "Danny Green"}),
("player113" :player{age: 29, name: "Dejounte Murray"}), ("player107" :player{age: 32, name: "Aron Baynes"}),
("player109" :player{age: 34, name: "Tiago Splitter"}), ("player108" :player{age: 36, name: "Boris Diaw"})] |
+--+

Last update: November 1, 2021

4.6.5 UNWIND

- 180/629 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW CHARSET

The SHOW CHARSET statement shows the available character sets.

Currently available types are utf8 and utf8mb4 . The default charset type is utf8 . Nebula Graph extends the uft8 to support four-

byte characters. Therefore utf8 and utf8mb4 are equivalent.

SYNTAX

EXAMPLE

| Parameter | Description | |---------------------+--| | Charset | The name of the character set. | |

Description | The description of the character set. | | Default collation | The default collation of the character set. | | Maxlen | The

maximum number of bytes required to store one character. |

SHOW CHARSET;

nebula> SHOW CHARSET;
+---------+-----------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------+-------------------+--------+
| "utf8" | "UTF-8 Unicode" | "utf8_bin" | 4 |
+---------+-----------------+-------------------+--------+

Last update: November 1, 2021

4.6.6 SHOW

- 181/629 - 2021 Vesoft Inc.

SHOW COLLATION

The SHOW COLLATION statement shows the collations supported by Nebula Graph.

Currently available types are: utf8_bin , utf8_general_ci , utf8mb4_bin , and utf8mb4_general_ci .

When the character set is utf8 , the default collate is utf8_bin .

When the character set is utf8mb4 , the default collate is utf8mb4_bin .

Both utf8mb4_bin and utf8mb4_general_ci are case-insensitive.

SYNTAX

EXAMPLE

•

•

•

SHOW COLLATION;

nebula> SHOW COLLATION;
+------------+---------+
| Collation | Charset |
+------------+---------+
| "utf8_bin" | "utf8" |
+------------+---------+

Parameter Description

Collation The name of the collation.

Charset The name of the character set with which the collation is associated.

Last update: July 27, 2021

4.6.6 SHOW

- 182/629 - 2021 Vesoft Inc.

SHOW CREATE SPACE

The SHOW CREATE SPACE statement shows the creating statement of the specified graph space.

For details about the graph space information, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW CREATE SPACE <space_name>;

nebula> SHOW CREATE SPACE basketballplayer;
+--------------------
+--+
| Space | Create
Space |
+--------------------
+--+
| "basketballplayer" | "CREATE SPACE `basketballplayer` (partition_num = 10, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(32)) ON
default" |
+--------------------
+--+

Last update: November 2, 2021

4.6.6 SHOW

- 183/629 - 2021 Vesoft Inc.

SHOW CREATE TAG/EDGE

The SHOW CREATE TAG statement shows the basic information of the specified tag. For details about the tag, see CREATE TAG.

The SHOW CREATE EDGE statement shows the basic information of the specified edge type. For details about the edge type, see

CREATE EDGE.

SYNTAX

EXAMPLES

SHOW CREATE {TAG <tag_name> | EDGE <edge_name>};

nebula> SHOW CREATE TAG player;
+----------+-----------------------------------+
| Tag | Create Tag |
+----------+-----------------------------------+
"player"	"CREATE TAG `player` (
	`name` string NULL,
	`age` int64 NULL
) ttl_duration = 0, ttl_col = """
+----------+-----------------------------------+

nebula> SHOW CREATE EDGE follow;
+----------+-----------------------------------+
| Edge | Create Edge |
+----------+-----------------------------------+
"follow"	"CREATE EDGE `follow` (
	`degree` int64 NULL
) ttl_duration = 0, ttl_col = """
+----------+-----------------------------------+

Last update: November 2, 2021

4.6.6 SHOW

- 184/629 - 2021 Vesoft Inc.

SHOW HOSTS

The SHOW HOSTS statement shows the host and version information of Graph Service, Storage Service, and Meta Service.

SYNTAX

If you return SHOW HOSTS without the service name, it will show the host information of Storage Service, as well as the leader

number, leader distribution, and partition distribution.

EXAMPLES

SHOW HOSTS [GRAPH | STORAGE | META];

nebula> SHOW HOSTS;
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
"storaged0"	9779	"ONLINE"	8	"docs:5, basketballplayer:3"	"docs:5, basketballplayer:3"
"storaged1"	9779	"ONLINE"	9	"basketballplayer:4, docs:5"	"docs:5, basketballplayer:4"
"storaged2"	9779	"ONLINE"	8	"basketballplayer:3, docs:5"	"docs:5, basketballplayer:3"
+-------------+-------+----------+--------------+----------------------------------+------------------------------+

nebula> SHOW HOSTS GRAPH;
+-----------+------+----------+---------+---------------+--------+
| Host | Port | Status | Role | Git Info Sha | Version |
+-----------+------+----------+---------+--------------+---------+
"graphd"	9669	"ONLINE"	"GRAPH"	"3ba41bd"	"2.6.0"
"graphd1"	9669	"ONLINE"	"GRAPH"	"3ba41bd"	"2.6.0"
"graphd2"	9669	"ONLINE"	"GRAPH"	"3ba41bd"	"2.6.0"
+-----------+------+----------+---------+--------------+---------+

nebula> SHOW HOSTS STORAGE;
+-------------+------+----------+-----------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+-------------+------+----------+-----------+--------------+---------+
"storaged0"	9779	"ONLINE"	"STORAGE"	"3ba41bd"	"2.6.0"
"storaged1"	9779	"ONLINE"	"STORAGE"	"3ba41bd"	"2.6.0"
"storaged2"	9779	"ONLINE"	"STORAGE"	"3ba41bd"	"2.6.0"
+-------------+------+----------+-----------+--------------+---------+

nebula> SHOW HOSTS META;
+----------+------+----------+--------+--------------+---------+
| Host | Port | Status | Role | Git Info Sha | Version |
+----------+------+----------+--------+--------------+---------+
"metad2"	9559	"ONLINE"	"META"	"3ba41bd"	"2.6.0"
"metad0"	9559	"ONLINE"	"META"	"3ba41bd"	"2.6.0"
"metad1"	9559	"ONLINE"	"META"	"3ba41bd"	"2.6.0"
+----------+------+----------+--------+--------------+---------+

Last update: November 2, 2021

4.6.6 SHOW

- 185/629 - 2021 Vesoft Inc.

SHOW INDEX STATUS

The SHOW INDEX STATUS statement shows the status of jobs that rebuild native indexes, which helps check whether a native index is

successfully rebuilt or not.

SYNTAX

EXAMPLES

RELATED TOPICS

Job manager and the JOB statements

REBUILD NATIVE INDEX

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;
+------------------------------------+--------------+
| Name | Index Status |
+------------------------------------+--------------+
"date1_index"	"FINISHED"
"basketballplayer_all_tag_indexes"	"FINISHED"
"any_shape_geo_index"	"FINISHED"
+------------------------------------+--------------+

nebula> SHOW EDGE INDEX STATUS;
+----------------+--------------+
| Name | Index Status |
+----------------+--------------+
| "follow_index" | "FINISHED" |
+----------------+--------------+

•

•

Last update: November 2, 2021

4.6.6 SHOW

- 186/629 - 2021 Vesoft Inc.

SHOW INDEXES

The SHOW INDEXES statement shows the names of existing native indexes.

SYNTAX

EXAMPLES

SHOW {TAG | EDGE} INDEXES;

nebula> SHOW TAG INDEXES;
+------------------+--------------+-----------------+
| Index Name | By Tag | Columns |
+------------------+--------------+-----------------+
"fix"	"fix_string"	["p1"]
"player_index_0"	"player"	["name"]
"player_index_1"	"player"	["name", "age"]
"var"	"var_string"	["p1"]
+------------------+--------------+-----------------+

nebula> SHOW EDGE INDEXES;
+----------------+----------+---------+
| Index Name | By Edge | Columns |
+----------------+----------+---------+
| "follow_index" | "follow" | [] |
+----------------+----------+---------+

In Nebula Graph 2.0.1, SHOW TAG/EDGE INDEXES only returns Names .

Legacy version compatibility

Last update: November 1, 2021

4.6.6 SHOW

- 187/629 - 2021 Vesoft Inc.

SHOW PARTS

The SHOW PARTS statement shows the information of a specified partition or all partitions in a graph space.

SYNTAX

EXAMPLES

The descriptions are as follows.

SHOW PARTS [<part_id>];

nebula> SHOW PARTS;
+--------------+--------------------+--------------------+-------+
| Partition ID | Leader | Peers | Losts |
+--------------+--------------------+--------------------+-------+
1	"192.168.2.1:9779"	"192.168.2.1:9779"	""
2	"192.168.2.2:9779"	"192.168.2.2:9779"	""
3	"192.168.2.3:9779"	"192.168.2.3:9779"	""
4	"192.168.2.1:9779"	"192.168.2.1:9779"	""
5	"192.168.2.2:9779"	"192.168.2.2:9779"	""
6	"192.168.2.3:9779"	"192.168.2.3:9779"	""
7	"192.168.2.1:9779"	"192.168.2.1:9779"	""
8	"192.168.2.2:9779"	"192.168.2.2:9779"	""
9	"192.168.2.3:9779"	"192.168.2.3:9779"	""
10	"192.168.2.1:9779"	"192.168.2.1:9779"	""
+--------------+--------------------+--------------------+-------+

nebula> SHOW PARTS 1;
+--------------+--------------------+--------------------+-------+
| Partition ID | Leader | Peers | Losts |
+--------------+--------------------+--------------------+-------+
| 1 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |
+--------------+--------------------+--------------------+-------+

Parameter Description

Partition ID The ID of the partition.

Leader The IP address and the port of the leader.

Peers The IP addresses and the ports of all the replicas.

Losts The IP addresses and the ports of replicas at fault.

Last update: November 1, 2021

4.6.6 SHOW

- 188/629 - 2021 Vesoft Inc.

SHOW ROLES

The SHOW ROLES statement shows the roles that are assigned to a user account.

The return message differs according to the role of the user who is running this statement:

If the user is a GOD or ADMIN and is granted access to the specified graph space, Nebula Graph shows all roles in this graph

space except for GOD .

If the user is a DBA , USER , or GUEST and is granted access to the specified graph space, Nebula Graph shows the user's own

role in this graph space.

If the user does not have access to the specified graph space, Nebula Graph returns PermissionError .

For more information about roles, see Roles and privileges.

SYNTAX

EXAMPLE

•

•

•

SHOW ROLES IN <space_name>;

nebula> SHOW ROLES in basketballplayer;
+---------+-----------+
| Account | Role Type |
+---------+-----------+
| "user1" | "ADMIN" |
+---------+-----------+

Last update: July 27, 2021

4.6.6 SHOW

- 189/629 - 2021 Vesoft Inc.

SHOW SNAPSHOTS

The SHOW SNAPSHOTS statement shows the information of all the snapshots.

For how to create a snapshot and backup data, see Snapshot.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW SNAPSHOTS statement.

SYNTAX

EXAMPLE

SHOW SNAPSHOTS;

nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+---+
| Name | Status | Hosts |
+--------------------------------+---------+---+
| "SNAPSHOT_2020_12_16_11_13_55" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |
| "SNAPSHOT_2020_12_16_11_14_10" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |
+--------------------------------+---------+---+

Last update: November 1, 2021

4.6.6 SHOW

- 190/629 - 2021 Vesoft Inc.

SHOW SPACES

The SHOW SPACES statement shows existing graph spaces in Nebula Graph.

For how to create a graph space, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW SPACES;

nebula> SHOW SPACES;
+---------------------+
| Name |
+---------------------+
| "docs" |
| "basketballplayer" |
+---------------------+

Last update: November 1, 2021

4.6.6 SHOW

- 191/629 - 2021 Vesoft Inc.

SHOW STATS

The SHOW STATS statement shows the statistics of the graph space collected by the latest STATS job.

The statistics include the following information:

The number of vertices in the graph space

The number of edges in the graph space

The number of vertices of each tag

The number of edges of each edge type

PREREQUISITES

You have to run the SUBMIT JOB STATS statement in the graph space where you want to collect statistics. For more information, see

SUBMIT JOB STATS.

SYNTAX

EXAMPLES

•

•

•

•

The result of the SHOW STATS statement is based on the last executed SUBMIT JOB STATS statement. If you want to update the result,

run SUBMIT JOB STATS again. Otherwise the statistics will be wrong.

Caution

SHOW STATS;

Choose a graph space.
nebula> USE basketballplayer;

Start SUBMIT JOB STATS.
nebula> SUBMIT JOB STATS;
+------------+
| New Job Id |
+------------+
| 98 |
+------------+

Make sure the job executes successfully.
nebula> SHOW JOB 98;
+----------------+---------------+------------+----------------------------+----------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------+------------+----------------------------+----------------------------+
98	"STATS"	"FINISHED"	2021-11-01T09:33:21.000000	2021-11-01T09:33:21.000000
0	"storaged2"	"FINISHED"	2021-11-01T09:33:21.000000	2021-11-01T09:33:21.000000
1	"storaged0"	"FINISHED"	2021-11-01T09:33:21.000000	2021-11-01T09:33:21.000000
2	"storaged1"	"FINISHED"	2021-11-01T09:33:21.000000	2021-11-01T09:33:21.000000
+----------------+---------------+------------+----------------------------+----------------------------+

Show the statistics of the graph space.
nebula> SHOW STATS;
+---------+------------+-------+
| Type | Name | Count |
+---------+------------+-------+
"Tag"	"player"	51
"Tag"	"team"	30
"Edge"	"follow"	81
"Edge"	"serve"	152
"Space"	"vertices"	81
"Space"	"edges"	233
+---------+------------+-------+

Last update: November 2, 2021

4.6.6 SHOW

- 192/629 - 2021 Vesoft Inc.

SHOW TAGS/EDGES

The SHOW TAGS statement shows all the tags in the current graph space.

The SHOW EDGES statement shows all the edge types in the current graph space.

SYNTAX

EXAMPLES

SHOW {TAGS | EDGES};

nebula> SHOW TAGS;
+----------+
| Name |
+----------+
| "player" |
| "star" |
| "team" |
+----------+

nebula> SHOW EDGES;
+----------+
| Name |
+----------+
| "follow" |
| "serve" |
+----------+

Last update: November 2, 2021

4.6.6 SHOW

- 193/629 - 2021 Vesoft Inc.

SHOW USERS

The SHOW USERS statement shows the user information.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW USERS statement.

SYNTAX

EXAMPLE

SHOW USERS;

nebula> SHOW USERS;
+---------+
| Account |
+---------+
| "root" |
| "user1" |
+---------+

Last update: November 1, 2021

4.6.6 SHOW

- 194/629 - 2021 Vesoft Inc.

SHOW SESSIONS

The SHOW SESSIONS statement shows the information of all the sessions. It can also show a specified session with its ID.

PRECAUTIONS

When you log in to the database using Nebula Console, a session will be created. The client will execute the API release to release

the session and clear the session information when you run exit after the operation ends.

If you exit the database in unexpected ways with the session_idle_timeout_secs in nebula-graphd.conf undetermined, the session

will not be released automatically.

For those sessions that are not automatically released, you need to delete them manually (TODO: coding).

SYNTAX

EXAMPLES

SHOW SESSIONS;
SHOW SESSION <Session_Id>;

nebula> SHOW SESSIONS;
+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+
| SessionId | UserName | SpaceName | CreateTime | UpdateTime | GraphAddr | Timezone | ClientIp |
+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+
1635128818397714	"root"	"test"	2021-10-25T02:26:58.397714	2021-10-25T08:31:31.846846	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1635254859271703	"root"	"basketballplayer"	2021-10-26T13:27:39.271703	2021-10-26T13:51:38.277704	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1634871229727322	"root"	"basketballplayer"	2021-10-22T02:53:49.727322	2021-10-22T02:53:56.564001	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1635750725840229	"root"	"basketballplayer"	2021-11-01T07:12:05.840229	2021-11-01T09:42:36.883617	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1635299224732060	"root"	"basketballplayer"	2021-10-27T01:47:04.732060	2021-10-27T09:04:31.741126	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1634628999765689	"root"	""	2021-10-19T07:36:39.765689	2021-10-19T07:36:39.768064	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1634886296595136	"root"	"basketballplayer"	2021-10-22T07:04:56.595136	2021-10-22T09:48:20.299364	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1634629179882439	"root"	"basketballplayer"	2021-10-19T07:39:39.882439	2021-10-19T09:34:52.153145	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1635246158961634	"root"	"basketballplayer"	2021-10-26T11:02:38.961634	2021-10-26T11:02:51.250897	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
1634785346839017	"root"	"basketballplayer"	2021-10-21T03:02:26.839017	2021-10-21T11:07:40.911329	"127.0.0.1:9669"	0	"::ffff:127.0.0.1"
+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

nebula> SHOW SESSION 1635254859271703;
+--------------+----------------------------+
| VariableName | Value |
+--------------+----------------------------+
"SessionID"	1635254859271703
"UserName"	"root"
"SpaceName"	"basketballplayer"
"CreateTime"	2021-10-26T13:27:39.271703
"UpdateTime"	2021-10-26T13:51:38.277704
"GraphAddr"	"127.0.0.1:9669"
"Timezone"	0
"ClientIp"	"::ffff:127.0.0.1"
+--------------+----------------------------+

Parameter Description

SessionId The session ID, namely the identifier of a session.

UserName The username in a session.

SpaceName The name of the graph space that the user uses currently. It is null ("") when you first log in because there

is no specified graph space.

CreateTime The time when the session is created, namely the time when the user logs in. The time zone is specified by

timezone_name in the configuration file.

UpdateTime The system will update the time when there is an operation. The time zone is specified by timezone_name in

the configuration file.

GraphAddr The IP address and port of the Graph server that hosts the session.

Timezone A reserved parameter that has no specified meaning for now.

ClientIp The IP address of the client.

Last update: November 2, 2021

4.6.6 SHOW

- 195/629 - 2021 Vesoft Inc.

SHOW QUERIES

The SHOW QUERIES statement shows the information of working queries in the current session.

PRECAUTIONS

The SHOW QUERIES statement gets the status of queries in the current session from the local cache with almost no latency.

The SHOW ALL QUERIES statement gets the information of queries in all the sessions from the Meta Service. The information will

be synchronized to the Meta Service according to the interval defined by session_reclaim_interval_secs . Therefore the

information that you get from the client may belong to the last synchronization interval.

SYNTAX

EXAMPLES

To terminate queries, see Kill Query.

Note

•

•

SHOW [ALL] QUERIES;

nebula> SHOW QUERIES;
+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------+
| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |
+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------+
| 1625463842921750 | 46 | "root" | ""192.168.x.x":9669" | 2021-07-05T05:44:19.502903 | 0 | "RUNNING" | "SHOW QUERIES;" |
+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------+

nebula> SHOW ALL QUERIES;
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+
| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status |
Query |
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+
| 1625456037718757 | 54 | "user1" | ""192.168.x.x":9669" | 2021-07-05T05:51:08.691318 | 1504502 | "RUNNING" | "MATCH p=(v:player)-[*1..4]-(v2)
RETURN v2 AS Friends;" |
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+

The following statement returns the top 10 queries that have the longest duration.
nebula> SHOW ALL QUERIES | ORDER BY $-.DurationInUSec DESC | LIMIT 10;
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+
| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status |
Query |
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+
| 1625471375320831 | 98 | "user2" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.461779 | 2608176 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2)
RETURN v2 AS Friends;" |
| 1625456037718757 | 99 | "user1" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.910616 | 2159333 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2)
RETURN v2 AS Friends;" |
+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------
+---+

4.6.6 SHOW

- 196/629 - 2021 Vesoft Inc.

The descriptions are as follows.

Parameter Description

SessionID The session ID.

ExecutionPlanID The ID of the execution plan.

User The username that executes the query.

Host The IP address and port of the Graph server that hosts the session.

StartTime The time when the query starts.

DurationInUSec The duration of the query. The unit is microsecond.

Status The current status of the query.

Query The query statement.

Last update: November 1, 2021

4.6.6 SHOW

- 197/629 - 2021 Vesoft Inc.

SHOW META LEADER

The SHOW META LEADER statement shows the information of the leader in the current Meta cluster.

For more information about the Meta service, see Meta service.

SYNTAX

EXAMPLE

SHOW META LEADER;

nebula> SHOW META LEADER;
+------------------+---------------------------+
| Meta Leader | secs from last heart beat |
+------------------+---------------------------+
| "127.0.0.1:9559" | 3 |
+------------------+---------------------------+

Parameter Description

Meta Leader Shows the information of the leader in the Meta cluster, including the IP address and port of the

server where the leader is located.

secs from last heart

beat

Indicates the time interval since the last heartbeat. This parameter is measured in seconds.

Last update: November 1, 2021

4.6.6 SHOW

- 198/629 - 2021 Vesoft Inc.

4.7 Clauses and options

4.7.1 GROUP BY

The GROUP BY clause can be used to aggregate data.

OpenCypher Compatibility

This topic applies to native nGQL only.

You can also use the count() function to aggregate data.

Syntax

The GROUP BY clause groups the rows with the same value. Then operations such as counting, sorting, and calculation can be

applied.

The GROUP BY clause works after the pipe symbol (|) and before a YIELD clause.

The aggregation_function() function supports avg() , sum() , max() , min() , count() , collect() , and std() .

Examples

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by player names, and

counts how many times the name shows up in the result set.

Group and calculate with functions

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by source vertices,

and returns the sum of degree values.

nebula> MATCH (v:player)<-[:follow]-(:player) RETURN v.name AS Name, count(*) as cnt ORDER BY cnt DESC;
+----------------------+-----+
| Name | cnt |
+----------------------+-----+
"Tim Duncan"	10
"LeBron James"	6
"Tony Parker"	5
"Chris Paul"	4
"Manu Ginobili"	4
+----------------------+-----+
...

| GROUP BY <var> YIELD <var>, <aggregation_function(var)>

nebula> GO FROM "player100" OVER follow BIDIRECT \
 YIELD properties($$).name as Name \
 | GROUP BY $-.Name \
 YIELD $-.Name as Player, count(*) AS Name_Count;
+---------------------+------------+
| Player | Name_Count |
+---------------------+------------+
"Shaquille O'Neal"	1
"Tiago Splitter"	1
"Manu Ginobili"	2
"Boris Diaw"	1
"LaMarcus Aldridge"	1
"Tony Parker"	2
"Marco Belinelli"	1
"Dejounte Murray"	1
"Danny Green"	1
"Aron Baynes"	1
+---------------------+------------+

nebula> GO FROM "player100" OVER follow \
 YIELD src(edge) AS player, properties(edge).degree AS degree \
 | GROUP BY $-.player \
 YIELD sum($-.degree);

4.7 Clauses and options

- 199/629 - 2021 Vesoft Inc.

For more information about the sum() function, see Built-in math functions.

+----------------+
| sum($-.degree) |
+----------------+
| 190 |
+----------------+

Last update: November 1, 2021

4.7.1 GROUP BY

- 200/629 - 2021 Vesoft Inc.

4.7.2 LIMIT AND SKIP

The LIMIT clause constrains the number of rows in the output. The usage of LIMIT in native nGQL statements and openCypher

compatible statements is different.

Native nGQL: Generally, a pipe | needs to be used before the LIMIT clause. The offset parameter can be set or omitted

directly after the LIMIT statement.

OpenCypher compatible statements: No pipes are permitted before the LIMIT clause. And you can use SKIP to indicate an

offset.

LIMIT in native nGQL statements

In native nGQL, LIMIT has general syntax and exclusive syntax in GO statements.

GENERAL LIMIT SYNTAX IN NATIVE NGQL STATEMENTS

In native nGQL, the general LIMIT syntax works the same as in SQL . The LIMIT clause accepts one or two parameters. The values

of both parameters must be non-negative integers and be used after a pipe. The syntax and description are as follows:

For example:

•

•

When using LIMIT in either syntax above, it is important to use an ORDER BY clause that constrains the output into a unique order.

Otherwise, you will get an unpredictable subset of the output.

Note

In Nebula Graph 2.6.0, GO statements support the new LIMIT syntax. Some operators related to LIMIT support computing pushdown.

Legacy version compatibility

... | LIMIT [<offset>,] <number_rows>;

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

The following example returns the top 3 rows of data from the result.
nebula> LOOKUP ON player |\
 LIMIT 3;
+-------------+
| VertexID |
+-------------+
| "player100" |
| "player101" |
| "player102" |
+-------------+

The following example returns the 3 rows of data starting from the second row of the sorted output.
nebula> GO FROM "player100" OVER follow REVERSELY \
 YIELD properties($$).name AS Friend, properties($$).age AS Age \
 | ORDER BY $-.Age, $-.Friend \
 | LIMIT 1, 3;
+-------------------+-----+
| Friend | Age |
+-------------------+-----+
"Danny Green"	31
"Aron Baynes"	32
"Marco Belinelli"	32
+-------------------+-----+

4.7.2 LIMIT AND SKIP

- 201/629 - 2021 Vesoft Inc.

LIMIT IN GO STATEMENTS

In addition to the general syntax in the native nGQL, the LIMIT in the GO statement also supports limiting the number of output

results based on edges.

Syntax:

limit_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * LIMIT <limit_list> as an example to

introduce this usage of LIMIT in detail.

The list limit_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * LIMIT [1,2,4] .

1 in LIMIT [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to

select 2 edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third

step.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their

source and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent

there is no path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the

red edges of the third step and the vertices at both ends.

In the basketballplayer dataset, the example is as follows:

<go_statement> LIMIT <limit_list>;

•

•

•

nebula> GO 3 STEPS FROM "player100" \
 OVER * \
 YIELD properties($$).name AS NAME, properties($$).age AS Age \
 LIMIT [3,3,3];
+-----------------+--------------+
| NAME | Age |
+-----------------+--------------+

4.7.2 LIMIT AND SKIP

- 202/629 - 2021 Vesoft Inc.

LIMIT in openCypher compatible statements

In openCypher compatible statements such as MATCH , there is no need to use a pipe when LIMIT is used. The syntax and

description are as follows:

Both offset and number_rows accept expressions, but the result of the expression must be a non-negative integer.

EXAMPLES OF LIMIT

LIMIT can be used alone to return a specified number of results.

EXAMPLES OF SKIP

SKIP can be used alone to set the offset and return the data after the specified position.

"Spurs"	UNKNOWN_PROP
"Tony Parker"	36
"Manu Ginobili"	41
+-----------------+--------------+

nebula> GO 3 STEPS FROM "player102" \
 OVER * \
 LIMIT [rand32(5),rand32(5),rand32(5)];
+------------+-------------+---------------------+
| serve._dst | follow._dst | any_shape_edge._dst |
+------------+-------------+---------------------+
"team204"		
"team215"		
	"player100"	
+------------+-------------+---------------------+

... [SKIP <offset>] [LIMIT <number_rows>];

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

Fraction expressions composed of two integers are automatically floored to integers. For example, 8/6 is floored to 1.

Note

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age LIMIT 5;
+-------------------------+-----+
| Name | Age |
+-------------------------+-----+
"Luka Doncic"	20
"Ben Simmons"	22
"Kristaps Porzingis"	23
"Giannis Antetokounmpo"	24
"Kyle Anderson"	25
+-------------------------+-----+

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age LIMIT rand32(5);
+-------------------------+-----+
| Name | Age |
+-------------------------+-----+
"Luka Doncic"	20
"Ben Simmons"	22
"Kristaps Porzingis"	23
"Giannis Antetokounmpo"	24
+-------------------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Manu Ginobili" | 41 |
| "Tony Parker" | 36 |
+-----------------+-----+

4.7.2 LIMIT AND SKIP

- 203/629 - 2021 Vesoft Inc.

EXAMPLE OF SKIP AND LIMIT

SKIP and LIMIT can be used together to return the specified amount of data starting from the specified position.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1+1;
+---------------+-----+
| Name | Age |
+---------------+-----+
| "Tony Parker" | 36 |
+---------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1 LIMIT 1;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Manu Ginobili" | 41 |
+-----------------+-----+

Last update: November 2, 2021

4.7.2 LIMIT AND SKIP

- 204/629 - 2021 Vesoft Inc.

4.7.3 SAMPLE

The SAMPLE clause takes samples evenly in the result set and returns the specified amount of data.

SAMPLE can be used in GO statements only. The syntax is as follows:

sample_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE <sample_list> as an example to

introduce this usage of SAMPLE in detail.

The list sample_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE [1,2,4] .

1 in SAMPLE [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to

select 2 edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third

step. If there is no matched edge in a certain step or the number of matched edges is less than the specified number, the

actual number will be returned.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their

source and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent

there is no path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the

red edges of the third step and the vertices at both ends.

SAMPLE is a new clause added in Nebula Graph 2.6.0.

Legacy version compatibility

<go_statement> SAMPLE <sample_list>;

•

•

•

4.7.3 SAMPLE

- 205/629 - 2021 Vesoft Inc.

In the basketballplayer dataset, the example is as follows:

nebula> GO 3 STEPS FROM "player100" \
 OVER * \
 YIELD properties($$).name AS NAME, properties($$).age AS Age \
 SAMPLE [1,2,3];
+-----------------+--------------+
| NAME | Age |
+-----------------+--------------+
"Spurs"	UNKNOWN_PROP
"Tony Parker"	36
"Manu Ginobili"	41
+-----------------+--------------+

nebula> GO 1 TO 3 STEPS FROM "player100" \
 OVER * \
 YIELD properties($$).name AS NAME, properties($$).age AS Age \
 SAMPLE [2,2,2];
+---------------------+-----+
| NAME | Age |
+---------------------+-----+
"Manu Ginobili"	41
"Tony Parker"	36
"Tim Duncan"	42
"LaMarcus Aldridge"	33
"Tony Parker"	36
"Tim Duncan"	42
+---------------------+-----+

Last update: October 26, 2021

4.7.3 SAMPLE

- 206/629 - 2021 Vesoft Inc.

4.7.4 ORDER BY

The ORDER BY clause specifies the order of the rows in the output.

Native nGQL: You must use a pipe (|) and an ORDER BY clause after YIELD clause.

OpenCypher style: No pipes are permitted. The ORDER BY clause follows a RETURN clause.

There are two order options:

ASC : Ascending. ASC is the default order.

DESC : Descending.

Native nGQL Syntax

EXAMPLES

OpenCypher Syntax

EXAMPLES

•

•

•

•

<YIELD clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

In the native nGQL syntax, $-. must be used after ORDER BY . But it is not required in releases prior to 2.5.0.

Compatibility

nebula> FETCH PROP ON player "player100", "player101", "player102", "player103" \
 YIELD player.age AS age, player.name AS name \
 | ORDER BY $-.age ASC, $-.name DESC;
+-------------+-----+---------------------+
| VertexID | age | name |
+-------------+-----+---------------------+
"player103"	32	"Rudy Gay"
"player102"	33	"LaMarcus Aldridge"
"player101"	36	"Tony Parker"
"player100"	42	"Tim Duncan"
+-------------+-----+---------------------+

nebula> $var = GO FROM "player100" OVER follow \
 YIELD dst(edge) AS dst; \
 ORDER BY $var.dst DESC;
+-------------+
| dst |
+-------------+
| "player125" |
| "player101" |
+-------------+

<RETURN clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
 ORDER BY Name DESC;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
"Yao Ming"	38
"Vince Carter"	42
"Tracy McGrady"	39
"Tony Parker"	36
"Tim Duncan"	42
+-----------------+-----+
...

In the following example, nGQL sorts the rows by age first. If multiple people are of the same age, nGQL will then sort them by name.
nebula> MATCH (v:player) RETURN v.age AS Age, v.name AS Name \
 ORDER BY Age DESC, Name ASC;
+-----+-------------------+
| Age | Name |
+-----+-------------------+
| 47 | "Shaquille O'Neal" |

4.7.4 ORDER BY

- 207/629 - 2021 Vesoft Inc.

Order of NULL values

nGQL lists NULL values at the end of the output for ascending sorting, and at the start for descending sorting.

46	"Grant Hill"
45	"Jason Kidd"
45	"Steve Nash"
+-----+-------------------+
...

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age;
+-----------------+--------------+
| Name | Age |
+-----------------+--------------+
"Tony Parker"	36
"Manu Ginobili"	41
"Spurs"	UNKNOWN_PROP
+-----------------+--------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC;
+-----------------+--------------+
| Name | Age |
+-----------------+--------------+
"Spurs"	UNKNOWN_PROP
"Manu Ginobili"	41
"Tony Parker"	36
+-----------------+--------------+

Last update: November 1, 2021

4.7.4 ORDER BY

- 208/629 - 2021 Vesoft Inc.

4.7.5 RETURN

The RETURN clause defines the output of an nGQL query. To return multiple fields, separate them with commas.

RETURN can lead a clause or a statement:

A RETURN clause can work in openCypher statements in nGQL, such as MATCH or UNWIND .

A RETURN statement can work independently to output the result of an expression.

OpenCypher compatibility

This topic applies to the openCypher syntax in nGQL only. For native nGQL, use YIELD .

RETURN does not support the following openCypher features yet.

Return variables with uncommon characters, for example:

Set a pattern in the RETURN clause and return all elements that this pattern matches, for example:

Legacy version compatibility

In nGQL 1.x, RETURN works with native nGQL with the RETURN <var_ref> IF <var_ref> IS NOT NULL syntax.

In nGQL 2.0, RETURN does not work with native nGQL.

Map order description

When RETURN returns the map data structure, the order of key-value pairs is undefined.

Return vertices

Return edges

•

•

•

MATCH (`non-english_characters`:player) \
RETURN `non-english_characters`;

•

MATCH (v:player) \
RETURN (v)-[e]->(v2);

•

•

nebula> RETURN {age: 32, name: "Marco Belinelli"};
+------------------------------------+
| {age:32,name:"Marco Belinelli"} |
+------------------------------------+
| {age: 32, name: "Marco Belinelli"} |
+------------------------------------+

nebula> RETURN {zage: 32, name: "Marco Belinelli"};
+-------------------------------------+
| {zage:32,name:"Marco Belinelli"} |
+-------------------------------------+
| {name: "Marco Belinelli", zage: 32} |
+-------------------------------------+

nebula> MATCH (v:player) \
 RETURN v;
+---+
| v |
+---+
| ("player104" :player{age: 32, name: "Marco Belinelli"}) |
| ("player107" :player{age: 32, name: "Aron Baynes"}) |
| ("player116" :player{age: 34, name: "LeBron James"}) |
| ("player120" :player{age: 29, name: "James Harden"}) |
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
+---+
...

4.7.5 RETURN

- 209/629 - 2021 Vesoft Inc.

Return properties

To return a vertex or edge property, use the {<vertex_name>|<edge_name>}.<property> syntax.

Return all elements

To return all the elements that this pattern matches, use an asterisk (*).

Rename a field

Use the AS <alias> syntax to rename a field in the output.

nebula> MATCH (v:player)-[e]->() \
 RETURN e;
+--+
| e |
+--+
| [:follow "player104"->"player100" @0 {degree: 55}] |
| [:follow "player104"->"player101" @0 {degree: 50}] |
| [:follow "player104"->"player105" @0 {degree: 60}] |
| [:serve "player104"->"team200" @0 {end_year: 2009, start_year: 2007}] |
| [:serve "player104"->"team208" @0 {end_year: 2016, start_year: 2015}] |
+--+
...

nebula> MATCH (v:player) \
 RETURN v.name, v.age \
 LIMIT 3;
+-------------------+-------+
| v.name | v.age |
+-------------------+-------+
"Rajon Rondo"	33
"Rudy Gay"	32
"Dejounte Murray"	29
+-------------------+-------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN *;
+--+
| v |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
 RETURN *;
+--+---
+---+
| v | e |
v2 |
+--+---
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player101" @0 {degree: 95}] | ("player101" :player{age: 36, name:
"Tony Parker"}) |
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player125" @0 {degree: 95}] | ("player125" :player{age: 41, name:
"Manu Ginobili"}) |
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] | ("team204" :team{name:
"Spurs"}) |
+--+---
+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[:serve]->(v2) \
 RETURN v2.name AS Team;
+---------+
| Team |
+---------+
| "Spurs" |
+---------+

nebula> RETURN "Amber" AS Name;
+---------+
| Name |
+---------+
| "Amber" |
+---------+

4.7.5 RETURN

- 210/629 - 2021 Vesoft Inc.

Return a non-existing property

If a property matched does not exist, NULL is returned.

Return expression results

To return the results of expressions such as literals, functions, or predicates, set them in a RETURN clause.

Return unique fields

Use DISTINCT to remove duplicate fields in the result set.

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
 RETURN v2.name, type(e), v2.age;
+-----------------+----------+--------------+
| v2.name | type(e) | v2.age |
+-----------------+----------+--------------+
"Tony Parker"	"follow"	36
"Manu Ginobili"	"follow"	41
"Spurs"	"serve"	UNKNOWN_PROP
+-----------------+----------+--------------+

nebula> MATCH (v:player{name:"Tony Parker"})-->(v2:player) \
 RETURN DISTINCT v2.name, "Hello"+" graphs!", v2.age > 35;
+---------------------+------------------+-------------+
| v2.name | (Hello+ graphs!) | (v2.age>35) |
+---------------------+------------------+-------------+
"Tim Duncan"	"Hello graphs!"	true
"LaMarcus Aldridge"	"Hello graphs!"	false
"Manu Ginobili"	"Hello graphs!"	true
+---------------------+------------------+-------------+

nebula> RETURN 1+1;
+-------+
| (1+1) |
+-------+
| 2 |
+-------+

nebula> RETURN 3 > 1;
+-------+
| (3>1) |
+-------+
| true |
+-------+

nebula> RETURN 1+1, rand32(1, 5);
+-------+-------------+
| (1+1) | rand32(1,5) |
+-------+-------------+
| 2 | 1 |
+-------+-------------+

Before using DISTINCT.
nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \
 RETURN v2.name, v2.age;
+---------------------+--------+
| v2.name | v2.age |
+---------------------+--------+
"Tim Duncan"	42
"LaMarcus Aldridge"	33
"Marco Belinelli"	32
"Boris Diaw"	36
"Dejounte Murray"	29
"Tim Duncan"	42
"LaMarcus Aldridge"	33
"Manu Ginobili"	41
+---------------------+--------+

After using DISTINCT.
nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \
 RETURN DISTINCT v2.name, v2.age;
+---------------------+--------+
| v2.name | v2.age |
+---------------------+--------+
"Tim Duncan"	42
"LaMarcus Aldridge"	33
"Marco Belinelli"	32
"Boris Diaw"	36
"Dejounte Murray"	29
"Manu Ginobili"	41
+---------------------+--------+

4.7.5 RETURN

- 211/629 - 2021 Vesoft Inc.

Last update: November 1, 2021

4.7.5 RETURN

- 212/629 - 2021 Vesoft Inc.

4.7.6 TTL

TTL (Time To Live) specifies a timeout for a property. Once timed out, the property expires.

OpenCypher Compatibility

This topic applies to native nGQL only.

Precautions

You CANNOT modify a property schema with TTL options on it.

TTL options and indexes have coexistence issues.

+ TTL options and indexes CANNOT coexist on a tag or an edge type. If there is an index on a property, you cannot set TTL

options on other properties.

+ If there are TTL options on a tag, an edge type, or a property, you can still add an index on them.

Data expiration and deletion

VERTEX PROPERTY EXPIRATION

Vertex property expiration has the following impact.

If a vertex has only one tag, once a property of the vertex expires, the vertex expires.

If a vertex has multiple tags, once a property of the vertex expires, properties bound to the same tag with the expired

property also expire, but the vertex does not expire and other properties of it remain untouched.

EDGE PROPERTY EXPIRATION

Since an edge can have only one edge type, once an edge property expires, the edge expires.

DATA DELETION

The expired data are still stored on the disk, but queries will filter them out.

Nebula Graph automatically deletes the expired data and reclaims the disk space during the next compaction.

TTL options

The native nGQL TTL feature has the following options.

Use TTL options

You must use the TTL options together to set a valid timeout on a property.

•

•

•

•

If TTL is disabled, the corresponding data deleted after the last compaction can be queried again.

Note

Option Description

ttl_col Specifies the property to set a timeout on. The data type of the property must be int or timestamp .

ttl_duration Specifies the timeout adds-on value in seconds. The value must be a non-negative int64 number. A property

expires if the sum of its value and the ttl_duration value is smaller than the current timestamp. If the

ttl_duration value is 0 , the property never expires.

4.7.6 TTL

- 213/629 - 2021 Vesoft Inc.

SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS

If a tag or an edge type is already created, to set a timeout on a property bound to the tag or edge type, use ALTER to update the

tag or edge type.

SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

Use TTL options in the CREATE statement to set a timeout when creating a tag or an edge type. For more information, see CREATE

TAG and CREATE EDGE.

Remove a timeout

To disable TTL and remove the timeout on a property, you can use the following approaches.

Drop the property with the timeout.

Set ttl_col to an empty string.

Set ttl_duration to 0 . This operation keeps the TTL options and prevents the property from expiring and the property

schema from being modified.

Create a tag.
nebula> CREATE TAG t1 (a timestamp);

Use ALTER to update the tag and set the TTL options.
nebula> ALTER TAG t1 ttl_col = "a", ttl_duration = 5;

Insert a vertex with tag t1. The vertex expires 5 seconds after the insertion.
nebula> INSERT VERTEX t1(a) values "101":(now());

Create a tag and set the TTL options.
nebula> CREATE TAG t2(a int, b int, c string) ttl_duration= 100, ttl_col = "a";

Insert a vertex with tag t2. The timeout timestamp is 1612778164774 (1612778164674 + 100).
nebula> INSERT VERTEX t2(a, b, c) values "102":(1612778164674, 30, "Hello");

•

nebula> ALTER TAG t1 DROP (a);

•

nebula> ALTER TAG t1 ttl_col = "";

•

nebula> ALTER TAG t1 ttl_duration = 0;

Last update: August 5, 2021

4.7.6 TTL

- 214/629 - 2021 Vesoft Inc.

4.7.7 WHERE

The WHERE clause filters the output by conditions.

The WHERE clause usually works in the following queries:

Native nGQL: such as GO and LOOKUP .

OpenCypher syntax: such as MATCH and WITH .

OpenCypher compatibility

Using patterns in WHERE is not supported (TODO: planning), for example WHERE (v)-->(v2) .

Filtering on edge rank is a native nGQL feature. To retrieve the rank value in openCypher statements, use the rank() function,

such as MATCH (:player)-[e:follow]->() RETURN rank(e); .

Basic usage

DEFINE CONDITIONS WITH BOOLEAN OPERATORS

Use the boolean operators NOT , AND , OR , and XOR to define conditions in WHERE clauses. For the precedence of the operators, see

Precedence.

•

•

•

•

In the following examples, $$ and $^ are reference operators. For more information, see Operators.

Note

nebula> MATCH (v:player) \
 WHERE v.name == "Tim Duncan" \
 XOR (v.age < 30 AND v.name == "Yao Ming") \
 OR NOT (v.name == "Yao Ming" OR v.name == "Tim Duncan") \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
"Marco Belinelli"	32
"Aron Baynes"	32
"LeBron James"	34
"James Harden"	29
"Manu Ginobili"	41
+-------------------------+-------+
...

nebula> GO FROM "player100" \
 OVER follow \
 WHERE properties(edge).degree > 90 \
 OR properties($$).age != 33 \
 AND properties($$).name != "Tony Parker" \
 YIELD properties($$);
+----------------------------------+
| properties($$) |
+----------------------------------+
| {age: 41, name: "Manu Ginobili"} |
+----------------------------------+

4.7.7 WHERE

- 215/629 - 2021 Vesoft Inc.

FILTER ON PROPERTIES

Use vertex or edge properties to define conditions in WHERE clauses.

Filter on a vertex property:

Filter on an edge property:

FILTER ON DYNAMICALLY-CALCULATED PROPERTIES

FILTER ON EXISTING PROPERTIES

FILTER ON EDGE RANK

In nGQL, if a group of edges has the same source vertex, destination vertex, and properties, the only thing that distinguishes them

is the rank. Use rank conditions in WHERE clauses to filter such edges.

•

nebula> MATCH (v:player)-[e]->(v2) \
 WHERE v2.age < 25 \
 RETURN v2.name, v2.age;
+----------------------+--------+
| v2.name | v2.age |
+----------------------+--------+
"Luka Doncic"	20
"Kristaps Porzingis"	23
"Ben Simmons"	22
+----------------------+--------+

nebula> GO FROM "player100" \
 OVER follow \
 WHERE $^.player.age >= 42;
+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+

•

nebula> MATCH (v:player)-[e]->() \
 WHERE e.start_year < 2000 \
 RETURN DISTINCT v.name, v.age;
+--------------------+-------+
| v.name | v.age |
+--------------------+-------+
"Shaquille O'Neal"	47
"Steve Nash"	45
"Ray Allen"	43
"Grant Hill"	46
"Tony Parker"	36
+--------------------+-------+
...

nebula> GO FROM "player100" \
 OVER follow \
 WHERE follow.degree > 90;
+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+

nebula> MATCH (v:player) \
 WHERE v[toLower("AGE")] < 21 \
 RETURN v.name, v.age;
+---------------+-------+
| v.name | v.age |
+---------------+-------+
| "Luka Doncic" | 20 |
+---------------+-------+

nebula> MATCH (v:player) \
 WHERE exists(v.age) \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
| "Boris Diaw" | 36 |
| "DeAndre Jordan" | 30 |
+-------------------------+-------+

The following example creates test data.
nebula> CREATE SPACE test (vid_type=FIXED_STRING(30));

4.7.7 WHERE

- 216/629 - 2021 Vesoft Inc.

Filter on strings

Use STARTS WITH , ENDS WITH , or CONTAINS in WHERE clauses to match a specific part of a string. String matching is case-sensitive.

STARTS WITH

STARTS WITH will match the beginning of a string.

The following example uses STARTS WITH "T" to retrieve the information of players whose name starts with T .

If you use STARTS WITH "t" in the preceding statement, an empty set is returned because no name in the dataset starts with the

lowercase t .

ENDS WITH

ENDS WITH will match the ending of a string.

The following example uses ENDS WITH "r" to retrieve the information of players whose name ends with r .

CONTAINS

CONTAINS will match a certain part of a string.

The following example uses CONTAINS "Pa" to match the information of players whose name contains Pa .

nebula> USE test;
nebula> CREATE EDGE e1(p1 int);
nebula> CREATE TAG person(p1 int);
nebula> INSERT VERTEX person(p1) VALUES "1":(1);
nebula> INSERT VERTEX person(p1) VALUES "2":(2);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@0:(10);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@1:(11);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@2:(12);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@3:(13);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@4:(14);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@5:(15);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@6:(16);

The following example use rank to filter edges and retrieves edges with a rank greater than 2.
nebula> GO FROM "1" \
 OVER e1 \
 WHERE rank(edge) > 2 \
 YIELD src(edge), dst(edge), rank(edge) AS Rank, properties(edge).p1 | \
 ORDER BY $-.Rank DESC;
+-----------+-----------+------+---------------------+
| src(EDGE) | dst(EDGE) | Rank | properties(EDGE).p1 |
+-----------+-----------+------+---------------------+
"1"	"2"	6	16
"1"	"2"	5	15
"1"	"2"	4	14
"1"	"2"	3	13
+-----------+-----------+------+---------------------+

nebula> MATCH (v:player) \
 WHERE v.name STARTS WITH "T" \
 RETURN v.name, v.age;
+------------------+-------+
| v.name | v.age |
+------------------+-------+
"Tracy McGrady"	39
"Tony Parker"	36
"Tim Duncan"	42
"Tiago Splitter"	34
+------------------+-------+

nebula> MATCH (v:player) \
 WHERE v.name STARTS WITH "t" \
 RETURN v.name, v.age;
Empty set (time spent 5080/6474 us)

nebula> MATCH (v:player) \
 WHERE v.name ENDS WITH "r" \
 RETURN v.name, v.age;
+------------------+-------+
| v.name | v.age |
+------------------+-------+
"Vince Carter"	42
"Tony Parker"	36
"Tiago Splitter"	34
+------------------+-------+

4.7.7 WHERE

- 217/629 - 2021 Vesoft Inc.

NEGATIVE STRING MATCHING

You can use the boolean operator NOT to negate a string matching condition.

Filter on lists

MATCH VALUES IN A LIST

Use the IN operator to check if a value is in a specific list.

MATCH VALUES NOT IN A LIST

Use NOT before IN to rule out the values in a list.

nebula> MATCH (v:player) \
 WHERE v.name CONTAINS "Pa" \
 RETURN v.name, v.age;
+---------------+-------+
| v.name | v.age |
+---------------+-------+
"Paul George"	28
"Tony Parker"	36
"Paul Gasol"	38
"Chris Paul"	33
+---------------+-------+

nebula> MATCH (v:player) \
 WHERE NOT v.name ENDS WITH "R" \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
"Rajon Rondo"	33
"Rudy Gay"	32
"Dejounte Murray"	29
"Chris Paul"	33
"Carmelo Anthony"	34
+-------------------------+-------+
...

nebula> MATCH (v:player) \
 WHERE v.age IN range(20,25) \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
"Ben Simmons"	22
"Kristaps Porzingis"	23
"Luka Doncic"	20
"Kyle Anderson"	25
"Giannis Antetokounmpo"	24
"Joel Embiid"	25
+-------------------------+-------+

nebula> LOOKUP ON player \
 WHERE player.age IN [25,28] \
 YIELD properties(vertex).name, properties(vertex).age;
+-------------+-------------------------+------------------------+
| VertexID | properties(VERTEX).name | properties(VERTEX).age |
+-------------+-------------------------+------------------------+
"player106"	"Kyle Anderson"	25
"player135"	"Damian Lillard"	28
"player130"	"Joel Embiid"	25
"player131"	"Paul George"	28
"player123"	"Ricky Rubio"	28
+-------------+-------------------------+------------------------+

nebula> MATCH (v:player) \
 WHERE v.age NOT IN range(20,25) \
 RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age;
+---------------------+-----+
| Name | Age |
+---------------------+-----+
"Kyrie Irving"	26
"Cory Joseph"	27
"Damian Lillard"	28
"Paul George"	28
"Ricky Rubio"	28
+---------------------+-----+
...

4.7.7 WHERE

- 218/629 - 2021 Vesoft Inc.

Last update: November 1, 2021

4.7.7 WHERE

- 219/629 - 2021 Vesoft Inc.

4.7.8 YIELD

YIELD defines the output of an nGQL query.

YIELD can lead a clause or a statement:

A YIELD clause works in nGQL statements such as GO , FETCH , or LOOKUP .

A YIELD statement works in a composite query or independently.

OpenCypher compatibility

This topic applies to native nGQL only. For the openCypher syntax, use RETURN .

YIELD has different functions in openCypher and nGQL.

In openCypher, YIELD is used in the CALL[…YIELD] clause to specify the output of the procedure call.

In nGQL, YIELD works like RETURN in openCypher.

YIELD clauses

SYNTAX

USE A YIELD CLAUSE IN A STATEMENT

Use YIELD with GO :

•

•

•

NGQL does not support CALL[…YIELD] yet.

Note

•

In the following examples, $$ and $- are reference operators. For more information, see Operators.

Note

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...];

Parameter Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

•

nebula> GO FROM "player100" OVER follow \
 YIELD properties($$).name AS Friend, properties($$).age AS Age;
+-----------------+-----+
| Friend | Age |
+-----------------+-----+
| "Tony Parker" | 36 |

4.7.8 YIELD

- 220/629 - 2021 Vesoft Inc.

Use YIELD with FETCH :

Use YIELD with LOOKUP :

YIELD statements

SYNTAX

| Parameter | Description | |--------------+---| | DISTINCT | Aggregates the

output and makes the statement return a distinct result set. | | col | A field to be returned. If no alias is set, col will be a column

name in the output. | | alias | An alias for col . It is set after the keyword AS and will be a column name in the output. | | conditions

| Conditions set in a WHERE clause to filter the output. For more information, see WHERE . |

USE A YIELD STATEMENT IN A COMPOSITE QUERY

In a composite query, a YIELD statement accepts, filters, and modifies the result set of the preceding statement, and then outputs

it.

The following query finds the players that "player100" follows and calculates their average age.

The following query finds the players that "player101" follows with the follow degrees greater than 90.

USE A STANDALONE YIELD STATEMENT

A YIELD statement can calculate a valid expression and output the result.

| "Manu Ginobili" | 41 |
+-----------------+-----+

•

nebula> FETCH PROP ON player "player100" \
 YIELD properties(vertex).name;
+-------------+-------------------------+
| VertexID | properties(VERTEX).name |
+-------------+-------------------------+
| "player100" | UNKNOWN_PROP |
+-------------+-------------------------+

•

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
 YIELD properties(vertex).name, properties(vertex).age;
+-------------+-------------------------+------------------------+
| VertexID | properties(VERTEX).name | properties(VERTEX).age |
+-------------+-------------------------+------------------------+
| "player101" | "Tony Parker" | 36 |
+-------------+-------------------------+------------------------+

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]
[WHERE <conditions>];

nebula> GO FROM "player100" OVER follow \
 YIELD dst(edge) AS ID \
 | FETCH PROP ON player $-.ID \
 YIELD properties(vertex).age AS Age \
 | YIELD AVG($-.Age) as Avg_age, count(*)as Num_friends;
+---------+-------------+
| Avg_age | Num_friends |
+---------+-------------+
| 38.5 | 2 |
+---------+-------------+

nebula> $var1 = GO FROM "player101" OVER follow \
 YIELD properties(edge).degree AS Degree, dst(edge) as ID; \
 YIELD $var1.ID AS ID WHERE $var1.Degree > 90;
+-------------+
| ID |
+-------------+
| "player100" |
| "player125" |
+-------------+

nebula> YIELD rand32(1, 6);
+-------------+
| rand32(1,6) |
+-------------+
| 3 |
+-------------+

nebula> YIELD "Hel" + "\tlo" AS string1, ", World!" AS string2;

4.7.8 YIELD

- 221/629 - 2021 Vesoft Inc.

+-------------+------------+
| string1 | string2 |
+-------------+------------+
| "Hel lo" | ", World!" |
+-------------+------------+

nebula> YIELD hash("Tim") % 100;
+-----------------+
| (hash(Tim)%100) |
+-----------------+
| 42 |
+-----------------+

nebula> YIELD \
 CASE 2+3 \
 WHEN 4 THEN 0 \
 WHEN 5 THEN 1 \
 ELSE -1 \
 END \
 AS result;
+--------+
| result |
+--------+
| 1 |
+--------+

Last update: November 1, 2021

4.7.8 YIELD

- 222/629 - 2021 Vesoft Inc.

4.7.9 WITH

The WITH clause can retrieve the output from a query part, process it, and pass it to the next query part as the input.

OpenCypher compatibility

This topic applies to openCypher syntax only.

Combine statements and form a composite query

Use a WITH clause to combine statements and transfer the output of a statement as the input of another statement.

EXAMPLE 1

The following statement:

Matches a path.

Outputs all the vertices on the path to a list with the nodes() function.

Unwinds the list into rows.

Removes duplicated vertices and returns a set of distinct vertices.

EXAMPLE 2

The following statement:

Matches the vertex with the VID player100 .

Outputs all the tags of the vertex into a list with the labels() function.

Unwinds the list into rows.

Returns the output.

WITH has a similar function with the Pipe symbol in native nGQL, but they work in different ways. DO NOT use pipe symbols in the

openCypher syntax or use WITH in native nGQL statements.

Note

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
 WITH nodes(p) AS n \
 UNWIND n AS n1 \
 RETURN DISTINCT n1;
+---+
| n1 |
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
| ("player101" :player{age: 36, name: "Tony Parker"}) |
| ("team204" :team{name: "Spurs"}) |
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
| ("player104" :player{age: 32, name: "Marco Belinelli"}) |
| ("player144" :player{age: 47, name: "Shaquille O'Neal"}) |
| ("player105" :player{age: 31, name: "Danny Green"}) |
| ("player113" :player{age: 29, name: "Dejounte Murray"}) |
| ("player107" :player{age: 32, name: "Aron Baynes"}) |
| ("player109" :player{age: 34, name: "Tiago Splitter"}) |
| ("player108" :player{age: 36, name: "Boris Diaw"}) |
+---+

1.

2.

3.

4.

4.7.9 WITH

- 223/629 - 2021 Vesoft Inc.

Filter composite queries

WITH can work as a filter in the middle of a composite query.

Process the output before using collect()

Use a WITH clause to sort and limit the output before using collect() to transform the output into a list.

Use with RETURN

Set an alias using a WITH clause, and then output the result through a RETURN clause.

nebula> MATCH (v) \
 WHERE id(v)=="player100" \
 WITH labels(v) AS tags_unf \
 UNWIND tags_unf AS tags_f \
 RETURN tags_f;
+----------+
| tags_f |
+----------+
| "star" |
| "player" |
| "person" |
+----------+

nebula> MATCH (v:player)-->(v2:player) \
 WITH DISTINCT v2 AS v2, v2.age AS Age \
 ORDER BY Age \
 WHERE Age<25 \
 RETURN v2.name AS Name, Age;
+----------------------+-----+
| Name | Age |
+----------------------+-----+
"Luka Doncic"	20
"Ben Simmons"	22
"Kristaps Porzingis"	23
+----------------------+-----+

nebula> MATCH (v:player) \
 WITH v.name AS Name \
 ORDER BY Name DESC \
 LIMIT 3 \
 RETURN collect(Name);
+---+
| collect(Name) |
+---+
| ["Yao Ming", "Vince Carter", "Tracy McGrady"] |
+---+

nebula> WITH [1, 2, 3] AS list RETURN 3 IN list AS r;
+------+
| r |
+------+
| true |
+------+

nebula> WITH 4 AS one, 3 AS two RETURN one > two AS result;
+--------+
| result |
+--------+
| true |
+--------+

Last update: November 1, 2021

4.7.9 WITH

- 224/629 - 2021 Vesoft Inc.

4.8 Space statements

4.8.1 CREATE SPACE

Graph spaces are used to store data in a physically isolated way in Nebula Graph, which is similar to the database concept in

MySQL. The CREATE SPACE statement can create a new graph space or clone the schema of an existing graph space.

Prerequisites

Only the God role can use the CREATE SPACE statement. For more information, see AUTHENTICATION.

Syntax

CREATE GRAPH SPACES

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (
 [partition_num = <partition_number>,]
 [replica_factor = <replica_number>,]
 vid_type = {FIXED_STRING(<N>) | INT[64]}
)
 [ON <group_name>]
 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the related graph space exists. If it does not exist, a new one will be created. The graph

space existence detection here only compares the graph space name (excluding properties).

<graph_space_name> Uniquely identifies a graph space in a Nebula Graph instance. The name of the graph space is case-

sensitive and allows letters, numbers, or underlines. Keywords and reserved words are not allowed.

partition_num Specifies the number of partitions in each replica. The suggested number is five times the number of

the hard disks in the cluster. For example, if you have 3 hard disks in the cluster, we recommend that

you set 15 partitions. The default value is 100.

replica_factor Specifies the number of replicas in the cluster. The suggested number is 3 in a production environment

and 1 in a test environment. The replica number must be an odd number for the need of quorum-based

voting. The default value is 1.

vid_type A required parameter. Specifies the VID type in a graph space. Available values are FIXED_STRING(N)

and INT64 . INT equals to INT64 . FIXED_STRING(<N>) specifies the VID as a string, while INT64 specifies

it as an integer. N represents the maximum length of the VIDs. If you set a VID that is longer than N

characters, Nebula Graph throws an error.

ON <group_name> Specifies the Group to which a space belongs. For more information, see Group&Zone.

COMMENT The remarks of the graph space. The maximum length is 256 bytes. By default, there is no comments on

a space.

If the replica number is set to one, you will not be able to load balance or scale out the Nebula Graph Storage Service with the

BALANCE statement.

Caution

4.8 Space statements

- 225/629 - 2021 Vesoft Inc.

CLONE GRAPH SPACES

Examples

Restrictions on VID type change and VID length

In Nebula Graph 1.x, the VID type can only be INT64 and does not support string. In Nebula Graph 2.x, the VID type can be both

INT64 and FIXED_STRING(<N>) . You should specify the VID type when creating a graph space and keep consistency when using the

INSERT statement. Otherwise, Nebula Graph throws Wrong vertex id type: 1001 .

The length of the VID should not be longer than N characters. If it exceeds N , Nebula Graph throws The VID must be a 64-bit

integer or a string fitting space vertex id length limit. .

Caution

1.

2.

In the 2.x releases before 2.5.0, vid_type is not a required parameter and its default value is FIXED_STRING(8) .

Legacy version compatibility

graph_space_name , partition_num , replica_factor , vid_type , and comment cannot be modified once set. To modify them, drop the

current working graph space with DROP SPACE and create a new one with CREATE SPACE .

Note

CREATE SPACE <new_graph_space_name> AS <old_graph_space_name>;

Parameter Description

<new_graph_space_name> The name of the graph space that is newly created. The name of the graph space is case-sensitive

and allows letters, numbers, or underlines. Keywords and reserved words are not allowed. When a

new graph space is created, the schema of the old graph space <old_graph_space_name> will be

cloned, including its parameters (the number of partitions and replicas, etc.), Tag, Edge type, and

native indexes.

<old_graph_space_name> The name of the graph space that already exists.

The following example creates a graph space with a specified VID type and the maximum length. Other fields still use the default values.
nebula> CREATE SPACE my_space_1 (vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type.
nebula> CREATE SPACE my_space_2 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type, and adds a comment on it.
nebula> CREATE SPACE my_space_3 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30)) comment="Test the graph space";

Clone a graph space.
nebula> CREATE SPACE my_space_4 as my_space_3;
nebula> SHOW CREATE SPACE my_space_4;
+--------------
+---
+
| Space | Create
Space |
+--------------
+---
+
| "my_space_4" | "CREATE SPACE `my_space_4` (partition_num = 15, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(30)) ON default
comment = 'Test the graph space'" |
+--------------
+---
+

4.8.1 CREATE SPACE

- 226/629 - 2021 Vesoft Inc.

Implementation of the operation

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take one of the

following approaches:

Find the new graph space in the result of SHOW SPACES or DESCRIBE SPACE . If you cannot, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services. If the

heartbeat interval is too short (i.e., less than 5 seconds), disconnection between peers may happen because of the misjudgment of

machines in the distributed system.

Check partition distribution

On some large clusters, the partition distribution is possibly unbalanced because of the different startup times. You can run the

following command to do a check of the machine distribution.

To balance the request loads, use the following command.

Trying to use a newly created graph space may fail because the creation is implemented asynchronously.

Caution

•

•

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+--------------------------------+--------------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+--------------------------------+--------------------------------+
"storaged0"	9779	"ONLINE"	8	"basketballplayer:3, test:5"	"basketballplayer:10, test:10"
"storaged1"	9779	"ONLINE"	9	"basketballplayer:4, test:5"	"basketballplayer:10, test:10"
"storaged2"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:10, test:10"
"Total"			20	"basketballplayer:10, test:10"	"basketballplayer:30, test:30"
+-------------+------+----------+--------------+--------------------------------+--------------------------------+

nebula> BALANCE LEADER;
+-------------+------+----------+--------------+--------------------------------+--------------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+--------------------------------+--------------------------------+
"storaged0"	9779	"ONLINE"	7	"basketballplayer:3, test:4"	"basketballplayer:10, test:10"
"storaged1"	9779	"ONLINE"	7	"basketballplayer:4, test:3"	"basketballplayer:10, test:10"
"storaged2"	9779	"ONLINE"	6	"basketballplayer:3, test:3"	"basketballplayer:10, test:10"
"Total"			20	"basketballplayer:10, test:10"	"basketballplayer:30, test:30"
+-------------+------+----------+--------------+--------------------------------+--------------------------------+

Last update: November 1, 2021

4.8.1 CREATE SPACE

- 227/629 - 2021 Vesoft Inc.

4.8.2 USE

USE specifies a graph space as the current working graph space for subsequent queries.

Prerequisites

Running the USE statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

Examples

USE <graph_space_name>;

The following example specifies space1 as the current working graph space.
nebula> USE space1;

The following example traverses in space1.
nebula> GO FROM 1 OVER edge1;

The following example specifies space2 as the current working graph space.
nebula> USE space2;

The following example traverses in space2. Hereafter, you cannot read any data from space1, because these vertices and edges being traversed have no relevance with
space1.
nebula> GO FROM 2 OVER edge2;

You cannot use two graph spaces in one statement.

Different from Fabric Cypher, graph spaces in Nebula Graph are fully isolated from each other. Making a graph space as the working

graph space prevents you from accessing other spaces. The only way to traverse in a new graph space is to switch by the USE

statement. In Fabric Cypher, you can use two graph spaces in one statement (using the USE + CALL syntax). But in Nebula Graph, you

can only use one graph space in one statement.

Caution

Last update: August 13, 2021

4.8.2 USE

- 228/629 - 2021 Vesoft Inc.

4.8.3 SHOW SPACES

SHOW SPACES lists all the graph spaces in the Nebula Graph examples.

Syntax

Example

To create graph spaces, see CREATE SPACE.

SHOW SPACES;

nebula> SHOW SPACES;
+--------------------+
| Name |
+--------------------+
| "cba" |
| "basketballplayer" |
+--------------------+

Last update: November 1, 2021

4.8.3 SHOW SPACES

- 229/629 - 2021 Vesoft Inc.

4.8.4 DESCRIBE SPACE

DESCRIBE SPACE returns the information about the specified graph space.

Syntax

You can use DESC instead of DESCRIBE for short.

The DESCRIBE SPACE statement is different from the SHOW SPACES statement. For details about SHOW SPACES , see SHOW SPACES.

Example

DESC[RIBE] SPACE <graph_space_name>;

nebula> DESCRIBE SPACE basketballplayer;
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+---------+
| ID | Name | Partition Number | Replica Factor | Charset | Collate | Vid Type | Atomic Edge | Group | Comment |
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+---------+
| 1 | "basketballplayer" | 10 | 1 | "utf8" | "utf8_bin" | "FIXED_STRING(32)" | false | "default" | |
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+---------+

Last update: August 30, 2021

4.8.4 DESCRIBE SPACE

- 230/629 - 2021 Vesoft Inc.

4.8.5 DROP SPACE

DROP SPACE deletes everything in the specified graph space.

Prerequisites

Only the God role can use the DROP SPACE statement. For more information, see AUTHENTICATION.

Syntax

You can use the IF EXISTS keywords when dropping spaces. These keywords automatically detect if the related graph space exists.

If it exists, it will be deleted. Otherwise, no graph space will be deleted.

The DROP SPACE statement does not immediately remove all the files and directories from the disk. You can specify another graph

space with the USE statement and submit job compact .

DROP SPACE [IF EXISTS] <graph_space_name>;

BE CAUTIOUS about running the DROP SPACE statement.

Caution

Last update: August 13, 2021

4.8.5 DROP SPACE

- 231/629 - 2021 Vesoft Inc.

4.9 Tag statements

4.9.1 CREATE TAG

CREATE TAG creates a tag with the given name in a graph space.

OpenCypher compatibility

Tags in nGQL are similar to labels in openCypher. But they are also quite different. For example, the ways to create them are

different.

In openCypher, labels are created together with vertices in CREATE statements.

In nGQL, tags are created separately using CREATE TAG statements. Tags in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE TAG statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

To create a tag in a specific graph space, you must specify the current working space with the USE statement.

•

•

CREATE TAG [IF NOT EXISTS] <tag_name>
 (
 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']
 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]
)
 [TTL_DURATION = <ttl_duration>]
 [TTL_COL = <prop_name>]
 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the tag that you want to create exists. If it does not exist, a new one will be created. The tag

existence detection here only compares the tag names (excluding properties).

<tag_name> The tag name must be unique in a graph space. Once the tag name is set, it can not be altered. The rules

for permitted tag names are the same as those for graph space names. For prohibited names, see

Keywords and reserved words.

<prop_name> The name of the property. It must be unique for each tag. The rules for permitted property names are the

same as those for tag names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types and

Boolean.

NULL \| NOT

NULL

Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression supported

by Nebula Graph. If no value is specified, the default value is used when inserting a new vertex.

COMMENT The remarks of a certain property or the tag itself. The maximum length is 256 bytes. By default, there will

be no comments on a tag.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The expiration

threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the

data never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . A tag

can only specify one field as TTL_COL . For more information on TTL, see TTL options.

4.9 Tag statements

- 232/629 - 2021 Vesoft Inc.

EXAMPLES

Implementation of the operation

Trying to use a newly created tag may fail because the creation of the tag is implemented asynchronously.

Nebula Graph implements the creation of the tag in the next heartbeat cycle. To make sure the creation is successful, take one of

the following approaches:

Find the new tag in the result of SHOW TAGS . If you cannot, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

nebula> CREATE TAG player(name string, age int);

The following example creates a tag with no properties.
nebula> CREATE TAG no_property();

The following example creates a tag with a default value.
nebula> CREATE TAG player_with_default(name string, age int DEFAULT 20);

In the following example, the TTL of the create_time field is set to be 100 seconds.
nebula> CREATE TAG woman(name string, age int, \
 married bool, salary double, create_time timestamp) \
 TTL_DURATION = 100, TTL_COL = "create_time";

•

•

Last update: August 13, 2021

4.9.1 CREATE TAG

- 233/629 - 2021 Vesoft Inc.

4.9.2 DROP TAG

DROP TAG drops a tag with the given name in the current working graph space.

A vertex can have one or more tags.

If a vertex has only one tag, the vertex CANNOT be accessed after you drop it. But its edges are available. The vertex will be

dropped in the next compaction.

If a vertex has multiple tags, the vertex is still accessible after you drop one of them. But all the properties defined by this

dropped tag CANNOT be accessed.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

Prerequisites

Running the DROP TAG statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Before you drop a tag, make sure that the tag does not have any indexes. Otherwise, the conflict error

([ERROR (-8)]: Conflict!) will be returned when you run the DROP TAG statement. To drop an index, see DROP INDEX.

Syntax

IF NOT EXISTS : Detects if the tag that you want to drop exists. Only when it exists will it be dropped.

tag_name : Specifies the tag name that you want to drop. You can drop only one tag in one statement.

Example

•

•

•

•

DROP TAG [IF EXISTS] <tag_name>;

•

•

nebula> CREATE TAG test(p1 string, p2 int);
nebula> DROP TAG test;

In nGQL, there is no such statement to drop a certain tag of a vertex with the given name.

In openCypher, you can use the statement REMOVE v:LABEL to drop the tag LABLE of the vertex v .

In nGQL, after CREATE TAG and INSERT VERTEX , you can add a TAG on the vertex. But there is no way to drop the TAG afterward.

We recommend you to add a field to identify the logical deletion in the schema. For example, add removed to the schema of each tag.

Note

•

•

Last update: September 13, 2021

4.9.2 DROP TAG

- 234/629 - 2021 Vesoft Inc.

4.9.3 ALTER TAG

ALTER TAG alters the structure of a tag with the given name in a graph space. You can add or drop properties, and change the data

type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Prerequisites

Running the ALTER TAG statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Before you alter properties for a tag, make sure that the properties are not indexed. If the properties contain any indexes, the

conflict error [ERROR (-8)]: Conflict! will occur when you ALTER TAG . For more information on dropping an index, see DROP

INDEX.

Syntax

tag_name : Specifies the tag name that you want to alter. You can alter only one tag in one statement. Before you alter a tag,

make sure that the tag exists in the current working graph space. If the tag does not exist, an error will occur when you alter

it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER TAG statement, separated by commas.

Examples

Implementation of the operation

Trying to use a newly altered tag may fail because the alteration of the tag is implemented asynchronously.

Nebula Graph implements the alteration of the tag in the next heartbeat cycle. To make sure the alteration is successful, take one

of the following approaches:

Use DESCRIBE TAG to confirm that the tag information is updated. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

ALTER TAG <tag_name>
 <alter_definition> [[, alter_definition] ...]
 [ttl_definition [, ttl_definition] ...]
 [COMMENT = '<comment>'];

alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

nebula> CREATE TAG t1 (p1 string, p2 int);
nebula> ALTER TAG t1 ADD (p3 int, p4 string);
nebula> ALTER TAG t1 TTL_DURATION = 2, TTL_COL = "p2";
nebula> ALTER TAG t1 COMMENT = 'test1';

•

•

Last update: October 22, 2021

4.9.3 ALTER TAG

- 235/629 - 2021 Vesoft Inc.

4.9.4 SHOW TAGS

The SHOW TAGS statement shows the name of all tags in the current graph space.

You do not need any privileges for the graph space to run the SHOW TAGS statement. But the returned results are different based on

role privileges.

Syntax

Examples

SHOW TAGS;

nebula> SHOW TAGS;
+----------+
| Name |
+----------+
| "player" |
| "team" |
+----------+

Last update: November 1, 2021

4.9.4 SHOW TAGS

- 236/629 - 2021 Vesoft Inc.

4.9.5 DESCRIBE TAG

DESCRIBE TAG returns the information about a tag with the given name in a graph space, such as field names, data type, and so on.

Prerequisite

Running the DESCRIBE TAG statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] TAG <tag_name>;

nebula> DESCRIBE TAG player;
+--------+----------+-------+---------+---------+
| Field | Type | Null | Default | Comment |
+--------+----------+-------+---------+---------+
| "name" | "string" | "YES" | | |
| "age" | "int64" | "YES" | | |
+--------+----------+-------+---------+---------+

Last update: November 1, 2021

4.9.5 DESCRIBE TAG

- 237/629 - 2021 Vesoft Inc.

4.9.6 DELETE TAG

DELETE TAG deletes a tag with the given name on a specified vertex.

A vertex can have one or more tags.

If a vertex has only one tag, the vertex CANNOT be accessed after you delete the tag. But its edges are available. The vertex

will be deleted in the next compaction.

If a vertex has multiple tags, the vertex is still accessible after you delete one of them. But all the properties defined by this

deleted tag CANNOT be accessed.

Prerequisites

Running the DELETE TAG statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

tag_name_list : Specifies the name of the tag. Multiple tags are separated with commas (,). * means all tags.

VID : Specifies the VID of the tag to delete.

Example

•

•

DELETE TAG <tag_name_list> FROM <VID>;

•

•

nebula> CREATE TAG test1(p1 string, p2 int);
nebula> CREATE TAG test2(p3 string, p4 int);
nebula> INSERT VERTEX test1(p1, p2),test2(p3, p4) VALUES "test":("123", 1, "456", 2);
nebula> FETCH PROP ON * "test";
+--+
| vertices_ |
+--+
| ("test" :test2{p3: "456", p4: 2} :test1{p1: "123", p2: 1}) |
+--+

nebula> DELETE TAG test1 FROM "test";
nebula> FETCH PROP ON * "test";
+-----------------------------------+
| vertices_ |
+-----------------------------------+
| ("test" :test2{p3: "456", p4: 2}) |
+-----------------------------------+

nebula> DELETE TAG * FROM "test";
nebula> FETCH PROP ON * "test";
+-----------+
| vertices_ |
+-----------+
+-----------+

In openCypher, you can use the statement REMOVE v:LABEL to delete the tag LABEL of the vertex v .

DELETE TAG and DROP TAG have the same semantics but different syntax. In nGQL, use DELETE TAG .

Compatibility

•

•

Last update: October 20, 2021

4.9.6 DELETE TAG

- 238/629 - 2021 Vesoft Inc.

4.9.7 Add and delete tags

OpenCypher has the features of SET label and REMOVE label to speed up the process of querying or labeling.

Nebula Graph achieves the same operations by creating and inserting tags to an existing vertex, which can quickly query vertices

based on the tag name. Users can also run DELETE TAG to delete some vertices that are no longer needed.

Examples

For example, in the basketballplayer data set, some basketball players are also team shareholders. Users can create an index for

the shareholder tag shareholder for quick search. If the player is no longer a shareholder, users can delete the shareholder tag of

the corresponding player by DELETE TAG .

Make sure that there is another tag on the vertex. Otherwise, the vertex will be deleted when the last tag is deleted.

Caution

//This example creates the shareholder tag and index.
nebula> CREATE TAG shareholder();
nebula> CREATE TAG INDEX shareholder_tag on shareholder();

//This example adds a tag on the vertex.
nebula> INSERT VERTEX shareholder() VALUES "player100":();
nebula> INSERT VERTEX shareholder() VALUES "player101":();

//This example queries all the shareholders.
nebula> MATCH (v:shareholder) RETURN v;
+--+
| v |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"} :shareholder{}) |
| ("player101" :player{age: 36, name: "Tony Parker"} :shareholder{}) |
+--+
nebula> LOOKUP ON shareholder;
+-------------+
| VertexID |
+-------------+
| "player100" |
| "player101" |
+-------------+

//In this example, the "player100" is no longer a shareholder.
nebula> DELETE TAG shareholder FROM "player100";
nebula> LOOKUP ON shareholder;
+-------------+
| VertexID |
+-------------+
| "player101" |
+-------------+

If the index is created after inserting the test data, use the REBUILD TAG INDEX <index_name_list>; statement to rebuild the index.

Note

Last update: November 2, 2021

4.9.7 Add and delete tags

- 239/629 - 2021 Vesoft Inc.

4.10 Edge type statements

4.10.1 CREATE EDGE

CREATE EDGE creates an edge type with the given name in a graph space.

OpenCypher compatibility

Edge types in nGQL are similar to relationship types in openCypher. But they are also quite different. For example, the ways to

create them are different.

In openCypher, relationship types are created together with vertices in CREATE statements.

In nGQL, edge types are created separately using CREATE EDGE statements. Edge types in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE EDGE statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

To create an edge type in a specific graph space, you must specify the current working space with the USE statement.

EXAMPLES

•

•

CREATE EDGE [IF NOT EXISTS] <edge_type_name>
 (
 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']
 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]
)
 [TTL_DURATION = <ttl_duration>]
 [TTL_COL = <prop_name>]
 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the edge type that you want to create exists. If it does not exist, a new one will be created. The

edge type existence detection here only compares the edge type names (excluding properties).

<edge_type_name> The edge type name must be unique in a graph space. Once the edge type name is set, it can not be

altered. The rules for permitted edge type names are the same as those for graph space names. For

prohibited names, see Keywords and reserved words.

<prop_name> The name of the property. It must be unique for each edge type. The rules for permitted property names

are the same as those for edge type names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types

and Boolean.

NULL \| NOT NULL Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression

supported by Nebula Graph. If no value is specified, the default value is used when inserting a new edge.

COMMENT The remarks of a certain property or the edge type itself. The maximum length is 256 bytes. By default,

there will be no comments on an edge type.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The

expiration threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It

means the data never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . An

edge type can only specify one field as TTL_COL . For more information on TTL, see TTL options.

4.10 Edge type statements

- 240/629 - 2021 Vesoft Inc.

Implementation of the operation

Trying to use a newly created edge type may fail because the creation of the edge type is implemented asynchronously.

Nebula Graph implements the creation of the edge type in the next heartbeat cycle. To make sure the creation is successful, take

the following approaches:

Find the new edge type in the result of SHOW EDGES . If you cannot, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

nebula> CREATE EDGE follow(degree int);

The following example creates an edge type with no properties.
nebula> CREATE EDGE no_property();

The following example creates an edge type with a default value.
nebula> CREATE EDGE follow_with_default(degree int DEFAULT 20);

In the following example, the TTL of the p2 field is set to be 100 seconds.
nebula> CREATE EDGE e1(p1 string, p2 int, p3 timestamp) \
 TTL_DURATION = 100, TTL_COL = "p2";

•

•

Last update: August 13, 2021

4.10.1 CREATE EDGE

- 241/629 - 2021 Vesoft Inc.

4.10.2 DROP EDGE

DROP EDGE drops an edge type with the given name in a graph space.

An edge can have only one edge type. After you drop it, the edge CANNOT be accessed. The edge will be deleted in the next

compaction.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

Prerequisites

Running the DROP EDGE statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Before you drop an edge type, make sure that the edge type does not have any indexes. Otherwise, the conflict error ([ERROR

(-8)]: Conflict!) will be returned. To drop an index, see DROP INDEX.

Syntax

Edge type name

IF NOT EXISTS : Detects if the edge type that you want to drop exists. Only when it exists will it be dropped.

edge_type_name : Specifies the edge type name that you want to drop. You can drop only one edge type in one statement.

Example

•

•

DROP EDGE [IF EXISTS] <edge_type_name>

•

•

nebula> CREATE EDGE e1(p1 string, p2 int);
nebula> DROP EDGE e1;

Last update: August 13, 2021

4.10.2 DROP EDGE

- 242/629 - 2021 Vesoft Inc.

4.10.3 ALTER EDGE

ALTER EDGE alters the structure of an edge type with the given name in a graph space. You can add or drop properties, and change

the data type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Prerequisites

Running the ALTER EDGE statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Before you alter properties for an edge type, make sure that the properties are not indexed. If the properties contain any

indexes, the conflict error [ERROR (-8)]: Conflict! will occur when you ALTER EDGE . For more information on dropping an

index, see DROP INDEX.

Syntax

edge_type_name : Specifies the edge type name that you want to alter. You can alter only one edge type in one statement. Before

you alter an edge type, make sure that the edge type exists in the graph space. If the edge type does not exist, an error

occurs when you alter it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER EDGE statement, separated by commas.

Example

Implementation of the operation

Trying to use a newly altered edge type may fail because the alteration of the edge type is implemented asynchronously.

Nebula Graph implements the alteration of the edge type in the next heartbeat cycle. To make sure the alteration is successful,

take one of the following approaches:

Use DESCRIBE EDGE to confirm that the edge type information is updated. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

ALTER EDGE <edge_type_name>
 <alter_definition> [, alter_definition] ...]
 [ttl_definition [, ttl_definition] ...]
 [COMMENT = '<comment>'];

alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

nebula> CREATE EDGE e1(p1 string, p2 int);
nebula> ALTER EDGE e1 ADD (p3 int, p4 string);
nebula> ALTER EDGE e1 TTL_DURATION = 2, TTL_COL = "p2";
nebula> ALTER EDGE e1 COMMENT = 'edge1';

•

•

Last update: September 6, 2021

4.10.3 ALTER EDGE

- 243/629 - 2021 Vesoft Inc.

4.10.4 SHOW EDGES

SHOW EDGES shows all edge types in the current graph space.

You do not need any privileges for the graph space to run the SHOW EDGES statement. But the returned results are different based

on role privileges.

Syntax

Example

SHOW EDGES;

nebula> SHOW EDGES;
+----------+
| Name |
+----------+
| "follow" |
| "serve" |
+----------+

Last update: November 1, 2021

4.10.4 SHOW EDGES

- 244/629 - 2021 Vesoft Inc.

4.10.5 DESCRIBE EDGE

DESCRIBE EDGE returns the information about an edge type with the given name in a graph space, such as field names, data type,

and so on.

Prerequisites

Running the DESCRIBE EDGE statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] EDGE <edge_type_name>

nebula> DESCRIBE EDGE follow;
+----------+---------+-------+---------+---------+
| Field | Type | Null | Default | Comment |
+----------+---------+-------+---------+---------+
| "degree" | "int64" | "YES" | | |
+----------+---------+-------+---------+---------+

Last update: August 13, 2021

4.10.5 DESCRIBE EDGE

- 245/629 - 2021 Vesoft Inc.

4.11 Vertex statements

4.11.1 INSERT VERTEX

The INSERT VERTEX statement inserts one or more vertices into a graph space in Nebula Graph.

Prerequisites

Running the INSERT VERTEX statement requires some privileges for the graph space. Otherwise, Nebula Graph throws an error.

Syntax

IF NOT EXISTS detects if the VID that you want to insert exists. If it does not exist, a new one will be inserted.

tag_name denotes the tag (vertex type), which must be created before INSERT VERTEX . For more information, see CREATE TAG.

prop_name_list contains the names of the properties on the tag.

VID is the vertex ID. In Nebula Graph 2.0, string and integer VID types are supported. The VID type is set when a graph

space is created. For more information, see CREATE SPACE.

prop_value_list must provide the property values according to the prop_name_list . If the property values do not match the

data type in the tag, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if no

property is given. When the default value for a property is NULL , you can omit to specify the property value. For details, see

CREATE TAG.

Examples are as follows.

Examples

INSERT VERTEX [IF NOT EXISTS] <tag_name> (<prop_name_list>) [, <tag_name> (<prop_name_list>), ...]
 {VALUES | VALUE} VID: (<prop_value_list>[, <prop_value_list>])

prop_name_list:
 [prop_name [, prop_name] ...]

prop_value_list:
 [prop_value [, prop_value] ...]

•

IF NOT EXISTS only compares the names of the VID and the tag (excluding properties).

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

Note

•

•

•

•

•

•

INSERT VERTEX and CREATE have different semantics.

The semantics of INSERT VERTEX is closer to that of INSERT in NoSQL (key-value), or UPSERT (UPDATE or INSERT) in SQL.

When two INSERT statements (neither uses IF NOT EXISTS) with the same VID and TAG are operated at the same time, the latter

INSERT will overwrite the former.

When two INSERT statements with the same VID but different TAGS are operated at the same time, the operation of different

tags will not overwrite each other.

Caution

•

•

•

The following examples create tag t1 with no property and inserts vertex "10" with no property.
nebula> CREATE TAG t1();
nebula> INSERT VERTEX t1() VALUE "10":();

4.11 Vertex statements

- 246/629 - 2021 Vesoft Inc.

A vertex can be inserted/written with new values multiple times. Only the last written values can be read.

If you insert a vertex that already exists with IF NOT EXISTS , there will be no modification.

nebula> CREATE TAG t2 (name string, age int);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n1", 12);

In the following example, the insertion fails because "a13" is not int.
nebula> INSERT VERTEX t2 (name, age) VALUES "12":("n1", "a13");

The following example inserts two vertices at one time.
nebula> INSERT VERTEX t2 (name, age) VALUES "13":("n3", 12), "14":("n4", 8);

nebula> CREATE TAG t3(p1 int);
nebula> CREATE TAG t4(p2 string);

The following example inserts vertex "21" with two tags.
nebula> INSERT VERTEX t3 (p1), t4(p2) VALUES "21": (321, "hello");

The following examples insert vertex "11" with new values for multiple times.
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n2", 13);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n3", 14);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n4", 15);
nebula> FETCH PROP ON t2 "11";
+---------------------------------+
| vertices_ |
+---------------------------------+
| ("11" :t2{age: 15, name: "n4"}) |
+---------------------------------+

nebula> CREATE TAG t5(p1 fixed_string(5) NOT NULL, p2 int, p3 int DEFAULT NULL);
nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "001":("Abe", 2, 3);

In the following example, the insertion fails because the value of p1 cannot be NULL.
nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "002":(NULL, 4, 5);
[ERROR (-1005)]: Storage Error: The not null field cannot be null.

In the following example, the value of p3 is the default NULL.
nebula> INSERT VERTEX t5(p1, p2) VALUES "003":("cd", 5);
nebula> FETCH PROP ON t5 "003";
+--+
| vertices_ |
+--+
| ("003" :t5{p1: "cd", p2: 5, p3: __NULL__}) |
+--+

In the following example, the allowed maximum length of p1 is 5.
nebula> INSERT VERTEX t5(p1, p2) VALUES "004":("shalalalala", 4);
nebula> FETCH PROP on t5 "004";
+---+
| vertices_ |
+---+
| ("004" :t5{p1: "shala", p2: 4, p3: __NULL__}) |
+---+

The following example inserts vertex "1".
nebula> INSERT VERTEX t2 (name, age) VALUES "1":("n2", 13);
Modify vertex "1" with IF NOT EXISTS. But there will be no modification as vertex "1" already exists.
nebula> INSERT VERTEX IF NOT EXISTS t2 (name, age) VALUES "1":("n3", 14);
nebula> FETCH PROP ON t2 "1";
+--------------------------------+
| vertices_ |
+--------------------------------+
| ("1" :t2{age: 13, name: "n2"}) |
+--------------------------------+

Last update: November 1, 2021

4.11.1 INSERT VERTEX

- 247/629 - 2021 Vesoft Inc.

4.11.2 DELETE VERTEX

The DELETE VERTEX statement deletes vertices and the related incoming and outgoing edges of the vertices.

The DELETE VERTEX statement deletes one vertex or multiple vertices at a time. You can use DELETE VERTEX together with pipes. For

more information about pipe, see Pipe operator.

Syntax

Examples

This query deletes the vertex whose ID is "team1".

This query shows that you can use DELETE VERTEX together with pipe to delete vertices.

Delete the process and the related edges

Nebula Graph traverses the incoming and outgoing edges related to the vertices and deletes them all. Then Nebula Graph deletes

the vertices.

DELETE VERTEX deletes vertices and related edges directly.

DELETE TAG deletes a tag with the given name on a specified vertex. When a vertex has only one tag, DELETE TAG deletes the vertex

and keeps the related edges.

Note

•

•

DELETE VERTEX <vid> [, <vid> ...];

nebula> DELETE VERTEX "team1";

nebula> GO FROM "player100" OVER serve WHERE properties(edge).start_year == "2021" YIELD dst(edge) AS id | DELETE VERTEX $-.id;

Atomic deletion is not supported during the entire process for now. Please retry when a failure occurs to avoid partial deletion,

which will cause pendent edges.

Deleting a supernode takes a lot of time. To avoid connection timeout before the deletion is complete, you can modify the

parameter --storage_client_timeout_ms in nebula-graphd.conf to extend the timeout period.

Caution

•

•

Last update: October 22, 2021

4.11.2 DELETE VERTEX

- 248/629 - 2021 Vesoft Inc.

4.11.3 UPDATE VERTEX

The UPDATE VERTEX statement updates properties on tags of a vertex.

In Nebula Graph, UPDATE VERTEX supports compare-and-set (CAS).

Syntax

Example

An UPDATE VERTEX statement can only update properties on ONE TAG of a vertex.

Note

UPDATE VERTEX ON <tag_name> <vid>
SET <update_prop>
[WHEN <condition>]
[YIELD <output>]

Parameter Required Description Example

ON <tag_name> Yes Specifies the tag of the vertex. The properties to be updated

must be on this tag.

ON player

<vid> Yes Specifies the ID of the vertex to be updated. "player100"

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET age = age

+1

WHEN

<condition>

No Specifies the filter conditions. If <condition> evaluates to

false , the SET clause will not take effect.

WHEN name ==

"Tim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS

Name

// This query checks the properties of vertex "player101".
nebula> FETCH PROP ON player "player101";
+---+
| vertices_ |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+

// This query updates the age property and returns name and the new age.
nebula> UPDATE VERTEX ON player "player101" \
 SET age = age + 2 \
 WHEN name == "Tony Parker" \
 YIELD name AS Name, age AS Age;
+---------------+-----+
| Name | Age |
+---------------+-----+
| "Tony Parker" | 38 |
+---------------+-----+

Last update: August 17, 2021

4.11.3 UPDATE VERTEX

- 249/629 - 2021 Vesoft Inc.

4.11.4 UPSERT VERTEX

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT VERTEX to update the properties of a vertex if it

exists or insert a new vertex if it does not exist.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Syntax

| Parameter | Required | Description | Example | |---------------------+----------+--

+----------------------| | ON <tag> | Yes | Specifies the tag of the vertex. The properties to be updated must be on this tag. | ON player | |

<vid> | Yes | Specifies the ID of the vertex to be updated or inserted. | "player100" | | SET <update_prop> | Yes | Specifies the

properties to be updated and how they will be updated. | SET age = age +1 | | WHEN <condition> | No | Specifies the filter conditions. |

WHEN name == "Tim" | | YIELD <output> | No | Specifies the output format of the statement. | YIELD name AS Name |

Insert a vertex if it does not exist

If a vertex does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause always takes

effect. The property values of the new vertex depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The vertex to be inserted will have properties name and age based on the tag player .

The SET clause specifies that age = 30 .

Then the property values in different cases are listed as follows:

| Are WHEN conditions met | If properties have default values | Value of name | Value of age | |---------------------------+-----------------------------------

+-------------------+----------------| | Yes | Yes | The default value | 30 | | Yes | No | NULL | 30 | | No | Yes | The default value | 30 | | No | No |

NULL | 30 |

Here are some examples:

An UPSERT VERTEX statement can only update the properties on ONE TAG of a vertex.

Note

Don't use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Danger

UPSERT VERTEX ON <tag> <vid>
SET <update_prop>
[WHEN <condition>]
[YIELD <output>]

•

•

•

•

// This query checks if the following three vertices exist. The result "Empty set" indicates that the vertices do not exist.
nebula> FETCH PROP ON * "player666", "player667", "player668";
+-----------+
| vertices_ |
+-----------+
+-----------+
Empty set

nebula> UPSERT VERTEX ON player "player666" \
 SET age = 30 \

4.11.4 UPSERT VERTEX

- 250/629 - 2021 Vesoft Inc.

In the last query of the preceding examples, since age has no default value, when the vertex is created, age is NULL , and

age = age + 1 does not take effect. But if age has a default value, age = age + 1 will take effect. For example:

Update a vertex if it exists

If the vertex exists and the WHEN conditions are met, the vertex is updated.

If the vertex exists and the WHEN conditions are not met, the update does not take effect.

 WHEN name == "Joe" \
 YIELD name AS Name, age AS Age;
+----------+----------+
| Name | Age |
+----------+----------+
| __NULL__ | 30 |
+----------+----------+

nebula> UPSERT VERTEX ON player "player666" \
 SET age = 31 \
 WHEN name == "Joe" \
 YIELD name AS Name, age AS Age;
+----------+-----+
| Name | Age |
+----------+-----+
| __NULL__ | 30 |
+----------+-----+

nebula> UPSERT VERTEX ON player "player667" \
 SET age = 31 \
 YIELD name AS Name, age AS Age;
+----------+-----+
| Name | Age |
+----------+-----+
| __NULL__ | 31 |
+----------+-----+

nebula> UPSERT VERTEX ON player "player668" \
 SET name = "Amber", age = age + 1 \
 YIELD name AS Name, age AS Age;
+---------+----------+
| Name | Age |
+---------+----------+
| "Amber" | __NULL__ |
+---------+----------+

nebula> CREATE TAG player_with_default(name string, age int DEFAULT 20);
Execution succeeded

nebula> UPSERT VERTEX ON player_with_default "player101" \
 SET age = age + 1 \
 YIELD name AS Name, age AS Age;

+----------+-----+
| Name | Age |
+----------+-----+
| __NULL__ | 21 |
+----------+-----+

nebula> FETCH PROP ON player "player101";
+---+
| vertices_ |
+---+
| ("player101" :player{age: 42, name: "Tony Parker"}) |
+---+

nebula> UPSERT VERTEX ON player "player101" \
 SET age = age + 2 \
 WHEN name == "Tony Parker" \
 YIELD name AS Name, age AS Age;
+---------------+-----+
| Name | Age |
+---------------+-----+
| "Tony Parker" | 44 |
+---------------+-----+

nebula> FETCH PROP ON player "player101";
+---+
| vertices_ |
+---+
| ("player101" :player{age: 44, name: "Tony Parker"}) |
+---+

nebula> UPSERT VERTEX ON player "player101" \
 SET age = age + 2 \
 WHEN name == "Someone else" \
 YIELD name AS Name, age AS Age;

4.11.4 UPSERT VERTEX

- 251/629 - 2021 Vesoft Inc.

+---------------+-----+
| Name | Age |
+---------------+-----+
| "Tony Parker" | 44 |
+---------------+-----+

Last update: November 1, 2021

4.11.4 UPSERT VERTEX

- 252/629 - 2021 Vesoft Inc.

4.12 Edge statements

4.12.1 INSERT EDGE

The INSERT EDGE statement inserts an edge or multiple edges into a graph space from a source vertex (given by src_vid) to a

destination vertex (given by dst_vid) with a specific rank in Nebula Graph.

When inserting an edge that already exists, INSERT VERTEX overrides the edge.

Syntax

IF NOT EXISTS detects if the edge that you want to insert exists. If it does not exist, a new one will be inserted.

<edge_type> denotes the edge type, which must be created before INSERT EDGE . Only one edge type can be specified in this

statement.

<prop_name_list> is the property name list in the given <edge_type> .

src_vid is the VID of the source vertex. It specifies the start of an edge.

dst_vid is the VID of the destination vertex. It specifies the end of an edge.

rank is optional. It specifies the edge rank of the same edge type. If not specified, the default value is 0 . You can insert many

edges with the same edge type, source vertex, and destination vertex by using different rank values.

<prop_value_list> must provide the value list according to <prop_name_list> . If the property values do not match the data type

in the edge type, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if no

property is given. When the default value for a property is NULL , you can omit to specify the property value. For details, see

CREATE EDGE.

Examples

INSERT EDGE [IF NOT EXISTS] <edge_type> (<prop_name_list>) {VALUES | VALUE}
<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)
[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...];

<prop_name_list> ::=
 [<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=
 [<prop_value> [, <prop_value>] ...]

•

IF NOT EXISTS only detects whether exist and does not detect whether the property values overlap.

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

Note

•

•

•

•

•

•

•

OpenCypher has no such concept as rank.

OpenCypher compatibility

•

The following example creates edge type e1 with no property and inserts an edge from vertex "10" to vertex "11" with no property.
nebula> CREATE EDGE e1();
nebula> INSERT EDGE e1 () VALUES "10"->"11":();

The following example inserts an edge from vertex "10" to vertex "11" with no property. The edge rank is 1.
nebula> INSERT EDGE e1 () VALUES "10"->"11"@1:();

nebula> CREATE EDGE e2 (name string, age int);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 1);

4.12 Edge statements

- 253/629 - 2021 Vesoft Inc.

An edge can be inserted/written with property values multiple times. Only the last written values can be read.

If you insert an edge that already exists with IF NOT EXISTS , there will be no modification.

The following example creates edge type e2 with two properties.
nebula> INSERT EDGE e2 (name, age) VALUES \
 "12"->"13":("n1", 1), "13"->"14":("n2", 2);

In the following example, the insertion fails because "a13" is not int.
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", "a13");

The following examples insert edge e2 with the new values for multiple times.
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 12);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 13);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 14);
nebula> FETCH PROP ON e2 "11"->"13";
+---+
| edges_ |
+---+
| [:e2 "11"->"13" @0 {age: 14, name: "n1"}] |
+---+

The following example inserts edge e2 from vertex "14" to vertex "15".
nebula> INSERT EDGE e2 (name, age) VALUES "14"->"15"@1:("n1", 12);
The following example alters the edge with IF NOT EXISTS. But there will be no alteration because edge e2 already exists.
nebula> INSERT EDGE IF NOT EXISTS e2 (name, age) VALUES "14"->"15"@1:("n2", 13);
nebula> FETCH PROP ON e2 "14"->"15"@1;
+---+
| edges_ |
+---+
| [:e2 "14"->"15" @1 {age: 12, name: "n1"}] |
+---+

Nebula Graph 2.6.0 allows dangling edges. Therefore, you can write the edge before the source vertex or the destination vertex

exists. At this time, you can get the (not written) vertex VID through <edgetype>._src or <edgetype>._dst (which is not

recommended).

Atomic operation is not guaranteed during the entire process for now. If it fails, please try again. Otherwise, partial writing will

occur. At this time, the behavior of reading the data is undefined.

Concurrently writing the same edge will cause an edge conflict error, so please try again later.

The inserting speed of an edge is about half that of a vertex. Because in the storaged process, the insertion of an edge involves

two tasks, while the insertion of a vertex involves only one task.

Note

•

•

•

•

Last update: September 6, 2021

4.12.1 INSERT EDGE

- 254/629 - 2021 Vesoft Inc.

4.12.2 DELETE EDGE

The DELETE EDGE statement deletes one edge or multiple edges at a time. You can use DELETE EDGE together with pipe operators. For

more information, see PIPE OPERATORS.

To delete all the outgoing edges for a vertex, please delete the vertex. For more information, see DELETE VERTEX.

Syntax

Examples

The following example shows that you can use DELETE EDGE together with pipe operators to delete edges that meet the conditions.

Atomic operation is not guaranteed during the entire process for now, so please retry when a failure occurs.

Note

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid>[@<rank>] ...]

nebula> DELETE EDGE serve "player100" -> "team204"@0;

nebula> GO FROM "player100" OVER follow \
 WHERE dst(edge) == "team204" \
 YIELD src(edge) AS src, dst(edge) AS dst, rank(edge) AS rank \
 | DELETE EDGE follow $-.src->$-.dst @ $-.rank;

Last update: October 22, 2021

4.12.2 DELETE EDGE

- 255/629 - 2021 Vesoft Inc.

4.12.3 UPDATE EDGE

The UPDATE EDGE statement updates properties on an edge.

In Nebula Graph, UPDATE EDGE supports compare-and-set (CAS).

Syntax

| Parameter | Required | Description | Example | |---------------------+----------

+--+----------------------------------| | ON <edge_type> | Yes | Specifies the edge

type. The properties to be updated must be on this edge type. | ON serve | | <src_vid> | Yes | Specifies the source vertex ID of the

edge. | "player100" | | <dst_vid> | Yes | Specifies the destination vertex ID of the edge. | "team204" | | <rank> | No | Specifies the rank

of the edge. | 10 | | SET <update_prop> | Yes | Specifies the properties to be updated and how they will be updated. |

SET start_year = start_year +1 | | WHEN <condition> | No | Specifies the filter conditions. If <condition> evaluates to false , the SET

clause does not take effect. | WHEN end_year < 2010 | | YIELD <output> | No | Specifies the output format of the statement. | YIELD

start_year AS Start_Year |

Example

The following example checks the properties of the edge with the GO statement.

The following example updates the start_year property and returns the end_year and the new start_year .

UPDATE EDGE ON <edge_type>
<src_vid> -> <dst_vid> [@<rank>]
SET <update_prop>
[WHEN <condition>]
[YIELD <output>]

nebula> GO FROM "player100" \
 OVER serve \
 YIELD properties(edge).start_year, properties(edge).end_year;
+------------------+----------------+
| serve.start_year | serve.end_year |
+------------------+----------------+
| 1997 | 2016 |
+------------------+----------------+

nebula> UPDATE EDGE on serve "player100" -> "team204"@0 \
 SET start_year = start_year + 1 \
 WHEN end_year > 2010 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| 1998 | 2016 |
+------------+----------+

Last update: November 1, 2021

4.12.3 UPDATE EDGE

- 256/629 - 2021 Vesoft Inc.

4.12.4 UPSERT EDGE

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT EDGE to update the properties of an edge if it

exists or insert a new edge if it does not exist.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Syntax

| Parameter | Required | Description | Example | |---------------------+----------+--

+----------------------------------| | ON <edge_type> | Yes | Specifies the edge type. The properties to be updated must be on this edge type. |

ON serve | | <src_vid> | Yes | Specifies the source vertex ID of the edge. | "player100" | | <dst_vid> | Yes | Specifies the destination

vertex ID of the edge. | "team204" | | <rank> | No | Specifies the rank of the edge. | 10 | | SET <update_prop> | Yes | Specifies the

properties to be updated and how they will be updated. | SET start_year = start_year +1 | | WHEN <condition> | No | Specifies the

filter conditions. | WHEN end_year < 2010 | | YIELD <output> | No | Specifies the output format of the statement. | YIELD start_year AS

Start_Year |

Insert an edge if it does not exist

If an edge does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause takes effect.

The property values of the new edge depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The edge to be inserted will have properties start_year and end_year based on the edge type serve .

The SET clause specifies that end_year = 2021 .

Then the property values in different cases are listed as follows:

Here are some examples:

Do not use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Danger

UPSERT EDGE ON <edge_type>
<src_vid> -> <dst_vid> [@rank]
SET <update_prop>
[WHEN <condition>]
[YIELD <properties>]

•

•

•

•

Are WHEN conditions met If properties have default values Value of start_year Value of end_year

Yes Yes The default value 2021

Yes No NULL 2021

No Yes The default value 2021

No No NULL 2021

// This example checks if the following three vertices have any outgoing serve edge. The result "Empty set" indicates that such an edge does not exist.
nebula> GO FROM "player666", "player667", "player668" \
 OVER serve \
 YIELD serve.start_year, serve.end_year;
Empty set

4.12.4 UPSERT EDGE

- 257/629 - 2021 Vesoft Inc.

In the last query of the preceding example, since end_year has no default value, when the edge is created, end_year is NULL , and

end_year = end_year + 1 does not take effect. But if end_year has a default value, end_year = end_year + 1 will take effect. For

example:

Update an edge if it exists

If the edge exists and the WHEN conditions are met, the edge is updated.

If the edge exists and the WHEN conditions are not met, the update does not take effect.

nebula> UPSERT EDGE on serve \
 "player666" -> "team200"@0 \
 SET end_year = 2021 \
 WHEN end_year == 2010 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| __NULL__ | 2021 |
+------------+----------+

nebula> UPSERT EDGE on serve \
 "player666" -> "team200"@0 \
 SET end_year = 2022 \
 WHEN end_year == 2010 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| __NULL__ | 2021 |
+------------+----------+

nebula> UPSERT EDGE on serve \
 "player667" -> "team200"@0 \
 SET end_year = 2022 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| __NULL__ | 2022 |
+------------+----------+

nebula> UPSERT EDGE on serve \
 "player668" -> "team200"@0 \
 SET start_year = 2000, end_year = end_year + 1 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| 2000 | __NULL__ |
+------------+----------+

nebula> CREATE EDGE serve_with_default(start_year int, end_year int DEFAULT 2010);
Execution succeeded

nebula> UPSERT EDGE on serve_with_default \
 "player668" -> "team200" \
 SET end_year = end_year + 1 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| __NULL__ | 2011 |
+------------+----------+

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \
 RETURN e;
+---+
| e |
+---+
| [:serve "player149"->"team219" @0 {end_year: 2019, start_year: 2016}] |
+---+

nebula> UPSERT EDGE on serve \
 "player149" -> "team219" \
 SET end_year = end_year + 1 \
 WHEN start_year == 2016 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| 2016 | 2020 |
+------------+----------+

4.12.4 UPSERT EDGE

- 258/629 - 2021 Vesoft Inc.

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \
 RETURN e;
+---+
| e |
+---+
| [:serve "player149"->"team219" @0 {end_year: 2020, start_year: 2016}] |
+---+

nebula> UPSERT EDGE on serve \
 "player149" -> "team219" \
 SET end_year = end_year + 1 \
 WHEN start_year != 2016 \
 YIELD start_year, end_year;
+------------+----------+
| start_year | end_year |
+------------+----------+
| 2016 | 2020 |
+------------+----------+

Last update: November 1, 2021

4.12.4 UPSERT EDGE

- 259/629 - 2021 Vesoft Inc.

4.13 Native index statements

4.13.1 Index overview

Indexes are built to fast process graph queries. Nebula Graph supports two kinds of indexes: native indexes and full-text indexes.

This topic introduces the index types and helps choose the right index.

Native indexes

Native indexes allow querying data based on a given property. Features are as follows.

There are two kinds of native indexes: tag index and edge type index.

Native indexes must be updated manually. You can use the REBUILD INDEX statement to update native indexes.

Native indexes support indexing multiple properties on a tag or an edge type (composite indexes), but do not support

indexing across multiple tags or edge types.

OPERATIONS ON NATIVE INDEXES

CREATE INDEX

SHOW CREATE INDEX

SHOW INDEXES

DESCRIBE INDEX

REBUILD INDEX

SHOW INDEX STATUS

DROP INDEX

LOOKUP

MATCH

Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property. Features are as follows.

Full-text indexes allow indexing just one property.

Only strings within a specified length (no longer than 256 bytes) are indexed.

Full-text indexes do not support logical operations such as AND , OR , and NOT .

OPERATIONS ON FULL-TEXT INDEXES

Before doing any operations on full-text indexes, please make sure that you deploy full-text indexes. Details on full-text indexes

deployment, see Deploy Elasticsearch and Deploy Listener.

At this time, full-text indexes are created automatically on the Elasticsearch cluster. And rebuilding or altering full-text indexes are

not supported. To drop full-text indexes, you need to drop them on the Elasticsearch cluster manually.

To query full-text indexes, see Search with full-text indexes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

To do complete string matches, use native indexes.

Note

4.13 Native index statements

- 260/629 - 2021 Vesoft Inc.

Null values

Indexes do not support indexing null values.

Range queries

In addition to querying single results from native indexes, you can also do range queries. Not all the native indexes support range

queries. You can only do range searches for numeric, date, and time type properties.

Last update: October 15, 2021

4.13.1 Index overview

- 261/629 - 2021 Vesoft Inc.

4.13.2 CREATE INDEX

Prerequisites

Before you create an index, make sure that the relative tag or edge type is created. For how to create tags or edge types, see

CREATE TAG and CREATE EDGE.

For how to create full-text indexes, see Deploy full-text index.

Must-read for using indexes

The concept and using restrictions of indexes are comparatively complex. You can use it together with LOOKUP and MATCH

statements.

You can use CREATE INDEX to add native indexes for the existing tags, edge types, or properties. They are usually called as tag

indexes, edge type indexes, and property indexes.

Tag indexes and edge type indexes apply to queries related to the tag and the edge type, but do not apply to queries that are

based on certain properties on the tag. For example, you can use LOOKUP to retrieve all the vertices with the tag player .

Property indexes apply to property-based queries. For example, you can use the age property to retrieve the VID of all

vertices that meet age == 19 .

If a property index i_TA is created for the property A of the tag T , the indexes can be replaced as follows (the same for edge type

indexes):

The query engine can use i_TA to replace i_T .

In the MATCH statement, i_T cannot replace i_TA for querying properties.

In the LOOKUP statement, i_T may replace i_TA for querying properties.

Although the same results can be obtained by using alternative indexes for queries, the query performance varies according to

the selected index.

If you must use indexes, we suggest that you:

Import the data into Nebula Graph.

Create indexes.

Rebuild indexes.

After the index is created and the data is imported, you can use LOOKUP or MATCH to retrieve the data. You do not need to

specify which indexes to use in a query, Nebula Graph figures that out by itself.

•

•

•

•

•

In previous releases, the tag or edge type index in the LOOKUP statement cannot replace the property index for property queries.

Legacy version compatibility

Indexes can dramatically reduce the write performance. The performance reduction can be as much as 90% or even more. DO NOT

use indexes in production environments unless you are fully aware of their influences on your service.

Indexes cannot make queries faster. It can only locate a vertex or an edge according to properties or count the number of vertices or

edges.

Long indexes decrease the scan performance of the Storage Service and use more memory. We suggest that you set the indexing

length the same as that of the longest string to be indexed. The longest index length is 255 bytes. Strings longer than 255 bytes will

be truncated.

Caution

1.

2.

3.

4.

4.13.2 CREATE INDEX

- 262/629 - 2021 Vesoft Inc.

Syntax

Create tag/edge type indexes

After indexing a tag or an edge type, you can use the LOOKUP statement to retrieve the VID of all vertices with the tag , or the

source vertex ID, destination vertex ID, and ranks of all edges with the edge type . For more information, see LOOKUP.

Create single-property indexes

The preceding example creates an index for the name property on all vertices carrying the player tag. This example creates an

index using the first 10 characters of the name property.

If you create an index before importing the data, the importing speed will be extremely slow due to the reduction in the write

performance.

Keep --disable_auto_compaction = false during daily incremental writing.

The newly created index will not take effect immediately. Trying to use a newly created index (such as LOOKUP or REBUILD INDEX) may

fail and return can't find xxx in the space because the creation is implemented asynchronously. Nebula Graph implements the

creation in the next heartbeat cycle. To make sure the creation is successful, take one of the following approaches:

Find the new index in the result of SHOW TAG/EDGE INDEXES .

Wait for two heartbeat cycles, i.e., 20 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs in the

configuration files for all services.

Note

•

•

After creating a new index, or dropping the old index and creating a new one with the same name again, you must REBUILD INDEX .

Otherwise, these data cannot be returned in the MATCH and LOOKUP statements.

Danger

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name> ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT = '<comment>'];

Parameter Description

TAG \| EDGE Specifies the index type that you want to create.

IF NOT EXISTS Detects if the index that you want to create exists. If it does not exist, a new one will be created.

<index_name> The name of the index. It must be unique in a graph space. A recommended way of naming is

i_tagName_propName . The name of the index is case-sensitive and allows letters, numbers, or

underlines. Keywords and reserved words are not allowed.

<tag_name> \|

<edge_name>

Specifies the name of the tag or edge associated with the index.

<prop_name_list> To index a variable-length string property, you must use prop_name(length) to specify the index

length. To index a tag or an edge type, ignore the prop_name_list .

COMMENT The remarks of the index. The maximum length is 256 bytes. By default, there will be no comments on

an index.

nebula> CREATE TAG INDEX player_index on player();

nebula> CREATE EDGE INDEX follow_index on follow();

nebula> CREATE TAG INDEX player_index_0 on player(name(10));

4.13.2 CREATE INDEX

- 263/629 - 2021 Vesoft Inc.

Create composite property indexes

An index on multiple properties on a tag (or an edge type) is called a composite property index.

To index a variable-length string property, you need to specify the index length.
nebula> CREATE TAG var_string(p1 string);
nebula> CREATE TAG INDEX var ON var_string(p1(10));

To index a fixed-length string property, you do not need to specify the index length.
nebula> CREATE TAG fix_string(p1 FIXED_STRING(10));
nebula> CREATE TAG INDEX fix ON fix_string(p1);

nebula> CREATE EDGE INDEX follow_index_0 on follow(degree);

nebula> CREATE TAG INDEX player_index_1 on player(name(10), age);

Creating composite property indexes across multiple tags or edge types is not supported.

Caution

Nebula Graph follows the left matching principle to select indexes.

Note

Last update: November 2, 2021

4.13.2 CREATE INDEX

- 264/629 - 2021 Vesoft Inc.

4.13.3 SHOW INDEXES

SHOW INDEXES shows the defined tag or edge type indexes names in the current graph space.

Syntax

Examples

SHOW {TAG | EDGE} INDEXES

nebula> SHOW TAG INDEXES;
+------------------+--------------+-----------------+
| Index Name | By Tag | Columns |
+------------------+--------------+-----------------+
"fix"	"fix_string"	["p1"]
"player_index_0"	"player"	["name"]
"player_index_1"	"player"	["name", "age"]
"var"	"var_string"	["p1"]
+------------------+--------------+-----------------+

nebula> SHOW EDGE INDEXES;
+----------------+----------+---------+
| Index Name | By Edge | Columns |
| "follow_index" | "follow" | [] |
+----------------+----------+---------+

In Nebula Graph 2.0.1, the SHOW TAG/EDGE INDEXES statement only returns Names .

Legacy version compatibility

Last update: November 1, 2021

4.13.3 SHOW INDEXES

- 265/629 - 2021 Vesoft Inc.

4.13.4 SHOW CREATE INDEX

SHOW CREATE INDEX shows the statement used when creating a tag or an edge type. It contains detailed information about the index,

such as its associated properties.

Syntax

Examples

You can run SHOW TAG INDEXES to list all tag indexes, and then use SHOW CREATE TAG INDEX to show the information about the creation

of the specified index.

Edge indexes can be queried through a similar approach.

SHOW CREATE {TAG | EDGE} INDEX <index_name>;

nebula> SHOW TAG INDEXES;
+------------------+----------+----------+
| Index Name | By Tag | Columns |
+------------------+----------+----------+
| "player_index_0" | "player" | [] |
| "player_index_1" | "player" | ["name"] |
+------------------+----------+----------+

nebula> SHOW CREATE TAG INDEX player_index_1;
+------------------+--+
| Tag Index Name | Create Tag Index |
+------------------+--+
"player_index_1"	"CREATE TAG INDEX `player_index_1` ON `player` (
	`name`(20)
)"
+------------------+--+

nebula> SHOW EDGE INDEXES;
+----------------+----------+---------+
| Index Name | By Edge | Columns |
+----------------+----------+---------+
| "follow_index" | "follow" | [] |
+----------------+----------+---------+

nebula> SHOW CREATE EDGE INDEX follow_index;
+-----------------+---+
| Edge Index Name | Create Edge Index |
+-----------------+---+
| "follow_index" | "CREATE EDGE INDEX `follow_index` ON `follow` (|
| |)" |
+-----------------+---+

In Nebula Graph 2.0.1, the SHOW TAG/EDGE INDEXES statement only returns Names .

Legacy version compatibility

Last update: November 1, 2021

4.13.4 SHOW CREATE INDEX

- 266/629 - 2021 Vesoft Inc.

4.13.5 DESCRIBE INDEX

DESCRIBE INDEX can get the information about the index with a given name, including the property name (Field) and the property

type (Type) of the index.

Syntax

Examples

DESCRIBE {TAG | EDGE} INDEX <index_name>;

nebula> DESCRIBE TAG INDEX player_index_0;
+--------+--------------------+
| Field | Type |
+--------+--------------------+
| "name" | "fixed_string(30)" |
+--------+--------------------+

nebula> DESCRIBE TAG INDEX player_index_1;
+--------+--------------------+
| Field | Type |
+--------+--------------------+
| "name" | "fixed_string(10)" |
| "age" | "int64" |
+--------+--------------------+

Last update: November 1, 2021

4.13.5 DESCRIBE INDEX

- 267/629 - 2021 Vesoft Inc.

4.13.6 REBUILD INDEX

You can use REBUILD INDEX to rebuild the created tag or edge type index. For details on how to create an index, see CREATE

INDEX.

Syntax

Multiple indexes are permitted in a single REBUILD statement, separated by commas. When the index name is not specified, all

tag or edge indexes are rebuilt.

After the rebuilding is complete, you can use the SHOW {TAG | EDGE} INDEX STATUS command to check if the index is successfully

rebuilt. For details on index status, see SHOW INDEX STATUS.

Examples

Nebula Graph creates a job to rebuild the index. The job ID is displayed in the preceding return message. To check if the

rebuilding process is complete, use the SHOW JOB <job_id> statement. For more information, see SHOW JOB.

Legacy version compatibility

In Nebula Graph 2.x, the OFFLINE option is no longer needed or supported.

If data is updated or inserted before the creation of the index, you must rebuild the indexes manually to make sure that the indexes

contain the previously added data. Otherwise, you cannot use LOOKUP and MATCH to query the data based on the index. If the index is

created before any data insertion, there is no need to rebuild the index.

During the rebuilding, all queries skip the index and perform sequential scans. This means that the return results can be different

because not all the data is indexed during rebuilding.

Danger

REBUILD {TAG | EDGE} INDEX [<index_name_list>];

<index_name_list>::=
 [index_name [, index_name] ...]

•

•

nebula> CREATE TAG person(name string, age int, gender string, email string);
nebula> CREATE TAG INDEX single_person_index ON person(name(10));

The following example rebuilds an index and returns the job ID.
nebula> REBUILD TAG INDEX single_person_index;
+------------+
| New Job Id |
+------------+
| 31 |
+------------+

The following example checks the index status.
nebula> SHOW TAG INDEX STATUS;
+-----------------------+--------------+
| Name | Index Status |
+-----------------------+--------------+
| "single_person_index" | "FINISHED" |
+-----------------------+--------------+

You can also use "SHOW JOB <job_id>" to check if the rebuilding process is complete.
nebula> SHOW JOB 31;
+----------------+---------------------+------------+-------------------------+-------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------------+------------+-------------------------+-------------------------+
31	"REBUILD_TAG_INDEX"	"FINISHED"	2021-07-07T09:04:24.000	2021-07-07T09:04:24.000
0	"storaged1"	"FINISHED"	2021-07-07T09:04:24.000	2021-07-07T09:04:28.000
1	"storaged2"	"FINISHED"	2021-07-07T09:04:24.000	2021-07-07T09:04:28.000
2	"storaged0"	"FINISHED"	2021-07-07T09:04:24.000	2021-07-07T09:04:28.000
+----------------+---------------------+------------+-------------------------+-------------------------+

Last update: November 1, 2021

4.13.6 REBUILD INDEX

- 268/629 - 2021 Vesoft Inc.

4.13.7 SHOW INDEX STATUS

SHOW INDEX STATUS returns the name of the created tag or edge type index and its status.

The index status includes:

QUEUE : The job is in a queue.

RUNNING : The job is running.

FINISHED : The job is finished.

FAILED : The job has failed.

STOPPED : The job has stopped.

INVALID : The job is invalid.

Syntax

Example

•

•

•

•

•

•

For details on how to create an index, see CREATE INDEX.

Note

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;
+----------------------+--------------+
| Name | Index Status |
+----------------------+--------------+
| "player_index_0" | "FINISHED" |
| "player_index_1" | "FINISHED" |
+----------------------+--------------+

Last update: November 1, 2021

4.13.7 SHOW INDEX STATUS

- 269/629 - 2021 Vesoft Inc.

4.13.8 DROP INDEX

DROP INDEX removes an existing index from the current graph space.

Prerequisite

Running the DROP INDEX statement requires some privileges of DROP TAG INDEX and DROP EDGE INDEX in the given graph space.

Otherwise, Nebula Graph throws an error.

Syntax

IF NOT EXISTS : Detects whether the index that you want to drop exists. If it exists, it will be dropped.

Example

DROP {TAG | EDGE} INDEX [IF EXISTS] <index_name>;

nebula> DROP TAG INDEX player_index_0;

Last update: August 18, 2021

4.13.8 DROP INDEX

- 270/629 - 2021 Vesoft Inc.

4.14 Full-text index statements

4.14.1 Full-text index restrictions

For now, full-text search has the following limitations:

Currently, full-text search supports LOOKUP statements only.

The maximum indexing string length is 256 bytes. The part of data that exceeds 256 bytes will not be indexed.

If there is a full-text index on the tag/edge type, the tag/edge type cannot be deleted or modified.

One tag/edge type can only have one full-text index.

The type of properties must be string .

Full-text index can not be applied to search multiple tags/edge types.

Sorting for the returned results of the full-text search is not supported. Data is returned in the order of data insertion.

Full-text index can not search properties with value NULL .

Altering Elasticsearch indexes is not supported at this time.

The pipe operator is not supported.

WHERE clauses supports full-text search only working on single terms.

Full-text indexes are not deleted together with the graph space.

Make sure that you start the Elasticsearch cluster and Nebula Graph at the same time. If not, the data writing on the

Elasticsearch cluster can be incomplete.

Do not contain ' or \ in the vertex or edge values. If not, an error will be caused in the Elasticsearch cluster storage.

It may take a while for Elasticsearch to create indexes. If Nebula Graph warns no index is found, wait for the index to take effect

(however, the waiting time is unknown and there is no code to check).

Nebula Graph clusters deployed with K8s do not support the full-text search feature.

This topic introduces the restrictions for full-text indexes. Please read the restrictions very carefully before using the full-text

indexes.

Caution

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Last update: October 26, 2021

4.14 Full-text index statements

- 271/629 - 2021 Vesoft Inc.

4.14.2 Deploy full-text index

Nebula Graph full-text indexes are powered by Elasticsearch. This means that you can use Elasticsearch full-text query language

to retrieve what you want. Full-text indexes are managed through built-in procedures. They can be created only for variable

STRING and FIXED_STRING properties when the listener cluster and the Elasticsearch cluster are deployed.

Precaution

Before you start using the full-text index, please make sure that you know the restrictions.

Deploy Elasticsearch cluster

To deploy an Elasticsearch cluster, see Kubernetes Elasticsearch deployment or Elasticsearch installation.

When the Elasticsearch cluster is started, add the template file for the Nebula Graph full-text index. For more information on

index templates, see Elasticsearch Document.

Take the following sample template for example:

Make sure that you specify the following fields in strict accordance with the preceding template format:

For example:

You can configure the Elasticsearch to meet your business needs. To customize the Elasticsearch, see Elasticsearch Document.

{
 "template": "nebula*",
 "settings": {
 "index": {
 "number_of_shards": 3,
 "number_of_replicas": 1
 }
 },
 "mappings": {
 "properties" : {
 "tag_id" : { "type" : "long" },
 "column_id" : { "type" : "text" },
 "value" :{ "type" : "keyword"}
 }
 }
}

"template": "nebula*"
"tag_id" : { "type" : "long" },
"column_id" : { "type" : "text" },
"value" :{ "type" : "keyword"}

When creating a full-text index, start the index name with nebula .

Caution

curl -H "Content-Type: application/json; charset=utf-8" -XPUT http://127.0.0.1:9200/_template/nebula_index_template -d '
{
 "template": "nebula*",
 "settings": {
 "index": {
 "number_of_shards": 3,
 "number_of_replicas": 1
 }
 },
 "mappings": {
 "properties" : {
 "tag_id" : { "type" : "long" },
 "column_id" : { "type" : "text" },
 "value" :{ "type" : "keyword"}
 }
 }
}'

4.14.2 Deploy full-text index

- 272/629 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/targz.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-templates.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html

Sign in to the text search clients

When the Elasticsearch cluster is deployed, use the SIGN IN statement to sign in to the Elasticsearch clients. Multiple

elastic_ip:port pairs are separated with commas. You must use the IPs and the port number in the configuration file for the

Elasticsearch.

SYNTAX

EXAMPLE

Show text search clients

The SHOW TEXT SEARCH CLIENTS statement can list the text search clients.

SYNTAX

EXAMPLE

Sign out to the text search clients

The SIGN OUT TEXT SERVICE statement can sign out all the text search clients.

SYNTAX

EXAMPLE

SIGN IN TEXT SERVICE [(<elastic_ip:port> [,<username>, <password>]), (<elastic_ip:port>), ...];

nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);

Elasticsearch does not have a username or password by default. If you configured a username and password, you need to specify

them in the SIGN IN statement.

Note

SHOW TEXT SEARCH CLIENTS;

nebula> SHOW TEXT SEARCH CLIENTS;
+-------------+------+
| Host | Port |
+-------------+------+
"127.0.0.1"	9200
"127.0.0.1"	9200
"127.0.0.1"	9200
+-------------+------+

SIGN OUT TEXT SERVICE;

nebula> SIGN OUT TEXT SERVICE;

Last update: November 1, 2021

4.14.2 Deploy full-text index

- 273/629 - 2021 Vesoft Inc.

4.14.3 Deploy Raft Listener for Nebula Storage service

Full-text index data is written to the Elasticsearch cluster asynchronously. The Raft Listener (Listener for short) is a separate

process that fetches data from the Storage Service and writes them into the Elasticsearch cluster.

Prerequisites

You have read and fully understood the restrictions for using full-text indexes.

You have deployed a Nebula Graph cluster.

You have deploy a Elasticsearch cluster.

You have prepared at least one extra Storage Server. To use the full-text search, you must run one or more Storage Server as

the Raft Listener.

Precautions

The Storage Service that you want to run as the Listener must have the same or later release with all the other Nebula Graph

services in the cluster.

For now, you can only add all Listeners to a graph space once and for all. Trying to add a new Listener to a graph space that

already has a Listener will fail. To add all Listeners, set them in one statement.

Deployment process

STEP 1: INSTALL THE STORAGE SERVICE

The Listener process and the storaged process use the same binary file. However, their configuration files and using ports are

different. You can install Nebula Graph on all servers that need to deploy a Listener, but only the Storage service can be used. For

details, see Install Nebula Graph by RPM or DEB Package.

STEP 2: PREPARE THE CONFIGURATION FILE FOR THE LISTENER

You have to prepare a corresponding configuration file on the machine that you want to deploy a Listener. The file must be named

as nebula-storaged-listener.conf and stored in the etc directory. A template is provided for your reference. Note that the file suffix

.production should be removed.

•

•

•

•

•

•

4.14.3 Deploy Raft Listener for Nebula Storage service

- 274/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-storage/blob/master/conf/nebula-storaged-listener.conf.production

Most configurations are the same as the configurations of Storage Service. This topic only introduces the differences.

STEP 3: START LISTENERS

Run the following command to start the Listener.

${listener_config_path} is the path where you store the Listener configuration file.

STEP 4: ADD LISTENERS TO NEBULA GRAPH

Connect to Nebula Graph and run USE <space> to enter the graph space that you want to create full-text indexes for. Then run the

following statement to add a Listener into Nebula Graph.

Name Default value Description

daemonize true When set to true , the process is a daemon process.

pid_file pids_listener/nebula-

storaged.pid

The file that records the process ID.

meta_server_addrs - IP addresses and ports of all Meta services. Multiple Meta

services are separated by commas.

local_ip - The local IP address of the Listener service.

port - The listening port of the RPC daemon of the Listener service.

heartbeat_interval_secs 10 The heartbeat interval of the Meta service. The unit is second

(s).

listener_path data/listener The WAL directory of the Listener. Only one directory is

allowed.

data_path data For compatibility reasons, this parameter can be ignored. Fill in

the default value data .

part_man_type memory The type of the part manager. Optional values are memory and

meta .

rocksdb_batch_size 4096 The default reserved bytes for batch operations.

rocksdb_block_cache 4 The default block cache size of BlockBasedTable. The unit is

Megabyte (MB).

engine_type rocksdb The type of the Storage engine, such as rocksdb , memory , etc.

part_type simple The type of the part, such as simple , consensus , etc.

Use real IP addresses in the configuration file instead of domain names or loopback IP addresses such as 127.0.0.1 .

Note

./bin/nebula-storaged --flagfile <listener_config_path>/nebula-storaged-listener.conf

ADD LISTENER ELASTICSEARCH <listener_ip:port> [,<listener_ip:port>, ...]

You must use real IPs for a Listener.

Add all Listeners in one statement completely.

Warning

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:9789,192.168.8.6:9789;

4.14.3 Deploy Raft Listener for Nebula Storage service

- 275/629 - 2021 Vesoft Inc.

Show Listeners

Run the SHOW LISTENER statement to list all Listeners.

EXAMPLE

Remove Listeners

Run the REMOVE LISTENER ELASTICSEARCH statement to remove all Listeners in a graph space.

EXAMPLE

Next

After deploying the Elasticsearch cluster and the Listener, full-text indexes are created automatically on the Elasticsearch cluster.

Users can do full-text search now. For more information, see Full-Text search.

nebula> SHOW LISTENER;
+--------+-----------------+-----------------------+----------+
| PartId | Type | Host | Status |
+--------+-----------------+-----------------------+----------+
1	"ELASTICSEARCH"	"[192.168.8.5:46780]"	"ONLINE"
2	"ELASTICSEARCH"	"[192.168.8.5:46780]"	"ONLINE"
3	"ELASTICSEARCH"	"[192.168.8.5:46780]"	"ONLINE"
+--------+-----------------+-----------------------+----------+

nebula> REMOVE LISTENER ELASTICSEARCH;

After the Listener is deleted, it cannot be added again. Therefore, the synchronization to the ES cluster cannot be continued and the

text index data will be incomplete. If needed, you can only recreate the graph space.

Danger

Last update: November 1, 2021

4.14.3 Deploy Raft Listener for Nebula Storage service

- 276/629 - 2021 Vesoft Inc.

4.14.4 Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property.

You can use the WHERE clause to specify the search strings in LOOKUP statements.

Prerequisite

Before using the full-text index, make sure that you have deployed a Elasticsearch cluster and a Listener cluster. For more

information, see Deploy Elasticsearch and Deploy Listener.

Precaution

Before using the full-text index, make sure that you know the restrictions.

Natural language full-text search

A natural language search interprets the search string as a phrase in natural human language. The search is case-insensitive. By

default, each substring (separated by spaces) will be searched separately. For example, there are three vertices with the tag

player . The tag player contains the property name . The name of these three vertices are Kevin Durant , Tim Duncan , and

David Beckham . Now that the full-text index of player.name is established, these three vertices will be queried when using the prefix

search statement LOOKUP ON player WHERE PREFIX(player.name,"d"); .

Syntax

CREATE FULL-TEXT INDEXES

SHOW FULL-TEXT INDEXES

REBUILD FULL-TEXT INDEXES

DROP FULL-TEXT INDEXES

USE QUERY OPTIONS

CREATE FULLTEXT {TAG | EDGE} INDEX <index_name> ON {<tag_name> | <edge_name>} ([<prop_name_list>]);

SHOW FULLTEXT INDEXES;

REBUILD FULLTEXT INDEX;

DROP FULLTEXT INDEX <index_name>;

LOOKUP ON {<tag> | <edge_type>} WHERE <expression> [YIELD <return_list>];

<expression> ::=
 PREFIX | WILDCARD | REGEXP | FUZZY

4.14.4 Full-text indexes

- 277/629 - 2021 Vesoft Inc.

PREFIX(schema_name.prop_name, prefix_string, row_limit, timeout)

WILDCARD(schema_name.prop_name, wildcard_string, row_limit, timeout)

REGEXP(schema_name.prop_name, regexp_string, row_limit, timeout)

FUZZY(schema_name.prop_name, fuzzy_string, fuzziness, operator, row_limit, timeout)

fuzziness (optional): Maximum edit distance allowed for matching. The default value is AUTO . For other valid values and

more information, see Elasticsearch document.

operator (optional): Boolean logic used to interpret the text. Valid values are OR (default) and AND .

row_limit (optional): Specifies the number of rows to return. The default value is 100 .

timeout (optional): Specifies the timeout time. The default value is 200ms .

Examples

<return_list>
 <prop_name> [AS <prop_alias>] [, <prop_name> [AS <prop_alias>] ...]

•

•

•

•

•

•

•

•

// This example creates the graph space.
nebula> CREATE SPACE basketballplayer (partition_num=3,replica_factor=1, vid_type=fixed_string(30));

// This example signs in the text service.
nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);

// This example switches the graph space.
nebula> USE basketballplayer;

// This example adds the listener to the Nebula Graph cluster.
nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:9789;

// This example creates the tag.
nebula> CREATE TAG player(name string, age int);

// This example creates the native index.
nebula> CREATE TAG INDEX name ON player(name(20));

// This example rebuilds the native index.
nebula> REBUILD TAG INDEX;

// This example creates the full-text index. The index name starts with "nebula".
nebula> CREATE FULLTEXT TAG INDEX nebula_index_1 ON player(name);

// This example rebuilds the full-text index.
nebula> REBUILD FULLTEXT INDEX;

// This example shows the full-text index.
nebula> SHOW FULLTEXT INDEXES;
+------------------+-------------+-------------+--------+
| Name | Schema Type | Schema Name | Fields |
+------------------+-------------+-------------+--------+
| "nebula_index_1" | "Tag" | "player" | "name" |
+------------------+-------------+-------------+--------+

// This example inserts the test data.
nebula> INSERT VERTEX player(name, age) VALUES \
 "Russell Westbrook": ("Russell Westbrook", 30), \
 "Chris Paul": ("Chris Paul", 33),\
 "Boris Diaw": ("Boris Diaw", 36),\
 "David West": ("David West", 38),\
 "Danny Green": ("Danny Green", 31),\
 "Tim Duncan": ("Tim Duncan", 42),\
 "James Harden": ("James Harden", 29),\
 "Tony Parker": ("Tony Parker", 36),\
 "Aron Baynes": ("Aron Baynes", 32),\
 "Ben Simmons": ("Ben Simmons", 22),\
 "Blake Griffin": ("Blake Griffin", 30);

// These examples run test queries.
nebula> LOOKUP ON player WHERE PREFIX(player.name, "B");
+-----------------+
| _vid |
+-----------------+
| "Boris Diaw" |
| "Ben Simmons" |
| "Blake Griffin" |
+-----------------+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") YIELD player.name, player.age;
+-----------------+-----------------+-----+
| _vid | name | age |
+-----------------+-----------------+-----+
| "Chris Paul" | "Chris Paul" | 33 |

4.14.4 Full-text indexes

- 278/629 - 2021 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/common-options.html#fuzziness

| "Boris Diaw" | "Boris Diaw" | 36 |
| "Blake Griffin" | "Blake Griffin" | 30 |
+-----------------+-----------------+-----+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") | YIELD count(*);
+----------+
| count(*) |
+----------+
| 3 |
+----------+

nebula> LOOKUP ON player WHERE REGEXP(player.name, "R.*") YIELD player.name, player.age;
+---------------------+---------------------+-----+
| _vid | name | age |
+---------------------+---------------------+-----+
| "Russell Westbrook" | "Russell Westbrook" | 30 |
+---------------------+---------------------+-----+

nebula> LOOKUP ON player WHERE REGEXP(player.name, ".*");
+---------------------+
| _vid |
+---------------------+
| "Danny Green" |
| "David West" |
| "Russell Westbrook" |
+---------------------+
...

nebula> LOOKUP ON player WHERE FUZZY(player.name, "Tim Dunncan", AUTO, OR) YIELD player.name;
+--------------+--------------+
| _vid | name |
+--------------+--------------+
| "Tim Duncan" | "Tim Duncan" |
+--------------+--------------+

// This example drops the full-text index.
nebula> DROP FULLTEXT INDEX nebula_index_1;

Last update: November 1, 2021

4.14.4 Full-text indexes

- 279/629 - 2021 Vesoft Inc.

4.15 Subgraph and path

4.15.1 GET SUBGRAPH

The GET SUBGRAPH statement retrieves information of vertices and edges reachable from the source vertices of the specified edge

types and returns information of the subgraph.

Syntax

WITH PROP shows the properties. If not specified, the properties will be hidden.

step_count specifies the number of hops from the source vertices and returns the subgraph from 0 to step_count hops. It

must be a non-negative integer. Its default value is 1.

vid specifies the vertex IDs.

edge_type specifies the edge type. You can use IN , OUT , and BOTH to specify the traversal direction of the edge type. The

default is BOTH .

YIELD defines the output that needs to be returned. You can return only vertexes or edges. The alias must be set. When you

do not use YIELD to define the output result, _vertices and _edges are returned by default.

Examples

The following graph is used as the sample.

A sample graph for GET SUBGRAPH

Insert the test data:

GET SUBGRAPH [WITH PROP] [<step_count> STEPS] FROM {<vid>, <vid>...}
[{IN | OUT | BOTH} <edge_type>, <edge_type>...]
[YIELD [VERTICES AS <vertex_alias>] [,EDGES AS <edge_alias>]];

•

•

•

•

•

The path type of GET SUBGRAPH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Note

nebula> CREATE SPACE subgraph(partition_num=15, replica_factor=1, vid_type=fixed_string(30));
nebula> USE subgraph;
nebula> CREATE TAG player(name string, age int);
nebula> CREATE TAG team(name string);
nebula> CREATE EDGE follow(degree int);
nebula> CREATE EDGE serve(start_year int, end_year int);
nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);
nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);
nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);
nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");
nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);
nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

4.15 Subgraph and path

- 280/629 - 2021 Vesoft Inc.

This example goes one step from the vertex player101 over all edge types and gets the subgraph.

The returned subgraph is as follows.

GET SUBGRAPH FROM "player101"

This example goes one step from the vertex player101 over incoming follow edges and gets the subgraph.

There is no incoming follow edge to player101 , so only the vertex player101 is returned.

This example goes one step from the vertex player101 over outgoing serve edges, gets the subgraph, and shows the property

of the edge.

The returned subgraph is as follows.

GET SUBGRAPH FROM "101" OUT serve

FAQ

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT GREATER THAN STEP_COUNT?

To show the completeness of the subgraph, an additional hop is made on all vertices that meet the conditions. The following graph

is used as the sample.

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);
nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;
+---
+---+
| nodes |
relationships |
+---
+---+
| [("player101" :player{})] | [[:serve "player101"->"team204" @0 {}], [:follow "player101"->"player100" @0 {}],
[:follow "player101"->"player102" @0 {}]] |
| [("team204" :team{}), ("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0
{}]] |
+---
+---+

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" IN follow YIELD VERTICES AS nodes, EDGES AS relationships;
+---------------------------+---------------+
| nodes | relationships |
+---------------------------+---------------+
| [("player101" :player{})] | [] |
| [] | [] |
+---------------------------+---------------+

•

nebula> GET SUBGRAPH WITH PROP 1 STEPS FROM "player101" OUT serve YIELD VERTICES AS nodes, EDGES AS relationships;
+---+---+
| nodes | relationships |
+---+---+
| [("player101" :player{age: 36, name: "Tony Parker"})] | [[:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |
| [("team204" :team{name: "Spurs"})] | [] |
+---+---+

4.15.1 GET SUBGRAPH

- 281/629 - 2021 Vesoft Inc.

The returned paths of GET SUBGRAPH 1 STEPS FROM "A"; are A->B , B->A , and A->C . To show the completeness of the subgraph, an

additional hop is made on all vertices that meet the conditions, namely B->C .

The returned path of GET SUBGRAPH 1 STEPS FROM "A" IN follow; is B->A . To show the completeness of the subgraph, an

additional hop is made on all vertices that meet the conditions, namely A->B .

If you only query paths or vertices that meet the conditions, we suggest you use MATCH or GO. The example is as follows.

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT LOWER THAN STEP_COUNT?

The query stops when there is not enough subgraph data and will not return the null value.

•

•

nebula> match p= (v:player) -- (v2) where id(v)=="A" return p;

nebula> go 1 steps from "A" over follow;

nebula> GET SUBGRAPH 100 STEPS FROM "player101" OUT follow YIELD VERTICES AS nodes, EDGES AS relationships;
+--+--+
| nodes | relationships |
+--+--+
| [("player101" :player{})] | [[:follow "player101"->"player100" @0 {}], [:follow "player101"->"player102" @0 {}]] |
| [("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0 {}]] |
+--+--+

Last update: November 1, 2021

4.15.1 GET SUBGRAPH

- 282/629 - 2021 Vesoft Inc.

4.15.2 FIND PATH

The FIND PATH statement finds the paths between the selected source vertices and destination vertices.

Syntax

SHORTEST finds the shortest path.

ALL finds all the paths.

NOLOOP finds the paths without circles.

WITH PROP shows properties of vertices and edges. If not specified, properties will be hidden.

<vertex_id_list> is a list of vertex IDs separated with commas (,). It supports $- and $var .

<edge_type_list> is a list of edge types separated with commas (,). * is all edge types.

REVERSELY | BIDIRECT specifies the direction. REVERSELY is reverse graph traversal while BIDIRECT is bidirectional graph

traversal.

<WHERE clause> filters properties of edges.

<N> is the maximum hop number of the path. The default value is 5 .

<M> specifies the maximum number of rows to return.

Limitations

When a list of source and/or destination vertex IDs are specified, the paths between any source vertices and the destination

vertices will be returned.

There can be cycles when searching all paths.

FIND PATH only supports filtering properties of edges with WHERE clauses. Filtering properties of vertices and functions are not

supported for now.

FIND PATH is a single-thread procedure, so it uses much memory.

Examples

A returned path is like (<vertex_id>)-[:<edge_type_name>@<rank>]->(<vertex_id) .

FIND { SHORTEST | ALL | NOLOOP } PATH [WITH PROP] FROM <vertex_id_list> TO <vertex_id_list>
OVER <edge_type_list> [REVERSELY | BIDIRECT] [<WHERE clause>] [UPTO <N> STEPS] [| ORDER BY $-.path] [| LIMIT <M>];

<vertex_id_list> ::=
 [vertex_id [, vertex_id] ...]

•

•

•

•

•

•

•

•

•

•

The path type of FIND PATH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Note

•

•

•

•

nebula> FIND SHORTEST PATH FROM "player102" TO "team204" OVER *;
+--+
| path |
+--+
| <("player102")-[:serve@0 {}]->("team204")> |
+--+

nebula> FIND SHORTEST PATH WITH PROP FROM "team204" TO "player100" OVER * REVERSELY;
+--+
| path |
+--+

4.15.2 FIND PATH

- 283/629 - 2021 Vesoft Inc.

FAQ

DOES IT SUPPORT THE WHERE CLAUSE TO ACHIEVE CONDITIONAL FILTERING DURING GRAPH TRAVERSAL?

FIND PATH only supports filtering properties of edges with WHERE clauses, such as FIND ALL PATH FROM "player100" TO "team204" OVER *

WHERE follow.degree is EMPTY or follow.degree >=0; .

Filtering properties of vertices is not supported for now.

| <("team204" :team{name: "Spurs"})<-[:serve@0 {end_year: 2016, start_year: 1997}]-("player100" :player{age: 42, name: "Tim Duncan"})> |
+--+

nebula> FIND ALL PATH FROM "player100" TO "team204" OVER * WHERE follow.degree is EMPTY or follow.degree >=0;
+--+
| path |
+--+
| <("player100")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |
|... |
+--+

nebula> FIND NOLOOP PATH FROM "player100" TO "team204" OVER *;
+--+
| path |
+--+
| <("player100")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |
| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player102")-[:serve@0 {}]->("team204")> |
+--+

Last update: November 1, 2021

4.15.2 FIND PATH

- 284/629 - 2021 Vesoft Inc.

4.16 Query tuning statements

4.16.1 EXPLAIN and PROFILE

EXPLAIN helps output the execution plan of an nGQL statement without executing the statement.

PROFILE executes the statement, then outputs the execution plan as well as the execution profile. You can optimize the queries for

better performance according to the execution plan and profile.

Execution Plan

The execution plan is determined by the execution planner in the Nebula Graph query engine.

The execution planner processes the parsed nGQL statements into actions . An action is the smallest unit that can be executed. A

typical action fetches all neighbors of a given vertex, gets the properties of an edge, and filters vertices or edges based on the

given conditions. Each action is assigned to an operator that performs the action.

For example, a SHOW TAGS statement is processed into two actions and assigned to a Start operator and a ShowTags operator , while a

more complex GO statement may be processed into more than 10 actions and assigned to 10 operators.

Syntax

EXPLAIN

PROFILE

Output formats

The output of an EXPLAIN or a PROFILE statement has two formats, the default row format and the dot format. You can use the

format option to modify the output format. Omitting the format option indicates using the default row format.

•

EXPLAIN [format="row" | "dot"] <your_nGQL_statement>;

•

PROFILE [format="row" | "dot"] <your_nGQL_statement>;

4.16 Query tuning statements

- 285/629 - 2021 Vesoft Inc.

The row format

The row format outputs the return message in a table as follows.

EXPLAIN

PROFILE

The descriptions are as follows.

The dot format

You can use the format="dot" option to output the return message in the dot language, and then use Graphviz to generate a graph

of the plan.

•

nebula> EXPLAIN format="row" SHOW TAGS;
Execution succeeded (time spent 327/892 us)

Execution Plan

-----+----------+--------------+----------------+--
| id | name | dependencies | profiling data | operator info |
-----+----------+--------------+----------------+--
| 1 | ShowTags | 0 | | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |
| | | | | inputVar: |
-----+----------+--------------+----------------+--
| 0 | Start | | | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |
-----+----------+--------------+----------------+--

•

nebula> PROFILE format="row" SHOW TAGS;
+--------+
| Name |
+--------+
| player |
+--------+
| team |
+--------+
Got 2 rows (time spent 2038/2728 us)

Execution Plan

-----+----------+--------------+--+--
| id | name | dependencies | profiling data | operator info |
-----+----------+--------------+--+--
| 1 | ShowTags | 0 | ver: 0, rows: 1, execTime: 42us, totalTime: 1177us | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |
| | | | | inputVar: |
-----+----------+--------------+--+--
| 0 | Start | | ver: 0, rows: 0, execTime: 1us, totalTime: 57us | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |
-----+----------+--------------+--+--

Parameter Description

id The ID of the operator .

name The name of the operator .

dependencies The ID of the operator that the current operator depends on.

profiling

data

The content of the execution profile. ver is the version of the operator . rows shows the number of rows to

be output by the operator . execTime shows the execution time of action . totalTime is the sum of the

execution time, the system scheduling time, and the queueing time.

operator info The detailed information of the operator .

Graphviz is open source graph visualization software. Graphviz provides an online tool for previewing DOT language files and

exporting them to other formats such as SVG or JSON. For more information, see Graphviz Online.

Note

nebula> EXPLAIN format="dot" SHOW TAGS;
Execution succeeded (time spent 161/665 us)
Execution Plan
--- -------------
 plan
--- -------------

4.16.1 EXPLAIN and PROFILE

- 286/629 - 2021 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

The Graphviz graph transformed from the above DOT statement is as follows.

 digraph exec_plan {
 rankdir=LR;
 "ShowTags_0"[label="ShowTags_0|outputVar: \[\{\"colNames\":\[\],\"name\":\"__ShowTags_0\",\"type\":\"DATASET\"\}\]\l|inputVar:\l", shape=Mrecord];
 "Start_2"->"ShowTags_0";
 "Start_2"[label="Start_2|outputVar: \[\{\"colNames\":\[\],\"name\":\"__Start_2\",\"type\":\"DATASET\"\}\]\l|inputVar: \l", shape=Mrecord];
 }
--- -------------

Last update: August 24, 2021

4.16.1 EXPLAIN and PROFILE

- 287/629 - 2021 Vesoft Inc.

4.17 Operation and maintenance statements

4.17.1 BALANCE syntax

The BALANCE statements support the load balancing operations of the Nebula Graph Storage services. For more information about

storage load balancing and examples for using the BALANCE statements, see Storage load balance.

The BALANCE statements are listed as follows.

Syntax Description

BALANCE DATA Starts a task to balance the distribution of storage partitions in a Nebula Graph cluster or a

Group. It returns the task ID (balance_id).

BALANCE DATA <balance_id> Shows the status of the BALANCE DATA task.

BALANCE DATA STOP Stops the BALANCE DATA task.

BALANCE DATA REMOVE

<host_list>

Scales in the Nebula Graph cluster and detaches specific storage hosts.

BALANCE LEADER Balances the distribution of storage raft leaders in a Nebula Graph cluster or a Group.

Last update: October 28, 2021

4.17 Operation and maintenance statements

- 288/629 - 2021 Vesoft Inc.

4.17.2 Job manager and the JOB statements

The long-term tasks run by the Storage Service are called jobs, such as COMPACT , FLUSH , and STATS . These jobs can be time-

consuming if the data amount in the graph space is large. The job manager helps you run, show, stop, and recover jobs.

SUBMIT JOB COMPACT

The SUBMIT JOB COMPACT statement triggers the long-term RocksDB compact operation.

For more information about compact configuration, see Storage Service configuration.

EXAMPLE

SUBMIT JOB FLUSH

The SUBMIT JOB FLUSH statement writes the RocksDB memfile in the memory to the hard disk.

EXAMPLE

SUBMIT JOB STATS

The SUBMIT JOB STATS statement starts a job that makes the statistics of the current graph space. Once this job succeeds, you can

use the SHOW STATS statement to list the statistics. For more information, see SHOW STATS.

EXAMPLE

SHOW JOB

The Meta Service parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged processes. The

SHOW JOB <job_id> statement shows the information about a specific job and all its tasks in the current graph space.

job_id is returned when you run the SUBMIT JOB statement.

All job management commands can be executed only after selecting a graph space.

Note

nebula> SUBMIT JOB COMPACT;
+------------+
| New Job Id |
+------------+
| 40 |
+------------+

nebula> SUBMIT JOB FLUSH;
+------------+
| New Job Id |
+------------+
| 96 |
+------------+

If the data stored in the graph space changes, in order to get the latest statistics, you have to run SUBMIT JOB STATS again.

Note

nebula> SUBMIT JOB STATS;
+------------+
| New Job Id |
+------------+
| 34 |
+------------+

4.17.2 Job manager and the JOB statements

- 289/629 - 2021 Vesoft Inc.

EXAMPLE

The descriptions are as follows.

| Parameter | Description | |------------------+---| | Job Id(TaskId) | The

first row shows the job ID and the other rows show the task IDs. | | Command(Dest) | The first row shows the command executed and

the other rows show on which storaged processes the task is running. | | Status | Shows the status of the job or task. For more

information, see Job status. | | Start Time | Shows a timestamp indicating the time when the job or task enters the RUNNING phase. | |

Stop Time | Shows a timestamp indicating the time when the job or task gets FINISHED , FAILED , or STOPPED . |

JOB STATUS

The descriptions are as follows.

| Status | Description | |----------+--| | QUEUE | The job or task is

waiting in a queue. The Start Time is empty in this phase. | | RUNNING | The job or task is running. The Start Time shows the

beginning time of this phase. | | FINISHED | The job or task is successfully finished. The Stop Time shows the time when the job or

task enters this phase. | | FAILED | The job or task has failed. The Stop Time shows the time when the job or task enters this phase. |

| STOPPED | The job or task is stopped without running. The Stop Time shows the time when the job or task enters this phase. | |

REMOVED | The job or task is removed. |

The description of switching the status is described as follows.

SHOW JOBS

The SHOW JOBS statement lists all the unexpired jobs in the current graph space.

The default job expiration interval is one week. You can change it by modifying the job_expired_secs parameter of the Meta

Service. For how to modify job_expired_secs , see Meta Service configuration.

EXAMPLE

STOP JOB

The STOP JOB statement stops jobs that are not finished in the current graph space.

EXAMPLE

nebula> SHOW JOB 34;
+----------------+-----------------+------------+----------------------------+----------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+-----------------+------------+----------------------------+----------------------------+
| 34 | "STATS" | "FINISHED" | 2021-11-01T03:32:27.000000 | 2021-11-01T03:32:27.000000 |
| 0 | "192.168.8.111" | "FINISHED" | 2021-11-01T03:32:27.000000 | 2021-11-01T03:32:41.000000 |
+----------------+-----------------+------------+----------------------------+----------------------------+

Queue -- running -- finished -- removed
 \ \ /
 \ \ -- failed -- /
 \ \ /
 \ ---------- stopped -/

nebula> SHOW JOBS;
+--------+---------------------+------------+----------------------------+----------------------------+
| Job Id | Command | Status | Start Time | Stop Time |
+--------+---------------------+------------+----------------------------+----------------------------+
34	"STATS"	"FINISHED"	2021-11-01T03:32:27.000000	2021-11-01T03:32:27.000000
33	"FLUSH"	"FINISHED"	2021-11-01T03:32:15.000000	2021-11-01T03:32:15.000000
32	"COMPACT"	"FINISHED"	2021-11-01T03:32:06.000000	2021-11-01T03:32:06.000000
31	"REBUILD_TAG_INDEX"	"FINISHED"	2021-10-29T05:39:16.000000	2021-10-29T05:39:17.000000
10	"COMPACT"	"FINISHED"	2021-10-26T02:27:05.000000	2021-10-26T02:27:05.000000
+--------+---------------------+------------+----------------------------+----------------------------+

nebula> STOP JOB 22;
+---------------+
| Result |
+---------------+
| "Job stopped" |
+---------------+

4.17.2 Job manager and the JOB statements

- 290/629 - 2021 Vesoft Inc.

RECOVER JOB

The RECOVER JOB statement re-executes the failed jobs in the current graph space and returns the number of recovered jobs.

EXAMPLE

FAQ

HOW TO TROUBLESHOOT JOB PROBLEMS?

The SUBMIT JOB operations use the HTTP port. Please check if the HTTP ports on the machines where the Storage Service is

running are working well. You can use the following command to debug.

nebula> RECOVER JOB;
+-------------------+
| Recovered job num |
+-------------------+
| 5 job recovered |
+-------------------+

curl "http://{storaged-ip}:19779/admin?space={space_name}&op=compact"

Last update: November 1, 2021

4.17.2 Job manager and the JOB statements

- 291/629 - 2021 Vesoft Inc.

4.17.3 Kill queries

KILL QUERY can terminate the query being executed, and is often used to terminate slow queries.

Syntax

session_id : The ID of the session.

plan_id : The ID of the execution plan.

The ID of the session and the ID of the execution plan can uniquely determine a query. Both can be obtained through the SHOW

QUERIES statement.

Examples

This example executes KILL QUERY in one session to terminate the query in another session.

The query will be terminated and the following information will be returned.

KILL QUERY (session=<session_id>, plan=<plan_id>);

•

•

nebula> KILL QUERY(SESSION=1625553545984255,PLAN=163);

[ERROR (-1005)]: Execution had been killed

Last update: August 23, 2021

4.17.3 Kill queries

- 292/629 - 2021 Vesoft Inc.

5. Deployment and installation

5.1 Prepare resources for compiling, installing, and running Nebula Graph

This topic describes the requirements and suggestions for compiling and installing Nebula Graph, as well as how to estimate the

resource you need to reserve for running a Nebula Graph cluster.

5.1.1 Reading guide

If you are reading this topic with the questions listed below, click them to jump to their answers.

What do I need to compile Nebula Graph?

What do I need to run Nebula Graph in a test environment?

What do I need to run Nebula Graph in a production environment?

How much memory and disk space do I need to reserve for my Nebula Graph cluster?

5.1.2 Requirements for compiling the Nebula Graph source code

Hardware requirements for compiling Nebula Graph

Supported operating systems for compiling Nebula Graph

For now, we can only compile Nebula Graph in the Linux system. We recommend that you use any Linux system with kernel

version 2.6.32 or above.

•

•

•

•

Item Requirement

CPU architecture x86_64

Memory 4 GB

Disk 10 GB, SSD

5. Deployment and installation

- 293/629 - 2021 Vesoft Inc.

Software requirements for compiling Nebula Graph

You must have the correct version of the software listed below to compile Nebula Graph. If they are not as required or you are not

sure, follow the steps in Prepare software for compiling Nebula Graph to get them ready.

Other third-party software will be automatically downloaded and installed to the build directory at the configure (cmake) stage.

Software Version Note

glibc 2.17 or above You can run ldd --version to check the glibc version.

make Any stable version -

m4 Any stable version -

git Any stable version -

wget Any stable version -

unzip Any stable version -

xz Any stable version -

readline-devel Any stable version -

ncurses-devel Any stable version -

zlib-devel Any stable version -

gcc 7.5.0 or above You can run gcc -v to check the gcc version.

gcc-c++ Any stable version -

cmake 3.9.0 or above You can run cmake --version to check the cmake version.

gettext Any stable version -

curl Any stable version -

redhat-lsb-core Any stable version -

libstdc++-static Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

libasan Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

bzip2 Any stable version -

5.1.2 Requirements for compiling the Nebula Graph source code

- 294/629 - 2021 Vesoft Inc.

Prepare software for compiling Nebula Graph

This section guides you through the downloading and installation of software required for compiling Nebula Graph.

5.1.2 Requirements for compiling the Nebula Graph source code

- 295/629 - 2021 Vesoft Inc.

Install dependencies.

For CentOS, RedHat, and Fedora users, run the following commands.

For Debian and Ubuntu users, run the following commands.

Check if the GCC and cmake on your host are in the right version. See Software requirements for compiling Nebula Graph for

the required versions.

If your GCC and CMake are in the right version, then you are all set. If they are not, follow the sub-steps as follows.

Clone the nebula repository to your host.

Users can use the --branch or -b option to specify the branch to be cloned. For example, for 2.6.0, run the following

command.

Make nebula the current working directory.

Run the following commands to install and enable CMake and GCC.

Execute the script install-third-party.sh .

1.

•

$ yum update
$ yum install -y make \
 m4 \
 git \
 wget \
 unzip \
 xz \
 readline-devel \
 ncurses-devel \
 zlib-devel \
 gcc \
 gcc-c++ \
 cmake \
 gettext \
 curl \
 redhat-lsb-core \
 bzip2
 // For CentOS 8+, RedHat 8+, and Fedora, install libstdc++-static and libasan as well
$ yum install -y libstdc++-static libasan

•

$ apt-get update
$ apt-get install -y make \
 m4 \
 git \
 wget \
 unzip \
 xz-utils \
 curl \
 lsb-core \
 build-essential \
 libreadline-dev \
 ncurses-dev \
 cmake \
 gettext

2.

$ g++ --version
$ cmake --version

a.

$ git clone -b v2.6.0 https://github.com/vesoft-inc/nebula-common.git

$ git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula-common.git

b.

$ cd nebula

c.

// Install CMake.
$./third-party/install-cmake.sh cmake-install

// Enable CMake.
$ source cmake-install/bin/enable-cmake.sh

// Authorize the write privilege to the opt directory.
$ sudo mkdir /opt/vesoft && sudo chmod -R a+w /opt/vesoft

// Install GCC. Installing GCC to the opt directory requires the write privilege. And users can change it to other locations.
$./third-party/install-gcc.sh --prefix=/opt

// Enable GCC.
$ source /opt/vesoft/toolset/gcc/7.5.0/enable

3.

5.1.2 Requirements for compiling the Nebula Graph source code

- 296/629 - 2021 Vesoft Inc.

5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

Hardware requirements for test environments

Supported operating systems for test environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a test environment, we recommend that

you use any Linux system with kernel version 3.9 or above.

Suggested service architecture for test environments

For example, for a single-machine test environment, you can deploy 1 metad, 1 storaged, and 1 graphd processes in the machine.

For a more common test environment, such as a cluster of 3 machines (named as A, B, and C), you can deploy Nebula Graph as

follows:

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

Hardware requirements for production environments

Supported operating systems for production environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a production environment, we

recommend that you use any Linux system with kernel version 3.9 or above.

$./third-party/install-third-party.sh

Item Requirement

CPU architecture x86_64

Number of CPU core 4

Memory 8 GB

Disk 100 GB, SSD

Process Suggested number

metad (the metadata service process) 1

storaged (the storage service process) 1 or more

graphd (the query engine service process) 1 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B None 1 1

C None 1 1

Item Requirement

CPU architecture x86_64

Number of CPU core 48

Memory 96 GB

Disk 2 * 900 GB, NVMe SSD

5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

- 297/629 - 2021 Vesoft Inc.

Users can adjust some of the kernel parameters to better accommodate the need for running Nebula Graph. For more

information, see kernel configuration.

Suggested service architecture for production environments

Each metad process automatically creates and maintains a replica of the metadata. Usually, you need to deploy three metad

processes and only three.

The number of storaged processes does not affect the number of graph space replicas.

Users can deploy multiple processes on a single machine. For example, on a cluster of 5 machines (named as A, B, C, D, and E),

you can deploy Nebula Graph as follows:

DO NOT deploy a cluster across IDCs.

Danger

Process Suggested number

metad (the metadata service process) 3

storaged (the storage service process) 3 or more

graphd (the query engine service process) 3 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B 1 1 1

C 1 1 1

D None 1 1

E None 1 1

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

- 298/629 - 2021 Vesoft Inc.

5.1.5 Capacity requirements for running a Nebula Graph cluster

Users can estimate the memory, disk space, and partition number needed for a Nebula Graph cluster of 3 replicas as follows.

Question 1: Why do we multiply the disk space and memory by 120%?

Answer: The extra 20% is for buffer.

Question 2: How to get the number of RocksDB instances?

Answer: Each directory in the --data_path item in the etc/nebula-storaged.conf file corresponds to a RocksDB instance. Count

the number of directories to get the RocksDB instance number.

5.1.6 FAQ

About storage devices

Nebula Graph is designed and implemented for NVMe SSD. All default parameters are optimized for the SSD devices and require

extremely high IOPS and low latency.

Due to the poor IOPS capability and long random seek latency, HDD is not recommended. Users may encounter many

problems when using HDD.

Do not use remote storage devices, such as NAS or SAN. Do not connect an external virtual hard disk based on HDFS or Ceph.

Do not use RAID.

Use local SSD devices.

About CPU architecture

Resource Unit How to estimate Description

Disk space

for a

cluster

Bytes the_sum_of_edge_number_and_vertex_number *

average_bytes_of_properties * 6 * 120%

-

Memory

for a

cluster

Bytes [the_sum_of_edge_number_and_vertex_number * 15 +

the_number_of_RocksDB_instances *

(write_buffer_size * max_write_buffer_number +

rocksdb_block_cache)] * 120%

write_buffer_size and

max_write_buffer_number are RocksDB

parameters. For more information, see

MemTable. For details about

rocksdb_block_cache , see Memory

usage in RocksDB.

Number of

partitions

for a graph

space

- the_number_of_disks_in_the_cluster *

disk_partition_num_multiplier

disk_partition_num_multiplier is an

integer between 2 and 10 (both

including). Its value depends on the disk

performance. Use 2 for HDD.

•

•

Users can decrease the memory size occupied by the bloom filter by adding --enable_partitioned_index_filter=true in etc/

nebula-storaged.conf . But it may decrease the read performance in some random-seek cases.

Note

•

•

•

•

Only Nebula Graph 2.6.0 Enterprise Edition can be run or compiled on ARM architectures (including Apple Mac M1 or Huawei

Kunpeng). Contact inquiry@vesoft.com for business supports.

Enterpriseonly

5.1.5 Capacity requirements for running a Nebula Graph cluster

- 299/629 - 2021 Vesoft Inc.

https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache

Last update: March 10, 2022

5.1.6 FAQ

- 300/629 - 2021 Vesoft Inc.

5.2 Compile and install Nebula Graph

5.2.1 Install Nebula Graph by compiling the source code

Installing Nebula Graph from the source code allows you to customize the compiling and installation settings and test the latest

features.

Prerequisites

Users have to prepare correct resources described in Prepare resources for compiling, installing, and running Nebula Graph.

The host to be installed with Nebula Graph has access to the Internet.

•

•

5.2 Compile and install Nebula Graph

- 301/629 - 2021 Vesoft Inc.

Installation steps

Use Git to clone the source code of Nebula Graph to the host.

[Recommended] To install Nebula Graph 2.6.0, run the following command.

To install the latest developing release, run the following command to clone the source code from the master branch.

Make the nebula directory the current working directory.

Create a build directory and make it the current working directory.

Generate Makefile with CMake.

Compile Nebula Graph.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU}core number,

\frac{the_memory_size(GB)}{2})\).

Install Nebula Graph.

The configuration files in the etc/ directory (/usr/local/nebula/etc by default) are references. Users can create their own

configuration files accordingly. If you want to use the scripts in the script directory to start, stop, restart, and kill the service,

and check the service status, the configuration files have to be named as nebula-graph.conf , nebula-metad.conf , and nebula-

storaged.conf .

Starting with the Nebula Graph 2.6.0 release, the code repositories for Nebula-Graph, Nebula-Storage, and Nebula-Common have

been merged into the Nebula code repository, so the compilation steps are different from those in previous releases.

Note

1.

•

$ git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula.git

•

$ git clone https://github.com/vesoft-inc/nebula.git

2.

$ cd nebula

3.

$ mkdir build && cd build

4.

The installation path is /usr/local/nebula by default. To customize it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> CMake

variable in the following command.

For more information about CMake variables, see CMake variables.

Note

$ cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

5.

Check Prepare resources for compiling, installing, and running Nebula Graph.

Note

$ make -j{N} # E.g., make -j2

6.

$ sudo make install

7.

5.2.1 Install Nebula Graph by compiling the source code

- 302/629 - 2021 Vesoft Inc.

Update the master branch

The source code of the master branch changes frequently. If the corresponding Nebula Graph release is installed, update it in the

following steps.

In the nebula directory, run git pull upstream master to update the source code.

In the nebula/build directory, run make -j{N} and make install again.

Next

Manage Nebula Graph services

Connect to Nebula Graph

Nebula Graph CRUD

CMake variables

USAGE OF CMAKE VARIABLES

The following CMake variables can be used at the configure (cmake) stage to adjust the compiling settings.

CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX specifies the path where the service modules, scripts, configuration files are installed. The default path is /

usr/local/nebula .

ENABLE_WERROR

ENABLE_WERROR is ON by default and it makes all warnings into errors. You can set it to OFF if needed.

ENABLE_TESTING

ENABLE_TESTING is ON by default and unit tests are built with the Nebula Graph services. If you just need the service modules, set it

to OFF .

ENABLE_ASAN

ENABLE_ASAN is OFF by default and the building of ASan (AddressSanitizer), a memory error detector, is disabled. To enable it, set

ENABLE_ASAN to ON . This variable is intended for Nebula Graph developers.

CMAKE_BUILD_TYPE

Nebula Graph supports the following building types of MAKE_BUILD_TYPE :

Debug

The default value of CMAKE_BUILD_TYPE . It indicates building Nebula Graph with the debug info but not the optimization

options.

Release

It indicates building Nebula Graph with the optimization options but not the debug info.

RelWithDebInfo

It indicates building Nebula Graph with the optimization options and the debug info.

MinSizeRel

It indicates building Nebula Graph with the optimization options for controlling the code size but not the debug info.

1.

2.

•

•

•

$ cmake -D<variable>=<value> ...

•

•

•

•

5.2.1 Install Nebula Graph by compiling the source code

- 303/629 - 2021 Vesoft Inc.

CMAKE_C_COMPILER/CMAKE_CXX_COMPILER

Usually, CMake locates and uses a C/C++ compiler installed in the host automatically. But if your compiler is not installed at the

standard path, or if you want to use a different one, run the command as follows to specify the installation path of the target

compiler:

ENABLE_CCACHE

ENABLE_CCACHE is ON by default and Ccache (compiler cache) is used to speed up the compiling of Nebula Graph.

To disable ccache , setting ENABLE_CCACHE to OFF is not enough. On some platforms, the ccache installation hooks up or precedes the

compiler. In such a case, you have to set an environment variable export CCACHE_DISABLE=true or add a line disable=true in

~/.ccache/ccache.conf as well. For more information, see the ccache official documentation.

NEBULA_THIRDPARTY_ROOT

NEBULA_THIRDPARTY_ROOT specifies the path where the third party software is installed. By default it is /opt/vesoft/third-party .

Examine problems

If the compiling fails, we suggest you:

Check whether the operating system release meets the requirements and whether the memory and hard disk space are

sufficient.

Check whether the third-party is installed correctly.

Use make -j1 to reduce the compiling concurrency.

$ cmake -DCMAKE_C_COMPILER=<path_to_gcc/bin/gcc> -DCMAKE_CXX_COMPILER=<path_to_gcc/bin/g++> ..
$ cmake -DCMAKE_C_COMPILER=<path_to_clang/bin/clang> -DCMAKE_CXX_COMPILER=<path_to_clang/bin/clang++> ..

1.

2.

3.

Last update: November 1, 2021

5.2.1 Install Nebula Graph by compiling the source code

- 304/629 - 2021 Vesoft Inc.

https://ccache.dev/manual/3.7.6.html

5.2.2 Install Nebula Graph with RPM or DEB package

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install Nebula Graph with the

RPM or DEB package.

Prerequisites

Prepare the right resources.

Download the package from cloud service

Download the released version.

URL:

For example, download release package 2.6.0 for Centos 7.5 :

download release package 2.6.0 for Ubuntu 1804 :

The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

Note

For the Enterprise Edition, please send an email to inquiry@vesoft.com.

Enterpriseonly

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.el7.x86_64.rpm.sha256sum.txt

5.2.2 Install Nebula Graph with RPM or DEB package

- 305/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/4.deployment-and-installation/1.resource-preparations/
https://github.com/vesoft-inc/nebula-console

Download the nightly version.

URL:

For example, download the Centos 7.5 package developed and built in 2021.03.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.03.28 :

Install Nebula Graph

Use the following syntax to install with an RPM package.

For example, to install an RPM package in the default path for the 2.6.0 version.

Use the following syntax to install with a DEB package.

For example, to install a DEB package in the default path for the 2.6.0 version.

What's next

start Nebula Graph

connect to Nebula Graph

wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/2.6.0/nebula-graph-2.6.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Nightly versions are usually used to test new features. Don't use it for production.

Nightly versions may not be build successfully every night. And the names may change from day to day.

Danger

•

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

sudo rpm -ivh nebula-graph-2.6.0.el7.x86_64.rpm

•

$ sudo dpkg -i --instdir==<installation_path> <package_name>

sudo dpkg -i nebula-graph-2.6.0.ubuntu1804.amd64.deb

The default installation path is /usr/local/nebula/ .

Note

•

•

5.2.2 Install Nebula Graph with RPM or DEB package

- 306/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/2.6.0/2.quick-start/3.connect-to-nebula-graph/

Last update: August 30, 2021

5.2.2 Install Nebula Graph with RPM or DEB package

- 307/629 - 2021 Vesoft Inc.

5.2.3 Install Nebula graph with the tar.gz file

You can install Nebula Graph by downloading the tar.gz file.

Installation steps

Download the Nebula Graph tar.gz file using the following address.

Before downloading, you need to replace <release_version> with the version you want to download.

For example, to download the Nebula Graph v2.6.0 tar.gz file for CentOS 7.5 , run the following command:

Decompress the tar.gz file to the Nebula Graph installation directory.

tar.gz_file_name specifies the name of the tar.gz file.

install_path specifies the installation path.

For example:

Modify the name of the configuration file.

Enter the decompressed directory, rename the files nebula-graphd.conf.default , nebula-metad.conf.default , and nebula-

storaged.conf.default in the subdirectory etc , and delete .default to apply the default configuration of Nebula Graph. To modify

the configuration, see Configurations.

So far, you have installed Nebula Graph successfully.

Next to do

Use the nebula.service file in the scripts directory to start Nebula Graph. For details, see Manage Nebula Graph Service.

Nebula Graph provides installing with the tar.gz file starting from version 2.6.0.

Note

1.

//Centos 7
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz
//Checksum
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz.sha256sum.txt

//Centos 8
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz
//Checksum
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz.sha256sum.txt

//Ubuntu 1604
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz
//Checksum
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz.sha256sum.txt

//Ubuntu 1804
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz
//Checksum
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz.sha256sum.txt

//Ubuntu 2004
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz
//Checksum
https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz.sha256sum.txt

wget https://oss-cdn.nebula-graph.com.cn/package/2.6.0/nebula-graph-2.6.0.el7.x86_64.tar.gz

2.

tar -xvzf <tar.gz_file_name> -C <install_path>

•

•

tar -xvzf nebula-graph-2.6.0.el7.x86_64.tar.gz -C /home/joe/nebula/install

3.

Last update: November 2, 2021

5.2.3 Install Nebula graph with the tar.gz file

- 308/629 - 2021 Vesoft Inc.

5.2.4 Deploy Nebula Graph with Docker Compose

Using Docker Compose can quickly deploy Nebula Graph services based on the prepared configuration file. It is only

recommended to use this method when testing functions of Nebula Graph.

Prerequisites

You have installed the following applications on your host.

If you are deploying Nebula Graph as a non-root user, grant the user with Docker-related privileges. For detailed instructions,

see Manage Docker as a non-root user.

You have started the Docker service on your host.

If you have already deployed another version of Nebula Graph with Docker Compose on your host, to avoid compatibility

issues, you need to delete the nebula-docker-compose/data directory.

How to deploy and connect to Nebula Graph

Clone the master branch of the nebula-docker-compose repository to your host with Git.

Go to the nebula-docker-compose directory.

Run the following command to start all the Nebula Graph services.

•

Application Recommended version Official installation reference

Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

•

•

•

1.

The master branch contains the untested code for the latest Nebula Graph development release. DO NOT use this release in a

production environment.

Danger

$ git clone -b v2.6.0 https://github.com/vesoft-inc/nebula-docker-compose.git

2.

$ cd nebula-docker-compose/

3.

Update the Nebula Graph images and Nebula Console images first if they are out of date.

Note

[nebula-docker-compose]$ docker-compose up -d
Creating nebula-docker-compose_metad0_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metad1_1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done
Creating nebula-docker-compose_graphd1_1 ... done
Creating nebula-docker-compose_storaged0_1 ... done
Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_storaged1_1 ... done

For more information of the preceding services, see Nebula Graph architecture.

Note

5.2.4 Deploy Nebula Graph with Docker Compose

- 309/629 - 2021 Vesoft Inc.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

Connect to Nebula Graph.

Run the following command to start a new docker container with the Nebula Console image, and connect the container to

the network where Nebula Graph is deployed (nebula-docker-compose_nebula-net).

Connect to Nebula Graph with Nebula Console.

Run the SHOW HOSTS statement to check the status of the nebula-storaged processes.

Run exit twice to switch back to your terminal (shell). You can run Step 4 to log in to Nebula Graph again.

Check the Nebula Graph service status and ports

Run docker-compose ps to list all the services of Nebula Graph and their status and ports.

Nebula Graph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml file

in the nebula-docker-compose directory and restart the Nebula Graph services.

4.

a.

$ docker run --rm -ti --network nebula-docker-compose_nebula-net --entrypoint=/bin/sh vesoft/nebula-console:v2.6.0

The local network may be different from the nebula-docker-compose_nebula-net in the above example. Use the following

command.

Note

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
a74c312b1d16 bridge bridge local
dbfa82505f0e host host local
ed55ccf356ae nebula-docker-compose_nebula-net bridge local
93ba48b4b288 none null local

b.

docker> nebula-console -u <user_name> -p <password> --address=graphd --port=9669

By default, the authentication is off, you can only log in with an existing username (the default is root) and any password. To

turn it on, see Enable authentication.

Note

c.

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+----------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+----------------------+------------------------+
"storaged0"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"storaged1"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"storaged2"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"Total"			0		
+-------------+------+----------+--------------+----------------------+------------------------+

5.

$ docker-compose ps
Name Command State Ports

nebula-docker-compose_graphd1_1 ./bin/nebula-graphd --flag ... Up (health: starting) 13000/tcp, 13002/tcp, 0.0.0.0:33295->19669/tcp, 0.0.0.0:33291->19670/tcp,
 3699/tcp, 0.0.0.0:33298->9669/tcp
nebula-docker-compose_graphd2_1 ./bin/nebula-graphd --flag ... Up (health: starting) 13000/tcp, 13002/tcp, 0.0.0.0:33285->19669/tcp, 0.0.0.0:33284->19670/tcp,
 3699/tcp, 0.0.0.0:33286->9669/tcp
nebula-docker-compose_graphd_1 ./bin/nebula-graphd --flag ... Up (health: starting) 13000/tcp, 13002/tcp, 0.0.0.0:33288->19669/tcp, 0.0.0.0:33287->19670/tcp,
 3699/tcp, 0.0.0.0:9669->9669/tcp
nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (health: starting) 11000/tcp, 11002/tcp, 0.0.0.0:33276->19559/tcp, 0.0.0.0:33275->19560/tcp,
 45500/tcp, 45501/tcp, 0.0.0.0:33278->9559/tcp
nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (health: starting) 11000/tcp, 11002/tcp, 0.0.0.0:33279->19559/tcp, 0.0.0.0:33277->19560/tcp,
 45500/tcp, 45501/tcp, 0.0.0.0:33281->9559/tcp
nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (health: starting) 11000/tcp, 11002/tcp, 0.0.0.0:33282->19559/tcp, 0.0.0.0:33280->19560/tcp,
 45500/tcp, 45501/tcp, 0.0.0.0:33283->9559/tcp
nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (health: starting) 12000/tcp, 12002/tcp, 0.0.0.0:33290->19779/tcp, 0.0.0.0:33289->19780/tcp,
 44500/tcp, 44501/tcp, 0.0.0.0:33294->9779/tcp
nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (health: starting) 12000/tcp, 12002/tcp, 0.0.0.0:33296->19779/tcp, 0.0.0.0:33292->19780/tcp,
 44500/tcp, 44501/tcp, 0.0.0.0:33299->9779/tcp
nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (health: starting) 12000/tcp, 12002/tcp, 0.0.0.0:33297->19779/tcp, 0.0.0.0:33293->19780/tcp,
 44500/tcp, 44501/tcp, 0.0.0.0:33300->9779/tcp

5.2.4 Deploy Nebula Graph with Docker Compose

- 310/629 - 2021 Vesoft Inc.

Check the service data and logs

All the data and logs of Nebula Graph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs

directories.

The structure of the directories is as follows:

Stop the Nebula Graph services

You can run the following command to stop the Nebula Graph services:

The following information indicates you have successfully stopped the Nebula Graph services:

Modify configurations

The configuration file of Nebula Graph deployed by Docker Compose is nebula-docker-compose/docker-compose.yaml . To make the new

configuration take effect, modify the configuration in this file and restart the service.

For more instructions, see Configurations.

nebula-docker-compose/
 |-- docker-compose.yaml
 ├── data
 │ ├── meta0
 │ ├── meta1
 │ ├── meta2
 │ ├── storage0
 │ ├── storage1
 │ └── storage2
 └── logs
 ├── graph
 ├── graph1
 ├── graph2
 ├── meta0
 ├── meta1
 ├── meta2
 ├── storage0
 ├── storage1
 └── storage2

$ docker-compose down

Stopping nebula-docker-compose_graphd2_1 ... done
Stopping nebula-docker-compose_graphd1_1 ... done
Stopping nebula-docker-compose_graphd_1 ... done
Stopping nebula-docker-compose_storaged1_1 ... done
Stopping nebula-docker-compose_storaged2_1 ... done
Stopping nebula-docker-compose_storaged0_1 ... done
Stopping nebula-docker-compose_metad0_1 ... done
Stopping nebula-docker-compose_metad1_1 ... done
Stopping nebula-docker-compose_metad2_1 ... done
Removing nebula-docker-compose_graphd2_1 ... done
Removing nebula-docker-compose_graphd1_1 ... done
Removing nebula-docker-compose_graphd_1 ... done
Removing nebula-docker-compose_storaged1_1 ... done
Removing nebula-docker-compose_storaged2_1 ... done
Removing nebula-docker-compose_storaged0_1 ... done
Removing nebula-docker-compose_metad0_1 ... done
Removing nebula-docker-compose_metad1_1 ... done
Removing nebula-docker-compose_metad2_1 ... done
Removing network nebula-docker-compose_nebula-net

The parameter -v in the command docker-compose down -v will delete all your local Nebula Graph storage data. Try this command if

you are using the nightly release and having some compatibility issues.

Danger

5.2.4 Deploy Nebula Graph with Docker Compose

- 311/629 - 2021 Vesoft Inc.

FAQ

HOW TO FIX THE DOCKER MAPPING TO EXTERNAL PORTS?

To set the ports of corresponding services as fixed mapping, modify the docker-compose.yaml in the nebula-docker-compose directory.

For example:

9669:9669 indicates the internal port 9669 is uniformly mapped to external ports, while 19669 indicates the internal port 19669 is

randomly mapped to external ports.

HOW TO UPGRADE OR UPDATE THE DOCKER IMAGES OF NEBULA GRAPH SERVICES

In the nebula-docker-compose/docker-compose.yaml file, change all the image values to the required image version.

In the nebula-docker-compose directory, run docker-compose pull to update the images of the Graph Service, Storage Service, and

Meta Service.

Run docker-compose up -d to start the Nebula Graph services again.

After connecting to Nebula Graph with Nebula Console, run SHOW HOSTS GRAPH , SHOW HOSTS STORAGE , or SHOW HOSTS META to check the

version of the responding service respectively.

ERROR: TOOMANYREQUESTS WHEN DOCKER-COMPOSE PULL

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading: https://

www.docker.com/increase-rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

HOW TO UPDATE THE NEBULA CONSOLE CLIENT

To update the Nebula Console client, run the following command.

WHY CAN’T I CONNECT TO NEBULA GRAPH VIA PORT 3699 AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY (NEBULA GRAPH 2.0.0-RC)?

In Nebula Graph 2.0.0-RC release, the default port is changed from 3699 to 9669 . Please use port 9669 to connect to Nebula

Graph, or modify the port in docker-compose.yaml .

WHY CAN'T I ACCESS THE DATA AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY? (JAN 4, 2021)

If you have updated the nebula-docker-compose repository after Jan 4, 2021, and there are pre-existing data, modify the docker-

compose.yaml file and change the port numbers to the previous ones before connecting to Nebula Graph.

WHY CAN'T I ACCESS THE DATA AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY? (JAN 27, 2021)

The data format has been modified on Jan 27, 2021, and is incompatible with the previous data. Run docker-compose down -v to

delete all your local data.

Related documents

Install and deploy Nebula Graph with the source code

graphd:
 image: vesoft/nebula-graphd:v2.6.0
 ...
 ports:
 - 9669:9669
 - 19669
 - 19670

1.

2.

Note that all the Nebula Graph services are stopped before running the command docker-compose pull .

Note

3.

4.

docker pull vesoft/nebula-console:v2.6.0

•

5.2.4 Deploy Nebula Graph with Docker Compose

- 312/629 - 2021 Vesoft Inc.

https://www.docker.com/increase-rate-limit
https://github.com/vesoft-inc/nebula-docker-compose/commit/2a612f1c4f0e2c31515e971b24b355b3be69420a

Install Nebula Graph by RPM or DEB

Connect to Nebula Graph

•

•

Last update: November 2, 2021

5.2.4 Deploy Nebula Graph with Docker Compose

- 313/629 - 2021 Vesoft Inc.

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

For now, Nebula Graph does not provide an official deployment tool. Users can deploy a Nebula Graph cluster with RPM or DEB

package manually. This topic provides an example of deploying a Nebula Graph cluster on multiple servers (machines).

Deployment

Prerequisites

Prepare 5 machines for deploying the cluster.

Manual deployment process

STEP 1: INSTALL NEBULA GRAPH

Install Nebula Graph on each machine in the cluster. Available approaches of installation are as follows.

Install Nebula Graph with RPM or DEB package

Install Nebula Graph by compiling the source code

STEP 2: MODIFY THE CONFIGURATIONS

To deploy Nebula Graph according to your requirements, you have to modify the configuration files.

All the configuration files for Nebula Graph, including nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf , are stored in

the etc directory in the installation path. You only need to modify the configuration for the corresponding service on the

machines. The configurations that need to be modified for each machine are as follows.

Users can refer to the content of the following configurations, which only show part of the cluster settings. The hidden content

uses the default setting so that users can better understand the relationship between the servers in the Nebula Graph cluster.

Machine name IP address Number of graphd Number of storaged Number of metad

A 192.168.10.111 1 1 1

B 192.168.10.112 1 1 1

C 192.168.10.113 1 1 1

D 192.168.10.114 1 1 None

E 192.168.10.115 1 1 None

•

•

Machine name The configuration to be modified

A nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

B nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

C nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

D nebula-graphd.conf , nebula-storaged.conf

E nebula-graphd.conf , nebula-storaged.conf

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

- 314/629 - 2021 Vesoft Inc.

Deploy machine A

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

The main configuration to be modified is meta_server_addrs . All configurations need to fill in the IP addresses and ports of all Meta

services. At the same time, local_ip needs to be modified as the network IP address of the machine itself. For detailed descriptions

of the configuration parameters, see:

Meta Service configurations

Graph Service configurations

Storage Service configurations

Note

•

•

•

•

•

########## networking ##########
Comma separated Meta Server Addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-graphd process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.111
Network device to listen on
--listen_netdev=any
Port to listen on
--port=9669

•

########## networking ##########
Comma separated Meta server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-storaged process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.111
Storage daemon listening port
--port=9779

•

########## networking ##########
Comma separated Meta Server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-metad process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.111
Meta daemon listening port
--port=9559

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

- 315/629 - 2021 Vesoft Inc.

Deploy machine B

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

Deploy machine C

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

•

•

########## networking ##########
Comma separated Meta Server Addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-graphd process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.112
Network device to listen on
--listen_netdev=any
Port to listen on
--port=9669

•

########## networking ##########
Comma separated Meta server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-storaged process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.112
Storage daemon listening port
--port=9779

•

########## networking ##########
Comma separated Meta Server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-metad process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.112
Meta daemon listening port
--port=9559

•

•

########## networking ##########
Comma separated Meta Server Addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-graphd process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.113
Network device to listen on
--listen_netdev=any
Port to listen on
--port=9669

•

########## networking ##########
Comma separated Meta server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-storaged process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.113
Storage daemon listening port
--port=9779

•

########## networking ##########
Comma separated Meta Server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-metad process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.113
Meta daemon listening port
--port=9559

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

- 316/629 - 2021 Vesoft Inc.

Deploy machine D

nebula-graphd.conf

nebula-storaged.conf

Deploy machine E

nebula-graphd.conf

nebula-storaged.conf

STEP 3: START THE CLUSTER

Start the corresponding service on each machine. Descriptions are as follows.

The command to start the Nebula Graph services is as follows.

•

•

########## networking ##########
Comma separated Meta Server Addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-graphd process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.114
Network device to listen on
--listen_netdev=any
Port to listen on
--port=9669

•

########## networking ##########
Comma separated Meta server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-storaged process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.114
Storage daemon listening port
--port=9779

•

•

########## networking ##########
Comma separated Meta Server Addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-graphd process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.115
Network device to listen on
--listen_netdev=any
Port to listen on
--port=9669

•

########## networking ##########
Comma separated Meta server addresses
--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559
Local IP used to identify the nebula-storaged process.
Change it to an address other than loopback if the service is distributed or
will be accessed remotely.
--local_ip=192.168.10.115
Storage daemon listening port
--port=9779

Machine name The process to be started

A graphd, storaged, metad

B graphd, storaged, metad

C graphd, storaged, metad

D graphd, storaged

E graphd, storaged

sudo /usr/local/nebula/scripts/nebula.service start <metad|graphd|storaged|all>

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

- 317/629 - 2021 Vesoft Inc.

STEP 4: CHECK THE CLUSTER STATUS

Install the native CLI client Nebula Console, then connect to any machine that has started the graphd process, and run SHOW HOSTS

to check the cluster status. For example:

Make sure all the processes of services on each machine are started. Otherwise, you will fail to start Nebula Graph.

When the graphd process, the storaged process, and the metad process are all started, you can use all instead.

/usr/local/nebula is the default installation path for Nebula Graph. Use the actual path if you have customized the path. For

more information about how to start and stop the services, see Manage Nebula Graph services.

Note

•

•

•

$./nebula-console --addr 192.168.10.111 --port 9669 -u root -p nebula

2021/05/25 01:41:19 [INFO] connection pool is initialized successfully
Welcome to Nebula Graph!

> SHOW HOSTS;
+------------------+------+----------+--------------+----------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+------------------+------+----------+--------------+----------------------+------------------------+
| "192.168.10.111" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
| "192.168.10.112" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
| "192.168.10.113" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
| "192.168.10.114" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
| "192.168.10.115" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
| "Total" | | | 0 | | |
+------------------+------+----------+--------------+----------------------+------------------------+

Last update: November 1, 2021

5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers

- 318/629 - 2021 Vesoft Inc.

5.3 Manage Nebula Graph Service

You can use the nebula.service script to start, stop, restart, terminate, and check the Nebula Graph services. This topic takes

starting, stopping and checking the Nebula Graph services for examples.

nebula.service is stored in the /usr/local/nebula/ directory by default, which is also the default installation path of Nebula Graph.

If you have customized the path, use the actual path in your environment.

5.3.1 Syntax

5.3.2 Start Nebula Graph

In non-container environment

Run the following command to start Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start Nebula Graph.

$ sudo /usr/local/nebula/scripts/nebula.service
[-v] [-c <config_file_path>]
<start|stop|restart|status|kill>
<metad|graphd|storaged|all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the Nebula Graph services as the target services.

$ sudo /usr/local/nebula/scripts/nebula.service start all
[INFO] Starting nebula-metad...
[INFO] Done
[INFO] Starting nebula-graphd...
[INFO] Done
[INFO] Starting nebula-storaged...
[INFO] Done

5.3 Manage Nebula Graph Service

- 319/629 - 2021 Vesoft Inc.

5.3.3 Stop Nebula Graph

In non-container environment

Run the following command to stop Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop Nebula Graph.

If you are using a development or nightly version for testing and have compatibility issues, try to run docker-compose down -v to

DELETE all data stored in Nebula Graph and import data again.

5.3.4 Check the service status

In non-container environment

Run the following command to check the service status of Nebula Graph.

Nebula Graph is running normally if the following information is returned.

nebula-docker-compose]$ docker-compose up -d
Building with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/
Creating network "nebula-docker-compose_nebula-net" with the default driver
Creating nebula-docker-compose_metad0_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metad1_1 ... done
Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_graphd1_1 ... done
Creating nebula-docker-compose_storaged1_1 ... done
Creating nebula-docker-compose_storaged0_1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done

Don't run kill -9 to forcibly terminate the processes, otherwise, there is a low probability of data loss.

Danger

sudo /usr/local/nebula/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...
[INFO] Done
[INFO] Stopping nebula-graphd...
[INFO] Done
[INFO] Stopping nebula-storaged...
[INFO] Done

nebula-docker-compose]$ docker-compose down
Stopping nebula-docker-compose_graphd_1 ... done
Stopping nebula-docker-compose_graphd2_1 ... done
Stopping nebula-docker-compose_storaged0_1 ... done
Stopping nebula-docker-compose_storaged1_1 ... done
Stopping nebula-docker-compose_graphd1_1 ... done
Stopping nebula-docker-compose_storaged2_1 ... done
Stopping nebula-docker-compose_metad1_1 ... done
Stopping nebula-docker-compose_metad2_1 ... done
Stopping nebula-docker-compose_metad0_1 ... done
Removing nebula-docker-compose_graphd_1 ... done
Removing nebula-docker-compose_graphd2_1 ... done
Removing nebula-docker-compose_storaged0_1 ... done
Removing nebula-docker-compose_storaged1_1 ... done
Removing nebula-docker-compose_graphd1_1 ... done
Removing nebula-docker-compose_storaged2_1 ... done
Removing nebula-docker-compose_metad1_1 ... done
Removing nebula-docker-compose_metad2_1 ... done
Removing nebula-docker-compose_metad0_1 ... done
Removing network nebula-docker-compose_nebula-net

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

5.3.3 Stop Nebula Graph

- 320/629 - 2021 Vesoft Inc.

If the return information is similar to the following one, there is a problem.

The Nebula Graph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the return

information to troubleshoot problems.

You may also go to the Nebula Graph community for help.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to check the service status of Nebula Graph.

Use the CONTAINER ID to log in the container and troubleshoot.

5.3.5 What's next

Connect to Nebula Graph

[INFO] nebula-metad(3ba41bd): Running as 26601, Listening on 9559
[INFO] nebula-graphd(3ba41bd): Running as 26644, Listening on 9669
[INFO] nebula-storaged(3ba41bd): Running as 26709, Listening on 9779

•

[INFO] nebula-metad(3ba41bd): Running as 25600, Listening on 9559
[INFO] nebula-graphd(3ba41bd): Exited
[INFO] nebula-storaged(3ba41bd): Running as 25646, Listening on 9779

[nebula-docker-compose]$ docker-compose ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/
tcp, 0.0.0.0:49228->19670/tcp nebula-docker-compose_graphd2_1
7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp,
0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1
18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp,
0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1
4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/
tcp, 0.0.0.0:49222->19670/tcp nebula-docker-compose_graphd1_1
a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp,
0.0.0.0:49220->19670/tcp nebula-docker-compose_graphd_1
880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp,
0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1
45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212-
>19559/tcp, 0.0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1
3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206-
>19559/tcp, 0.0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1
7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209-
>19559/tcp, 0.0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash
[root@2a6c56c405f5 nebula]#

Last update: August 30, 2021

5.3.5 What's next

- 321/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://docs.nebula-graph.io/2.6.0/2.quick-start/3.connect-to-nebula-graph/

5.4 Connect to Nebula Graph

Nebula Graph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. This topic provides an overview of Nebula Graph clients and basic instructions on how to use the native

CLI client, Nebula Console.

5.4.1 Nebula Graph clients

You can use supported clients or console to connect to Nebula Graph.

5.4.2 Use Nebula Console to connect to Nebula Graph

Prerequisites

You have started the Nebula Graph services. For how to start the services, see Start and Stop Nebula Graph.

The machine you plan to run Nebula Console on has network access to the Nebula Graph services.

Steps

On the nebula-console page, select a Nebula Console version and click Assets.

In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to

the machine.

•

•

1.

We recommend that you select the latest release.

Note

2.

5.4 Connect to Nebula Graph

- 322/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0/20.appendix/6.eco-tool-version/
https://docs.nebula-graph.io/2.6.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

(Optional) Rename the binary file to nebula-console for convenience.

On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Run the following command to connect to Nebula Graph.

For Linux or macOS:

For Windows:

3.

For Windows, rename the file to nebula-console.exe .

Note

4.

For Windows, skip this step.

Note

$ chmod 111 nebula-console

5.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

5.4.2 Use Nebula Console to connect to Nebula Graph

- 323/629 - 2021 Vesoft Inc.

The description of the parameters is as follows.

You can find more details in the Nebula Console Repository.

5.4.3 Nebula Console commands

Nebula Console can export CSV file, DOT file, and import too.

Export a CSV file

CSV files save the return result of a executed command.

The command to export a csv file.

Export a DOT file

DOT files save the return result of a executed command, and the result information is different from CSV files.

Option Description

-h Shows the help menu.

-addr Sets the IP address of the graphd service. The default address is 127.0.0.1.

-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your Nebula Graph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your Nebula Graph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

You'll get the return messages and the connection stops then.

The commands are case insensitive.

Note

A CSV file will be saved in the working directory, i.e., what linux command pwd show;

This command only works for the next query statement.

Note

•

•

nebula> :CSV <file_name.csv>

A DOT file will be saved in the working directory, i.e., what linux command pwd show;

You can copy the contents of DOT file, and paste in GraphvizOnline, to visualize the excution plan;

This command only works for the next query statement.

Note

•

•

•

5.4.3 Nebula Console commands

- 324/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v2.6.0
https://dreampuf.github.io/GraphvizOnline/

The command to export a DOT file.

For example,

Importing a testing dataset

The testing dataset is named nba . Details about schema and data can be seen by commands SHOW .

Using the following command to import the testing dataset,

Run a command multiple times

Sometimes, you want to run a command multiple times. Run the following command.

For example,

Sleep to wait

Sleep N seconds.

It is usually used when altering schema. Since schema is altered in async way, and take effects in the next heartbeat cycle.

5.4.4 Disconnect Nebula Console from Nebula Graph

You can use :EXIT or :QUIT to disconnect from Nebula Graph. For convenience, Nebula Console supports using these commands

in lower case without the colon (":"), such as quit .

nebula> :dot <file_name.dot>

nebula> :dot a.dot
nebula> PROFILE FORMAT="dot" GO FROM "player100" OVER follow;

nebula> :play nba

nebula> :repeat N

nebula> :repeat 3
nebula> GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 2602/3214 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 583/849 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+
| follow._dst |
+-------------+
| "player101" |
| "player125" |
+-------------+
Got 2 rows (time spent 496/671 us)

Fri, 20 Aug 2021 06:36:05 UTC

Executed 3 times, (total time spent 3681/4734 us), (average time spent 1227/1578 us)

nebula> :sleep N

5.4.4 Disconnect Nebula Console from Nebula Graph

- 325/629 - 2021 Vesoft Inc.

5.4.5 FAQ

How can I install Nebula Console from the source code

To download and compile the latest source code of Nebula Console, follow the instructions on the nebula console GitHub page.

nebula> :QUIT

Bye root!

Last update: August 31, 2021

5.4.5 FAQ

- 326/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console#build-nebula-graph-console

5.5 Upgrade

5.5.1 Upgrade Nebula Graph to v2.6.0

The legacy versions of Nebula Graph refer to the versions lower than Nebula Graph v2.0.0-GA. This topic describes how to

upgrade Nebula Graph to v2.6.0.

Limitations

Rolling Upgrade is not supported. You must stop the Nebula Graph services before the upgrade.

There is no upgrade script. You have to manually upgrade each server in the cluster.

This topic does not apply to scenarios where Nebula Graph is deployed with Docker, including Docker Swarm, Docker

Compose, and K8s.

You must upgrade the old Nebula Graph services on the same machines they are deployed. DO NOT change the IP

addresses, configuration files of the machines, and DO NOT change the cluster topology.

The hard disk space of each machine should be three times as much as the space taken by the original data directories.

Known issues that could cause data loss are listed on GitHub known issues. The issues are all related to altering schema or

default values.

To connect to Nebula Graph 2.0.0, you must upgrade all the Nebula Graph clients. The communication protocols of the old

versions and the latest versions are not compatible.

The upgrade takes about 30 minutes in this test environment.

DO NOT use soft links to switch the data directories.

You must have the sudo privileges to complete the steps in this topic.

Installation paths

OLD INSTALLATION PATH

By default, old versions of Nebula Graph are installed in /usr/local/nebula/ , hereinafter referred to as ${nebula-old} . The default

configuration file path is ${nebula-old}/etc/ .

Storaged data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-storaged.conf file. The default path is

data/storage .

Metad data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-metad.conf file. The default path is data/

meta .

To upgrade Nebula Graph v2.0.0-GA or later versions to v2.6.0, see Nebula Graph v2.0.x to v2.6.0.

Note

•

•

•

•

•

•

•

•

•

•

•

•

The actual paths in your environment may be different from those described in this topic. You can run the Linux command ps -ef |

grep nebula to locate them.

Note

5.5 Upgrade

- 327/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/857

NEW INSTALLATION PATH

${nebula-new} represents the installation path of the new Nebula Graph version, such as /usr/local/nebula-new/ .

Upgrade steps

Stop all client connections. You can run the following commands on each Graph server to turn off the Graph Service and

avoid dirty write.

Run the following commands to stop all services of the old version Nebula Graph.

The storaged process needs about 1 minute to flush data. Wait 1 minute and then run ps -ef | grep nebula to check and make

sure that all the Nebula Graph services are stopped.

Install the new version of Nebula Graph on each machine.

Install the new binary file.

To install with RPM/DEB packages, download the installation package of the corresponding operating system from

release page.

For detailed steps, see Install Nebula Graph with RPM or DEB package.

To install with the source code, follow the substeps. For detailed steps, see Install Nebula Graph by compiling the source

code. Some key commands are as follows.

Clone the source code.

Configure CMake.

Copy the configuration files from the old path to the new path.

mkdir -p ${nebula-new}

1.

${nebula-old}/scripts/nebula.service stop graphd
[INFO] Stopping nebula-graphd...
[INFO] Done

2.

${nebula-old}/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...
[INFO] Done
[INFO] Stopping nebula-graphd...
[INFO] Done
[INFO] Stopping nebula-storaged...
[INFO] Done

If the services are not fully stopped in 20 minutes, stop upgrading and go to the Nebula Graph community for help.

Note

3.

a.

•

sudo rpm --force -i --prefix=${nebula-new} ${nebula-package-name.rpm} # for centos/redhat
sudo dpkg -i --instdir==${nebula-new} ${nebula-package-name.deb} # for ubuntu

•

•

git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula-graph.git

•

cmake -DCMAKE_INSTALL_PREFIX=${nebula-new} -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

b.

cp -rf ${nebula-old}/etc ${nebula-new}/

5.5.1 Upgrade Nebula Graph to v2.6.0

- 328/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-graph/releases

Follow the substeps to prepare the Meta servers (usually 3 of them in a cluster).

Locate the old Meta data path and copy the data files to the new path.

Find the --data_path option in ${nebula-old}/etc/nebula-metad.conf . The default value is data/meta .

If the legacy versions has not changed the --data_path item, run the following command to copy the meta data to the

new directory.

If the legacy versions change the default metad directory, copy it according to the actual directory.

Modify the new Meta configuration files.

Edit the new metad configuration file.

[Optional]Add the following parameters in the Meta configuration files if you need them.

--null_type=false : Disables the support for using NULL .The default value is true . When set to false , you must specify

a default value when altering tags or edge types, otherwise, data reading fails.

--string_index_limit=32 : Specifies the index length for string values as 32. The default length is 64.

Prepare the Storage configuration files on each Storage server.

[Optional]If the old Storage data path is not the default setting --data_path=data/storage , modify it.

Change the value of --data_path as the new data path.

Create the new Storage data directories.

If the --data_path default value has been modified, create the Storage data directories according to the modification.

Start the new Meta Service.

Run the following command on each Meta server.

Check if every nebula-metad process is started normally.

Check if there is any error information in the Meta logs in ${nebula-new}/logs .

Run the following commands to upgrade the Storage data format.

4.

•

•

mkdir -p ${nebula-new}/data/meta/
cp -r ${nebula-old}/data/meta/* ${nebula-new}/data/meta/

•

•

•

vim ${nebula-new}/nebula-metad.conf

•

You must make sure that this step is applied on every Meta server.

Note

5.

•

vim ${nebula-new}/nebula-storaged.conf

•

mkdir -p ${nebula-new}/data/storage/

6.

•

${nebula-new}/scripts/nebula.service start metad
[INFO] Starting nebula-metad...
[INFO] Done

•

ps -ef |grep nebula-metad

•

If any nebula-metad process cannot start normally, stop upgrading, start the Nebula Graph services from the old directories,

and take the error logs to the Nebula Graph community for help.

Note

7.

${nebula-new}/bin/db_upgrader \
--src_db_path=<old_storage_directory_path> \
--dst_db_path=<new_storage_directory_path> \

5.5.1 Upgrade Nebula Graph to v2.6.0

- 329/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

The parameters are described as follows.

--src_db_path : Specifies the absolute path of the OLD Storage data directories. Separate multiple paths with commas,

without spaces.

--dst_db_path : Specifies the absolute path of the NEW Storage data directories. Separate multiple paths with commas,

without spaces. The paths must correspond to the paths set in --src_db_path one by one.

--upgrade_meta_server : Specifies the addresses of the new Meta servers that you started in step 6.

--upgrade_version : If the old Nebula Graph version is v1.2.0, set the parameter value to 1 . If the old version is v2.0.0-RC1, set

the value to 2 . Do not set the value to other numbers.

For example, upgrade from v1.2.x:

For example, upgrade from v2.0.0-RC1:

Start the new Storage Service on each Storage server.

Start the new Graph Service on each Graph server.

--upgrade_meta_server=<meta_server_ip1>:<port1>[,<meta_server_ip2>:<port2>,...] \
--upgrade_version=<old_nebula_version> \

•

•

•

•

Do not mix up the order of --src_db_path and --dst_db_path . Otherwise, the old data will be damaged during the upgrade.

Danger

/usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/data1/,/usr/local/nebula/data/storage/data2/ \
--dst_db_path=/usr/local/nebula_new/data/storage/data1/,/usr/local/nebula_new/data/storage/data2/\
--upgrade_meta_server=192.168.*.14:45500,192.168.*.15:45500,192.168.*.16:45500 \
--upgrade_version=1

/usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/ \
--dst_db_path=/usr/local/nebula_new/data/storage/ \
--upgrade_meta_server=192.168.*.14:9559,192.168.*.15:9559,192.168.*.16:9559 \
--upgrade_version=2

If anything goes wrong, Stop upgrading, stop all the Meta servers, and start the Nebula Graph services from the old

directories.

Make sure that all the Storage servers have finished the upgrade.

Note

•

•

8.

${nebula-new}/scripts/nebula.service start storaged
${nebula-new}/scripts/nebula.service status storaged

If this step goes wrong on any server, Take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help. Stop

upgrading. Stop all the Meta servers and Storage servers. Start the Nebula Graph services from the old directories.

Note

9.

${nebula-new}/scripts/nebula.service start graphd
${nebula-new}/scripts/nebula.service status graphd

If this step goes wrong on any server, take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help. Stop

upgrading. Stop all the Meta servers, Storage servers, and Graph servers. Start the Nebula Graph services from the old

directories.

Note

5.5.1 Upgrade Nebula Graph to v2.6.0

- 330/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/

Connect to Nebula Graph with the new versions of Nebula Console. Verify if the Nebula Graph services are available and if the

data can be accessed normally. Make sure that the command parameters, including the IP address and port of the Graph

Service, are the same as the old one.

Upgrade other Nebula Graph clients.

You must upgrade all other clients to corresponding Nebula Graph v2.6.0. The clients include but are not limited to Python, Java,

go, C++, Flink-connector, Algorithm, Exchange, Spark-connector, and Nebula Bench. Find the v2.6.0 branch for each client.

Upgrade failure and rollback

If the upgrade fails, stop all Nebula Graph services of the new version, and start the services of the old version.

All Nebula Graph clients in use must be switched to the old version.

Appendix 1: Test Environment

The test environment for this topic is as follows:

Machine specifications: 32 CPU cores, 62 GB memory, and SSD.

Data size: 100 GB of Nebula Graph 1.2.0 LDBC test data, with 1 graph space, 24 partitions, and 92 GB of data directory size.

Concurrent configuration: --max_concurrent=5 , --max_concurrent_parts=24 , and --write_batch_num=100 .

The upgrade cost 21 minutes in all, including 13 minutes of compaction. The descriptions are as follows.

Appendix 2: Nebula Graph V2.0.0 code address and commit ID

10.

nebula> SHOW HOSTS;
nebula> SHOW SPACES;
nebula> USE <space_name>
nebula> SHOW PARTS;
nebula> SUBMIT JOB STATS;
nebula> SHOW STATS;

The old releases of Nebula Console may have compatibility issues.

Note

11.

Communication protocols of v2.6.0 are not compatible with that of the old releases. To upgrade the clients, compile the v2.6.0

source code of the clients or download corresponding binaries.

Tip for maintenance: The data path after the upgrade is ${nebula-new}/ . Modify relative paths for hard disk monitor systems, log, or

ELK, etc.

Note

•

•

•

Parameter Default value

--max_concurrent 5

--max_concurrent_parts 10

--write_batch_num 100

Code address Commit ID

graphd 91639db

storaged and metad 761f22b

common b2512aa

5.5.1 Upgrade Nebula Graph to v2.6.0

- 331/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-python
https://github.com/vesoft-inc/nebula-java
https://github.com/vesoft-inc/nebula-go
https://github.com/vesoft-inc/nebula-cpp
https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-algorithm
https://github.com/vesoft-inc/nebula-exchange
https://github.com/vesoft-inc/nebula-spark-connector
https://github.com/vesoft-inc/nebula-bench
https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-storage/tree/v2.0.0
https://github.com/vesoft-inc/nebula-common/tree/v2.0.0

FAQ

CAN I WRITE THROUGH THE CLIENT DURING THE UPGRADE?

A: No. The state of the data written during this process is undefined.

CAN I UPGRADE OTHER OLD VERSIONS EXCEPT FOR V1.2.X AND V2.0.0-RC TO V2.6.0?

A: Upgrading from other old versions is not tested. Theoretically, versions between v1.0.0 and v1.2.0 could adopt the upgrade

approach for v1.2.x. v2.0.0-RC nightly versions cannot apply the solutions in this topic.

HOW TO UPGRADE IF A MACHINE HAS ONLY THE GRAPH SERVICE, BUT NOT THE STORAGE SERVICE?

A: Upgrade the Graph Service with the corresponding binary or rpm package.

HOW TO RESOLVE THE ERROR PERMISSION DENIED?

A: Try again with the sudo privileges.

IS THERE ANY CHANGE IN GFLAGS?

A: Yes. For more information, see github issues.

WHAT ARE THE DIFFERENCES BETWEEN DELETING DATA THEN INSTALLING THE NEW VERSION AND UPGRADING ACCORDING TO THIS TOPIC?

A: The default configurations for v2.x and v1.x are different, including the ports used. The upgrade solution keeps the old

configurations, and the delete-and-install solution uses the new configurations.

IS THERE A TOOL OR SOLUTION FOR VERIFYING DATA CONSISTENCY AFTER THE UPGRADE?

A: No.

Last update: November 2, 2021

5.5.1 Upgrade Nebula Graph to v2.6.0

- 332/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/issues/2501

5.5.2 Upgrade Nebula Graph v2.0.x to v2.6.0

To upgrade Nebula Graph v2.0.x to v2.6.0, you only need to use the RPM/DEB package of v2.6.0 for the upgrade, or compile it

and then reinstall.

Upgrade steps with RPM/DEB packages

Download the RPM/DEB package.

Stop all Nebula Graph services. For details, see Manage Nebula Graph Service. It is recommended to back up the configuration

file before updating.

Execute the following command to upgrade:

RPM package

If you specify the path during installation, you also need to specify the path during upgrade.

DEB package

Start the required services on each server. For details, see Manage Nebula Graph Service.

Upgrade steps by compiling the new source code

Back up the old version of the configuration file. The configuration file is saved in the etc directory of the Nebula Graph

installation path.

Update the repository and compile the source code. For details, see Install Nebula Graph by compiling the source code.

Upgrade steps by deploying Docker Compose

Modify the file docker-compose.yaml in the directory nebula-docker-compose , and modify all versions after image to v2.6.0 .

Execute the command docker-compose pull in the directory nebula-docker-compose to update the images of all services.

Execute the command docker-compose down to stop the Nebula Graph service.

Execute the command docker-compose up -d to start the Nebula Graph service.

Nebula Graph v2.0.x refers to v2.0.0-GA and v2.0.1 releases. If your Nebula Graph version is too low (v2.0.0-RC, v2.0.0-beta, v1.x),

see Upgrade Nebula Graph to v2.6.0.

Note

1.

2.

3.

•

$ sudo rpm -Uvh <package_name>

$ sudo rpm -Uvh --prefix=<installation_path> <package_name>

•

$ sudo dpkg -i <package_name>

4.

1.

2.

When compiling, set the installation path, which is the same as the installation path of the old version.

Note

1.

2.

3.

4.

Last update: October 27, 2021

5.5.2 Upgrade Nebula Graph v2.0.x to v2.6.0

- 333/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.6.0

5.6 Uninstall Nebula Graph

This topic describes how to uninstall Nebula Graph.

5.6.1 Prerequisite

The Nebula Graph services should be stopped before the uninstallation. For more information, see Manage Nebula Graph

services.

5.6.2 Step 1: Delete data files of the Storage and Meta Services

If you have modified the data_path in the configuration files for the Meta Service and Storage Service, the directories where

Nebula Graph stores data may not be in the installation path of Nebula Graph. Check the configuration files to confirm the data

paths, and then manually delete the directories to clear all data.

Check the Storage Service disk settings. For example:

Check the Metad Service configurations and find the corresponding metadata directories.

Delete the data and the directories found in step 2.

5.6.3 Step 2: Delete the installation directories

The default installation path is /usr/local/nebula , which is specified by --prefix while installing Nebula Graph.

Uninstall Nebula Graph deployed with source code

Find the installation directories of Nebula Graph, and delete them all.

Uninstall Nebula Graph deployed with RPM packages

Run the following command to get the Nebula Graph version.

The return message is as follows.

Before re-installing Nebula Graph on a machine, follow this topic to completely uninstall the old Nebula Graph, in case the remaining

data interferes with the new services, including inconsistencies between Meta services.

Caution

For a Nebula Graph cluster, delete the data files of all Storage and Meta servers.

Note

1.

########## Disk ##########
Root data path. Split by comma. e.g. --data_path=/disk1/path1/,/disk2/path2/
One path per Rocksdb instance.
--data_path=/nebula/data/storage

2.

3.

Delete all installation directories, including the cluster.id file in them.

Note

1.

$ rpm -qa | grep "nebula"

5.6 Uninstall Nebula Graph

- 334/629 - 2021 Vesoft Inc.

Run the following command to uninstall Nebula Graph.

For example:

Delete the installation directories.

Uninstall Nebula Graph deployed with DEB packages

Run the following command to get the Nebula Graph version.

The return message is as follows.

Run the following command to uninstall Nebula Graph.

For example:

Delete the installation directories.

Uninstall Nebula Graph deployed with Docker Compose

In the nebula-docker-compose directory, run the following command to stop the Nebula Graph services.

Delete the nebula-docker-compose directory.

nebula-graph-2.6.0-1.x86_64

2.

sudo rpm -e <nebula_version>

sudo rpm -e nebula-graph-2.6.0-1.x86_64

3.

1.

$ dpkg -l | grep "nebula"

ii nebula-graph 2.6.0 amd64 Nebula Package built using CMake

2.

sudo dpkg -r <nebula_version>

sudo dpkg -r nebula-graph

3.

1.

docker-compose down -v

2.

Last update: August 31, 2021

5.6.3 Step 2: Delete the installation directories

- 335/629 - 2021 Vesoft Inc.

6. Configurations and logs

6.1 Configurations

6.1.1 Configurations

Nebula Graph builds the configurations based on the gflags repository. Most configurations are flags. When the Nebula Graph

service starts, it will get the configuration information from Configuration files by default. Configurations that are not in the file

apply the default values.

Get the configuration list and descriptions

Use the following command to get all the configuration information of the service corresponding to the binary file:

For example:

The above examples use the default storage path /usr/local/nebula/bin/ . If you modify the installation path of Nebula Graph, use

the actual path to query the configurations.

Get configurations

Use the curl command to get the value of the running configurations.

For example:

Because there are many configurations and they may change as Nebula Graph develops, this topic will not introduce all

configurations. To get detailed descriptions of configurations, follow the instructions below.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source

code and fully understand the function of configurations.

Note

•

•

In the topic of 1.x, we provide a method of using the CONFIGS command to modify the configurations in the cache. However, using this

method in a production environment can easily cause inconsistencies of configurations between clusters and the local. Therefore, this

method will no longer be introduced in the topic of 2.x.

Legacy version compatibility

<binary> --help

Get the help information from Meta
$ /usr/local/nebula/bin/nebula-metad --help

Get the help information from Graph
$ /usr/local/nebula/bin/nebula-graphd --help

Get the help information from Storage
$ /usr/local/nebula/bin/nebula-storaged --help

The curl commands and parameters in Nebula Graph v2.x. are different from Nebula Graph v1.x.

Legacy version compatibility

Get the running configurations from Meta
curl 127.0.0.1:19559/flags

6. Configurations and logs

- 336/629 - 2021 Vesoft Inc.

https://gflags.github.io/gflags/

Configuration files

Nebula Graph provides two initial configuration files for each service, <service_name>.conf.default and

<service_name>.conf.production . Users can use them in different scenarios conveniently. The default path is /usr/local/nebula/etc/ .

The configuration values in the initial configuration file are for reference only and can be adjusted according to actual needs. To

use the initial configuration file, choose one of the above two files and delete the suffix .default or .production to make it valid.

The initial configuration files corresponding to each service are as follows.

Each initial configuration file of all services contains local_config . The default value is true , which means that the Nebula Graph

service will get configurations from its configuration files and start it.

Modify configurations

By default, each Nebula Graph service gets configurations from its configuration files. Users can modify configurations and make

them valid according to the following steps:

Use a text editor to modify the configuration files of the target service and save the modification.

Choose an appropriate time to restart all Nebula Graph services to make the modifications valid.

Get the running configurations from Graph
curl 127.0.0.1:19669/flags

Get the running configurations from Storage
curl 127.0.0.1:19779/flags

In an actual environment, use the real host IP address instead of 127.0.0.1 in the above example.

Note

To ensure the availability of services, the configurations of the same service must be consistent, except for the local IP address

local_ip . For example, three Storage servers are deployed in one Nebula Graph cluster. The configurations of the three Storage

servers need to be the same, except for the IP address.

Caution

Nebula Graph

service

Initial configuration file Description

Meta nebula-metad.conf.default and nebula-metad.conf.production Meta service configuration

Graph nebula-graphd.conf.default and nebula-graphd.conf.production Graph service configuration

Storage nebula-storaged.conf.default and nebula-

storaged.conf.production

Storage service

configuration

It is not recommended to modify the value of local_config to false . If modified, the Nebula Graph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

Caution

1.

2.

Last update: September 2, 2021

6.1.1 Configurations

- 337/629 - 2021 Vesoft Inc.

6.1.2 Meta Service configuration

Nebula Graph provides two initial configuration files for the Meta Service, nebula-metad.conf.default and nebula-

metad.conf.production . Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-

metad.conf.default .

For all parameters and their current values, see Configurations.

Basics configurations

It is not recommended to modify the value of local_config to false . If modified, the Nebula Graph service will first read the

cached configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source

code and fully understand the function of configurations.

Caution

•

•

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

metad.pid

The file that records the process ID.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the

initial configuration files. You can manually set it if you need it. The system

default value is UTC+00:00:00 . For the format of the parameter value, see

Specifying the Time Zone with TZ. For example, --timezone_name=UTC+08:00

represents the GMT+8 time zone.

local_config true When set to true , the process gets configurations from the configuration files.

minimum_reserved_bytes - Specifies the minimum remaining space of each data storage path. When the

value is lower than this standard, the cluster metadata operation may fail.

This configuration is measured in bytes. The default value is 1073741824 ,

namely, 1GB.

While inserting property values of time types, Nebula Graph transforms time types (except TIMESTAMP) to the corresponding

UTC according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes

still uses the default time zone of the host, such as the log printing time.

Note

•

•

6.1.2 Meta Service configuration

- 338/629 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs on a

different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be printed.

Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is

recommended to set it to 0 during debugging and 1 in a production environment. If

it is set to 4 , Nebula Graph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed the log

is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will output the

buffered log to the log file. 0 means real-time output. This configuration is measured

in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file metad-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file metad-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple

addresses are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Meta Service. The local IP address is used to

identify the nebula-metad process. If it is a distributed cluster or requires

remote access, modify it to the corresponding address.

port 9559 Specifies RPC daemon listening port of the Meta service. The external port

for the Meta Service is predefined to 9559 . The internal port is predefined

to port + 1 , i.e., 9560 . Nebula Graph uses the internal port for multi-

replica interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19559 Specifies the port for the HTTP service.

ws_h2_port 19560 Specifies the port for the HTTP2 service.

ws_storage_http_port 19779 Specifies the Storage service listening port used by the HTTP protocol. It

must be consistent with the ws_http_port in the Storage service

configuration file.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally. This configuration is measured in

seconds.

6.1.2 Meta Service configuration

- 339/629 - 2021 Vesoft Inc.

Storage configurations

Misc configurations

RocksDB options configurations

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Caution

Name Predefined Value Description

data_path data/meta The storage path for Meta data.

Name Predefined Value Description

default_parts_num 100 Specifies the default partition number when creating a new graph space.

default_replica_factor 1 Specifies the default replica number when creating a new graph space.

Name Predefined

Value

Description

rocksdb_wal_sync true Enables or disables RocksDB WAL synchronization. Available values are true

(enable) and false (disable).

Last update: September 23, 2021

6.1.2 Meta Service configuration

- 340/629 - 2021 Vesoft Inc.

6.1.3 Graph Service configuration

Nebula Graph provides two initial configuration files for the Graph Service, nebula-graphd.conf.default and nebula-

graphd.conf.production . Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-

metad.conf.default .

For all parameters and their current values, see Configurations.

Basics configurations

It is not recommended to modify the value of local_config to false . If modified, the Nebula Graph service will first read the

cached configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source

code and fully understand the function of configurations.

Caution

•

•

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

graphd.pid

The file that records the process ID.

enable_optimizer true When set to true , the optimizer is enabled.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the

initial configuration files. The system default value is UTC+00:00:00 . For the format

of the parameter value, see Specifying the Time Zone with TZ. For example FF
0C --

timezone_name=UTC+08:00 represents the GMT+8 time zone.

local_config true When set to true , the process gets configurations from the configuration files.

While inserting property values of time types, Nebula Graph transforms time types (except TIMESTAMP) to the corresponding

UTC according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes

still uses the default time zone of the host, such as the log printing time.

Note

•

•

6.1.3 Graph Service configuration

- 341/629 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Query configurations

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs on a

different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be printed.

Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is

recommended to set it to 0 during debugging and 1 in a production environment. If

it is set to 4 , Nebula Graph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed the log

is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will output the

buffered log to the log file. 0 means real-time output. This configuration is measured

in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

Name Predefined

value

Description

accept_partial_success false When set to false , the process treats partial success as an error. This

configuration only applies to read-only requests. Write requests

always treat partial success as an error.

session_reclaim_interval_secs 10 Specifies the interval that the Session information is sent to the Meta

service. This configuration is measured in seconds.

max_allowed_query_size 4194304 Specifies the maximum length of queries. Unit: bytes. The default

value is 4194304 , namely 4MB.

6.1.3 Graph Service configuration

- 342/629 - 2021 Vesoft Inc.

Networking configurations

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple

addresses are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Graph Service. The local IP address is used

to identify the nebula-graphd process. If it is a distributed cluster or

requires remote access, modify it to the corresponding address.

listen_netdev any Specifies the listening network device.

port 9669 Specifies RPC daemon listening port of the Graph service.

reuse_port false When set to false , the SO_REUSEPORT is closed.

listen_backlog 1024 Specifies the maximum length of the connection queue for socket

monitoring. This configuration must be modified together with the

net.core.somaxconn .

client_idle_timeout_secs 0 Specifies the time to expire an idle connection. 0 means that the

connection will never expire. This configuration is measured in seconds.

session_idle_timeout_secs 0 Specifies the time to expire an idle session. 0 means that the session

will never expire. This configuration is measured in seconds.

num_accept_threads 1 Specifies the number of threads that accept incoming connections.

num_netio_threads 0 Specifies the number of networking IO threads. 0 is the number of CPU

cores.

num_worker_threads 0 Specifies the number of threads that execute queries. 0 is the number

of CPU cores.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19669 Specifies the port for the HTTP service.

ws_h2_port 19670 Specifies the port for the HTTP2 service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally. This configuration is measured

in seconds.

storage_client_timeout_ms - Specifies the RPC connection timeout threshold between the Graph

Service and the Storage Service. This parameter is not predefined in the

initial configuration files. You can manually set it if you need it. The

system default value is 60000 ms.

ws_meta_http_port 19559 Specifies the Meta service listening port used by the HTTP protocol. It

must be consistent with the ws_http_port in the Meta service

configuration file.

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Caution

6.1.3 Graph Service configuration

- 343/629 - 2021 Vesoft Inc.

Charset and collate configurations

Authorization configurations

Memory configurations

Experimental configurations

EXPERIMENTAL FEATURES

Name Predefined value Description

default_charset utf8 Specifies the default charset when creating a new graph space.

default_collate utf8_bin Specifies the default collate when creating a new graph space.

Name Predefined

value

Description

enable_authorize false When set to false , the system authentication is not enabled. For more

information, see Authentication.

auth_type password Specifies the login method. Available values are password , ldap , and cloud .

Name Predefined

value

Description

system_memory_high_watermark_ratio - Specifies the trigger threshold of the high-level memory alarm

mechanism. The default value is 0.8 . If the system memory usage

is higher than this value, an alarm mechanism will be triggered,

and Nebula Graph will stop querying. This parameter is not

predefined in the initial configuration files.

Name Predefined

value

Description

enable_experimental_feature false Specifies the experimental feature. Optional values are true and

false . For currently supported experimental features, see below.

Name Description

TOSS The TOSS (Transaction on Storage Side) function is used to ensure the final consistency of the INSERT , UPDATE , or

UPSERT operations on edges (because one edge logically corresponds to two key-value pairs on the hard disk). The

DELETE operation is not currently supported. After the TOSS function is enabled, the time delay of related

operations will be increased by about one time.

Last update: January 28, 2022

6.1.3 Graph Service configuration

- 344/629 - 2021 Vesoft Inc.

6.1.4 Storage Service configurations

Nebula Graph provides two initial configuration files for the Storage Service, nebula-storaged.conf.default and nebula-

storaged.conf.production . Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-

metad.conf.default . For parameters that are not included in nebula-metad.conf.default , see nebula-storaged.conf.production .

For all parameters and their current values, see Configurations.

Basics configurations

It is not recommended to modify the value of local_config to false . If modified, the Nebula Graph service will first read the

cached configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source

code and fully understand the function of configurations.

Caution

•

•

The configurations of the Raft Listener and the Storage service are different. For details, see Deploy Raft listener.

Note

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

storaged.pid

The file that records the process ID.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. The system default value is UTC+00:00:00 . For the format of the

parameter value, see Specifying the Time Zone with TZ. For example, --

timezone_name=UTC+08:00 represents the GMT+8 time zone.

local_config true When set to true , the process gets configurations from the configuration files.

While inserting property values of time types, Nebula Graph transforms time types (except TIMESTAMP) to the corresponding

UTC according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes

still uses the default time zone of the host, such as the log printing time.

Note

•

•

6.1.4 Storage Service configurations

- 345/629 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs on a

different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be printed.

Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is

recommended to set it to 0 during debugging and 1 in a production environment. If

it is set to 4 , Nebula Graph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed the log

is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will output the

buffered log to the log file. 0 means real-time output. This configuration is measured

in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple

addresses are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Storage Service. The local IP address is used

to identify the nebula-storaged process. If it is a distributed cluster or

requires remote access, modify it to the corresponding address.

port 9779 Specifies RPC daemon listening port of the Storage service. The external

port for the Meta Service is predefined to 9779 . The internal port is

predefined to 9777 , 9778 , and 9780 . Nebula Graph uses the internal port

for multi-replica interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19779 Specifies the port for the HTTP service.

ws_h2_port 19780 Specifies the port for the HTTP2 service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally. This configuration is measured in

seconds.

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Caution

6.1.4 Storage Service configurations

- 346/629 - 2021 Vesoft Inc.

Raft configurations

Disk configurations

Name Predefined

value

Description

raft_heartbeat_interval_secs 30 Specifies the time to expire the Raft election. The configuration is

measured in seconds.

raft_rpc_timeout_ms 500 Specifies the time to expire the Raft RPC. The configuration is

measured in milliseconds.

wal_ttl 14400 Specifies the lifetime of the RAFT WAL. The configuration is

measured in seconds.

Name Predefined value Description

data_path data/storage Specifies the data storage path. Multiple paths are separated with commas. One

RocksDB example corresponds to one path.

minimum_reserved_bytes 268435456 Specifies the minimum remaining space of each data storage path. When the value is

lower than this standard, the cluster data writing may fail. This configuration is

measured in bytes. The default value is 1073741824 , namely, 1GB.

rocksdb_batch_size 4096 Specifies the block cache for a batch operation. The configuration is measured in bytes.

rocksdb_block_cache 4 Specifies the block cache for BlockBasedTable. The configuration is measured in

megabytes.

engine_type rocksdb Specifies the engine type.

rocksdb_compression lz4 Specifies the compression algorithm for RocksDB. Optional values are

lz4 , lz4hc , zlib , bzip2 , and zstd .

rocksdb_compression_per_level \ Specifies the compression algorithm for each level.

enable_rocksdb_statistics false When set to false , RocksDB statistics is disabled.

rocksdb_stats_level kExceptHistogramOrTimers Specifies the stats level for RocksDB. Optional values are kExceptHistogramOrTimers

kExceptTimers , kExceptDetailedTimers , kExceptTimeForMutex , and kAll

enable_rocksdb_prefix_filtering true When set to true , the prefix bloom filter for RocksDB is enabled. Enabling prefix bloom

filter makes the graph traversal faster but occupies more memory.

enable_rocksdb_whole_key_filtering false When set to true , the whole key bloom filter for RocksDB is enabled.

rocksdb_filtering_prefix_length 12 Specifies the prefix length for each key. Optional values are 12 and 16

configuration is measured in bytes.

enable_partitioned_index_filter - When set to true , it reduces the amount of memory used by the bloom filter. But in

some random-seek situations, it may reduce the read performance.

6.1.4 Storage Service configurations

- 347/629 - 2021 Vesoft Inc.

misc configurations

RocksDB options

The format of the RocksDB option is {"<option_name>":"<option_value>"} . Multiple options are separated with commas.

The configuration snapshot in the following table is different from the snapshot in Nebula Graph. The snapshot here refers to the

stock data on the leader when synchronizing Raft.

Caution

Name Predefined

value

Description

snapshot_part_rate_limit 8388608 The rate limit when the Raft leader synchronizes the stock data with

other members of the Raft group. Unit: bytes/s.

snapshot_batch_size 1048576 The amount of data sent in each batch when the Raft leader

synchronizes the stock data with other members of the Raft group.

Unit: bytes.

rebuild_index_part_rate_limit 4194304 The rate limit when the Raft leader synchronizes the index data rate

with other members of the Raft group during the index rebuilding

process. Unit: bytes/s.

rebuild_index_batch_size 1048576 The amount of data sent in each batch when the Raft leader

synchronizes the index data with other members of the Raft group

during the index rebuilding process. Unit: bytes.

Name Predefined value Description

rocksdb_db_options {} Specifies the RocksDB database

options.

rocksdb_column_family_options {"write_buffer_size":"67108864",

"max_write_buffer_number":"4",

"max_bytes_for_level_base":"268435456"}

Specifies the RocksDB column family

options.

rocksdb_block_based_table_options {"block_size":"8192"} Specifies the RocksDB block based table

options.

6.1.4 Storage Service configurations

- 348/629 - 2021 Vesoft Inc.

Supported options of rocksdb_db_options and rocksdb_column_family_options are listed as follows.

rocksdb_db_options

rocksdb_column_family_options

For more information, see RocksDB official documentation.

For super-Large vertices

When the query starting from each vertex gets an edge, truncate it directly to avoid too many neighboring edges on the super-

large vertex, because a single query occupies too much hard disk and memory. Or you can truncate a certain number of edges

specified in the Max_edge_returned_per_vertex parameter. Excess edges will not be returned. This parameter applies to all spaces.

Storage configurations for large dataset

When you have a large dataset (in the RocksDB directory) and your memory is tight, we suggest that you set the

enable_partitioned_index_filter parameter to true . The performance is affected because RocksDB indexes are cached.

•

max_total_wal_size
delete_obsolete_files_period_micros
max_background_jobs
stats_dump_period_sec
compaction_readahead_size
writable_file_max_buffer_size
bytes_per_sync
wal_bytes_per_sync
delayed_write_rate
avoid_flush_during_shutdown
max_open_files
stats_persist_period_sec
stats_history_buffer_size
strict_bytes_per_sync
enable_rocksdb_prefix_filtering
enable_rocksdb_whole_key_filtering
rocksdb_filtering_prefix_length
num_compaction_threads
rate_limit

•

write_buffer_size
max_write_buffer_number
level0_file_num_compaction_trigger
level0_slowdown_writes_trigger
level0_stop_writes_trigger
target_file_size_base
target_file_size_multiplier
max_bytes_for_level_base
max_bytes_for_level_multiplier
disable_auto_compactions

Property name Default

value

Description

max_edge_returned_per_vertex 2147483647 Specifies the maximum number of edges returned for each dense

vertex. Excess edges are truncated and not returned. This parameter

is not predefined in the configuration files.

The reservoir sampling algorithm in Nebula Graph 1.x is no longer supported in Nebula Graph 2.6.0.

Compatibility

Last update: October 20, 2021

6.1.4 Storage Service configurations

- 349/629 - 2021 Vesoft Inc.

https://rocksdb.org/

6.1.5 Kernel configurations

This topic introduces the Kernel configurations in Nebula Graph.

Resource control

ULIMIT PRECAUTIONS

The ulimit command specifies the resource threshold for the current shell session. The precautions are as follows:

The changes made by ulimit only take effect for the current session or child process.

The resource threshold (soft threshold) cannot exceed the hard threshold.

Common users cannot use commands to adjust the hard threshold, even with sudo .

To modify the system level or adjust the hard threshold, edit the file /etc/security/limits.conf . This method requires re-login

to take effect.

ULIMIT -C

ulimit -c limits the size of the core dumps. We recommend that you set it to unlimited . The command is:

ULIMIT -N

ulimit -n limits the number of open files. We recommend that you set it to more than 100,000. For example:

Memory

VM.SWAPPINESS

vm.swappiness specifies the percentage of the available memory before starting swap. The greater the value, the more likely the

swap occurs. We recommend that you set it to 0. When set to 0, the page cache is removed first. Note that when vm.swappiness is 0,

it does not mean that there is no swap.

VM.MIN_FREE_KBYTES

vm.min_free_kbytes specifies the minimum number of kilobytes available kept by Linux VM. If you have a large system memory, we

recommend that you increase this value. For example, if your physical memory 128GB, set it to 5GB. If the value is not big

enough, the system cannot apply for enough continuous physical memory.

VM.MAX_MAP_COUNT

vm.max_map_count limits the maximum number of vma (virtual memory area) for a process. The default value is 65530 . It is enough

for most applications. If your memory application fails because the memory consumption is large, increase the vm.max_map_count

value.

VM.DIRTY_*

These values control the dirty data cache for the system. For write-intensive scenarios, you can make adjustments based on your

needs (throughput priority or delay priority). We recommend that you use the system default value.

TRANSPARENT HUGE PAGE

For better delay performance, you must disable the transparent huge pages (THP). The command is:

•

•

•

•

ulimit -c unlimited

ulimit -n 130000

root# echo never > /sys/kernel/mm/transparent_hugepage/enabled
root# echo never > /sys/kernel/mm/transparent_hugepage/defrag
root# swapoff -a && swapon -a

6.1.5 Kernel configurations

- 350/629 - 2021 Vesoft Inc.

Networking

NET.IPV4.TCP_SLOW_START_AFTER_IDLE

The default value of net.ipv4.tcp_slow_start_after_idle is 1 . If set, the congestion window is timed out after an idle period. We

recommend that you set it to 0 , especially for long fat scenarios (high latency and large bandwidth).

NET.CORE.SOMAXCONN

net.core.somaxconn specifies the maximum number of connection queues listened by the socket. The default value is 128 . For

scenarios with a large number of burst connections, we recommend that you set it to greater than 1024 .

NET.IPV4.TCP_MAX_SYN_BACKLOG

net.ipv4.tcp_max_syn_backlog specifies the maximum number of TCP connections in the SYN_RECV (semi-connected) state. The

setting rule for this parameter is the same as that of net.core.somaxconn .

NET.CORE.NETDEV_MAX_BACKLOG

net.core.netdev_max_backlog specifies the maximum number of packets. The default value is 1000 . We recommend that you increase

it to greater than 10,000 , especially for 10G network adapters.

NET.IPV4.TCP_KEEPALIVE_*

These values keep parameters alive for TCP connections. For applications that use a 4-layer transparent load balancer, if the idle

connection is disconnected unexpectedly, decrease the values of tcp_keepalive_time and tcp_keepalive_intvl .

NET.IPV4.TCP_RMEM/WMEM

net.ipv4.tcp_wmem/rmem specifies the minimum, default, and maximum size of the buffer pool sent/received by the TCP socket. For

long fat links, we recommend that you increase the default value to bandwidth (GB) * RTT (ms) .

SCHEDULER

For SSD devices, we recommend that you set scheduler to noop or none . The path is /sys/block/DEV_NAME/queue/scheduler .

Other parameters

KERNEL.CORE_PATTERN

we recommend that you set it to core and set kernel.core_uses_pid to 1 .

Modify parameters

SYSCTL

sysctl <conf_name>

Checks the current parameter value.

sysctl -w <conf_name>=<value>

Modifies the parameter value. The modification takes effect immediately. The original value is restored after restarting.

sysctl -p [<file_path>]

Loads Linux parameter values from the specified configuration file. The default path is /etc/sysctl.conf .

PRLIMIT

The prlimit command gets and sets process resource limits. You can modify the hard threshold by using it and the sudo

command. For example, prlimit --nofile = 130000 --pid = $$ adjusts the maximum number of open files permitted by the current

process to 14000 . And the modification takes effect immediately. Note that this command is only available in RedHat 7u or higher

versions.

•

•

•

Last update: September 2, 2021

6.1.5 Kernel configurations

- 351/629 - 2021 Vesoft Inc.

6.2 Log management

6.2.1 Logs

Nebula Graph uses glog to print logs, uses gflags to control the severity level of the log, and provides an HTTP interface to

dynamically change the log level at runtime to facilitate tracking.

Log directory

The default log directory is /usr/local/nebula/logs/ .

If the log directory is deleted while Nebula Graph is running, the log would not continue to be printed. However, this operation

will not affect the services. To recover the logs, restart the services.

Parameter descriptions

minloglevel : Specifies the minimum level of the log. That is, no logs below this level will be printed. Optional values are 0

(INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , Nebula Graph will not print any logs.

v : Specifies the detailed level of the log. The larger the value, the more detailed the log is. Optional values are 0 , 1 , 2 , 3 .

The default severity level for the metad, graphd, and storaged logs can be found in their respective configuration files. The default

path is /usr/local/nebula/etc/ .

Check the severity level

Check all the flag values (log values included) of the current gflags with the following command.

Examples are as follows:

Check the current minloglevel in the Meta service:

Check the current v in the Storage service:

Change the severity level

Change the severity level of the log with the following command.

•

•

$ curl <ws_ip>:<ws_port>/flags

Parameter Description

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value is

127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

•

$ curl 127.0.0.1:19559/flags | grep 'minloglevel'

•

$ curl 127.0.0.1:19779/flags | grep -w 'v'

6.2 Log management

- 352/629 - 2021 Vesoft Inc.

https://github.com/google/glog
https://gflags.github.io/gflags/

Examples are as follows:

If the log level is changed while Nebula Graph is running, it will be restored to the level set in the configuration file after restarting

the service. To permanently modify it, see Configuration files.

RocksDB logs

RocksDB logs are usually used to debug RocksDB parameters and stored in /usr/local/nebula/data/storage/nebula/$id/data/LOG . $id

is the ID of the example.

$ curl -X PUT -H "Content-Type: application/json" -d '{"<key>":<value>[,"<key>":<value>]}' "<ws_ip>:<ws_port>/flags"

Parameter Description

key The type of the log to be changed. For optional values, see Parameter descriptions.

value The level of the log. For optional values, see Parameter descriptions.

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value is

127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19779/flags" # storaged
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19669/flags" # graphd
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19559/flags" # metad

Last update: September 2, 2021

6.2.1 Logs

- 353/629 - 2021 Vesoft Inc.

7. Monitor and metrics

7.1 Query Nebula Graph metrics

Nebula Graph supports querying the monitoring metrics through HTTP ports.

7.1.1 Metrics

Each metric of Nebula Graph consists of three fields: name, type, and time range. The fields are separated by periods, for

example, num_queries.sum.600 . Different Nebula Graph services (Graph, Storage, or Meta) support different metrics. The detailed

description is as follows.

7.1.2 Query metrics over HTTP

Syntax

Examples

Query a single metric

Query the query number in the last 10 minutes in the Graph Service.

Field Example Description

Metric

name

num_queries Indicates the function of the metric.

Metric

type

sum Indicates how the metrics are collected. Supported types are SUM, COUNT, AVG, RATE,

and the P-th sample quantiles such as P75, P95, P99, and P99.9.

Time

range

600 The time range in seconds for the metric collection. Supported values are 5, 60, 600, and

3600, representing the last 5 seconds, 1 minute, 10 minutes, and 1 hour.

curl -G "http://<ip>:<port>/stats?stats=<metric_name_list> [&format=json]"

Parameter Description

ip The IP address of the server. You can find it in the configuration file in the installation directory.

port The HTTP port of the server. You can find it in the configuration file in the installation directory. The

default ports are 19559 (Meta), 19669 (Graph), and 19779 (Storage).

metric_name_list The metrics names. Multiple metrics are separated by commas (,).

&format=json Optional. Returns the result in the JSON format.

If Nebula Graph is deployed with Docker Compose, run docker-compose ps to check the ports that are mapped from the service ports

inside of the container and then query through them.

Note

•

7. Monitor and metrics

- 354/629 - 2021 Vesoft Inc.

Query multiple metrics

Query the following metrics together:

The average heartbeat latency in the last 1 minute.

The average latency of the slowest 1% heartbeats, i.e., the P99 heartbeats, in the last 10 minutes.

Return a JSON result.

Query the number of new vertices in the Storage Service in the last 10 minutes and return the result in the JSON format.

Query all metrics in a service.

If no metric is specified in the query, Nebula Graph returns all metrics in the service.

$ curl -G "http://192.168.8.40:19669/stats?stats=num_queries.sum.600"
num_queries.sum.600=400

•

•

•

$ curl -G "http://192.168.8.40:19559/stats?stats=heartbeat_latency_us.avg.60,heartbeat_latency_us.p99.600"
heartbeat_latency_us.avg.60=281
heartbeat_latency_us.p99.600=985

•

$ curl -G "http://192.168.8.40:19779/stats?stats=num_add_vertices.sum.600&format=json"
[{"value":1,"name":"num_add_vertices.sum.600"}]

•

$ curl -G "http://192.168.8.40:19559/stats"
heartbeat_latency_us.avg.5=304
heartbeat_latency_us.avg.60=308
heartbeat_latency_us.avg.600=299
heartbeat_latency_us.avg.3600=285
heartbeat_latency_us.p75.5=652
heartbeat_latency_us.p75.60=669
heartbeat_latency_us.p75.600=651
heartbeat_latency_us.p75.3600=642
heartbeat_latency_us.p95.5=930
heartbeat_latency_us.p95.60=963
heartbeat_latency_us.p95.600=933
heartbeat_latency_us.p95.3600=929
heartbeat_latency_us.p99.5=986
heartbeat_latency_us.p99.60=1409
heartbeat_latency_us.p99.600=989
heartbeat_latency_us.p99.3600=986
num_heartbeats.rate.5=0
num_heartbeats.rate.60=0
num_heartbeats.rate.600=0
num_heartbeats.rate.3600=0
num_heartbeats.sum.5=2
num_heartbeats.sum.60=40
num_heartbeats.sum.600=394
num_heartbeats.sum.3600=2364

Last update: September 6, 2021

7.1.2 Query metrics over HTTP

- 355/629 - 2021 Vesoft Inc.

7.2 RocksDB statistics

Nebula Graph uses RocksDB as the underlying storage. This topic describes how to collect and show the RocksDB statistics of

Nebula Graph.

7.2.1 Enable RocksDB

By default, the function of RocksDB statistics is disabled. To enable RocksDB statistics, you need to:

Modify the --enable_rocksdb_statistics parameter as true in the nebula-storaged.conf file. The default path of the configuration

file is /use/local/nebula/etc .

Restart the service to make the modification valid.

7.2.2 Get RocksDB statistics

Users can use the built-in HTTP service in the storage service to get the following types of statistics. Results in the JSON format are

supported.

All RocksDB statistics.

Specified RocksDB statistics.

7.2.3 Examples

Use the following command to get all RocksDB statistics:

For example:

Use the following command to get specified RocksDB statistics:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add .

Use the following command to get specified RocksDB statistics in the JSON format:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add and return the

results in the JSON format.

1.

2.

•

•

curl -L "http://${storage_ip}:${port}/rocksdb_stats"

curl -L "http://172.28.2.1:19779/rocksdb_stats"

rocksdb.blobdb.blob.file.bytes.read=0
rocksdb.blobdb.blob.file.bytes.written=0
rocksdb.blobdb.blob.file.bytes.synced=0
...

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add"

rocksdb.block.cache.add=14
rocksdb.bytes.read=1632

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}&format=json"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add&format=json"

[
 {
 "rocksdb.block.cache.add": 1
 },
 {
 "rocksdb.bytes.read": 160
 }
]

7.2 RocksDB statistics

- 356/629 - 2021 Vesoft Inc.

Last update: October 26, 2021

7.2.3 Examples

- 357/629 - 2021 Vesoft Inc.

8. Data security

8.1 Authentication and authorization

8.1.1 Authentication

Nebula Graph replies on local authentication or LDAP authentication to implement access control.

Nebula Graph creates a session when a client connects to it. The session stores information about the connection, including the

user information. If the authentication system is enabled, the session will be mapped to corresponding users.

Nebula Graph supports local authentication and LDAP authentication.

Local authentication

Local authentication indicates that usernames and passwords are stored locally on the server, with the passwords encrypted.

Users will be authenticated when trying to visit Nebula Graph.

ENABLE LOCAL AUTHENTICATION

Modify the nebula-graphd.conf file (/usr/local/nebula/etc/ is the default path), set --enable_authorize=true and save the

modification.

Restart the Nebula Graph services. For how to restart, see Manage Nebula Graph services.

LDAP authentication

Lightweight Directory Access Protocol (LDAP) is a lightweight client-server protocol for accessing directories and building a

centralized account management system. LDAP authentication and local authentication can be enabled at the same time, but

LDAP authentication has a higher priority. If the local authentication server and the LDAP server both have the information of user

Amber , Nebula Graph reads from the LDAP server first.

ENABLE LDAP AUTHENTICATION

By default, the authentication is disabled and Nebula Graph allows connections with the username root and any password.

Note

1.

2.

You can use the username root and password nebula to log into Nebula Graph after enabling local authentication. This account has

the build-in God role. For more information about roles, see Roles and privileges.

Note

LDAP authentication is an Enterprise-only feature. For how to enable LDAP, see Authenticate with an LDAP server (TODO: doc).

Enterpriseonly

Last update: September 13, 2021

8. Data security

- 358/629 - 2021 Vesoft Inc.

8.1.2 User management

User management is an indispensable part of Nebula Graph access control. This topic describes how to manage users and roles.

After enabling authentication, only valid users can connect to Nebula Graph and access the resources according to the user roles.

CREATE USER

The root user with the GOD role can run CREATE USER to create a new user.

Syntax

Example

GRANT ROLE

Users with the GOD role or the ADMIN role can run GRANT ROLE to assign a built-in role in a graph space to a user. For more

information about Nebula Graph built-in roles, see Roles and privileges.

Syntax

Example

REVOKE ROLE

Users with the GOD role or the ADMIN role can run REVOKE ROLE to revoke the built-in role of a user in a graph space. For more

information about Nebula Graph built-in roles, see Roles and privileges.

Syntax

Example

By default, the authentication is disabled. Nebula Graph allows connections with the username root and any password.

Once the role of a user is modified, the user has to re-login to make the new role takes effect.

Note

•

•

•

CREATE USER [IF NOT EXISTS] <user_name> [WITH PASSWORD '<password>'];

•

nebula> CREATE USER user1 WITH PASSWORD 'nebula';

•

GRANT ROLE <role_type> ON <space_name> TO <user_name>;

•

nebula> GRANT ROLE USER ON basketballplayer TO user1;

•

REVOKE ROLE <role_type> ON <space_name> FROM <user_name>;

•

nebula> REVOKE ROLE USER ON basketballplayer FROM user1;

8.1.2 User management

- 359/629 - 2021 Vesoft Inc.

SHOW ROLES

Users can run SHOW ROLES to list the roles in a graph space.

Syntax

Example

CHANGE PASSWORD

Users can run CHANGE PASSWORD to set a new password for a user. The old password is needed when setting a new one.

Syntax

Example

ALTER USER

The root user with the GOD role can run ALTER USER to set a new password for a user. The old password is not needed when

setting a new one.

Syntax

Example

DROP USER

The root user with the GOD role can run DROP USER to remove a user.

Syntax

Example

•

SHOW ROLES IN <space_name>;

•

nebula> SHOW ROLES IN basketballplayer;
+---------+-----------+
| Account | Role Type |
+---------+-----------+
| "user1" | "ADMIN" |
+---------+-----------+

•

CHANGE PASSWORD <user_name> FROM '<old_password>' TO '<new_password>';

•

nebula> CHANGE PASSWORD user1 FROM 'nebula' TO 'nebula123';

•

ALTER USER <user_name> WITH PASSWORD '<password>';

•

nebula> ALTER USER user1 WITH PASSWORD 'nebula';

Removing a user does not close the current session of the user, and the user role still takes effect in the session until the session is

closed.

Note

•

DROP USER [IF EXISTS] <user_name>;

•

nebula> DROP USER user1;

8.1.2 User management

- 360/629 - 2021 Vesoft Inc.

SHOW USERS

The root user with the GOD role can run SHOW USERS to list all the users.

Syntax

Example

•

SHOW USERS;

•

nebula> SHOW USERS;
+-----------+
| Account |
+-----------+
| "test1" |
| "test2" |
| "test3" |
+-----------+

Last update: November 1, 2021

8.1.2 User management

- 361/629 - 2021 Vesoft Inc.

8.1.3 Roles and privileges

A role is a collection of privileges. You can assign a role to a user for access control.

Built-in roles

Nebula Graph does not support custom roles, but it has multiple built-in roles:

GOD

GOD is the original role with all privileges not limited to graph spaces. It is similar to root in Linux and administrator in

Windows.

When the Meta Service is initialized, the one and only GOD role user root is automatically created with the password

nebula .

One cluster can only have one user with the GOD role. This user can manage all graph spaces in a cluster.

Manual authorization of the God role is not supported. Only the root user with the default God role can be used.

ADMIN

An ADMIN role can read and write both the Schema and the data in a specific graph space.

An ADMIN role of a graph space can grant DBA, USER, and GUEST roles in the graph space to other users.

DBA

A DBA role can read and write both the Schema and the data in a specific graph space.

A DBA role of a graph space CANNOT grant roles to other users.

USER

A USER role can read and write data in a specific graph space.

The Schema information is read-only to the USER roles in a graph space.

GUEST

A GUEST role can only read the Schema and the data in a specific graph space.

•

•

•

Modify the password for root timely for security.

Caution

•

•

•

•

•

Only roles lower than ADMIN can be authorized to other users.

Note

•

•

•

•

•

•

•

•

Nebula Graph does not support custom roles. Users can only use the default built-in roles.

A user can have only one role in a graph space. For authenticated users, see User management.

Note

•

•

8.1.3 Roles and privileges

- 362/629 - 2021 Vesoft Inc.

Role privileges and allowed nGQL

The privileges of roles and the nGQL statements that each role can use are listed as follows.

Privilege God Admin DBA User Guest Allowed nGQL

Read

space

Y Y Y Y Y USE , DESCRIBE SPACE

Write

space

Y CREATE SPACE , DROP SPACE , CREATE SNAPSHOT , DROP

SNAPSHOT , BALANCE DATA , BALANCE DATA STOP , BALANCE

DATA REMOVE , BALANCE LEADER , ADMIN , CONFIG , INGEST ,

DOWNLOAD , BUILD TAG INDEX , BUILD EDGE INDEX

Read

schema

Y Y Y Y Y DESCRIBE TAG , DESCRIBE EDGE , DESCRIBE TAG INDEX ,

DESCRIBE EDGE INDEX

Write

schema

Y Y Y CREATE TAG , ALTER TAG , CREATE EDGE , ALTER EDGE ,

DROP TAG , DROP EDGE , CREATE TAG INDEX , CREATE EDGE

INDEX , DROP TAG INDEX , DROP EDGE INDEX

Write user Y CREATE USER , DROP USER , ALTER USER

Write role Y Y GRANT , REVOKE

Read data Y Y Y Y Y GO , SET , PIPE , MATCH , ASSIGNMENT , LOOKUP , YIELD ,

ORDER BY , FETCH VERTICES , Find , FETCH EDGES , FIND

PATH , LIMIT , GROUP BY , RETURN

Write data Y Y Y Y INSERT VERTEX , UPDATE VERTEX , INSERT EDGE , UPDATE

EDGE , DELETE VERTEX , DELETE EDGES , DELETE TAG

Show

operations

Y Y Y Y Y SHOW , CHANGE PASSWORD

Job Y Y Y Y SUBMIT JOB COMPACT 30
01 SUBMIT JOB FLUSH 30

01 SUBMIT JOB

STATS 30
01 STOP JOB 30

01 RECOVER JOB

The results of SHOW operations are limited to the role of a user. For example, all users can run SHOW SPACES , but the results only

include the graph spaces that the users have privileges.

Only the GOD role can run SHOW USERS and SHOW SNAPSHOTS .

Caution

•

•

Last update: September 26, 2021

8.1.3 Roles and privileges

- 363/629 - 2021 Vesoft Inc.

8.1.4 OpenLDAP authentication

This topic introduces how to connect Nebula Graph to the OpenLDAP server and use the DN (Distinguished Name) and password

defined in OpenLDAP for authentication.

Authentication method

After the OpenLDAP authentication is enabled and users log into Nebula Graph with the account and password, Nebula Graph

checks whether the login account exists in the Meta service. If the account exists, Nebula Graph finds the corresponding DN in

OpenLDAP according to the authentication method and verifies the password.

OpenLDAP supports two authentication methods: simple bind authentication (SimpleBindAuth) and search bind authentication

(SearchBindAuth).

SIMPLEBINDAUTH

Simple bind authentication splices the login account and the configuration information of Graph services into a DN that can be

recognized by OpenLDAP, and then authenticates on OpenLDAP based on the DN and password.

SEARCHBINDAUTH

Search bind authentication reads the Graph service configuration information and queries whether the uid in the configuration

matches the login account. If they match, search bind authentication reads the DN, and then uses the DN and password to verify

on OpenLDAP.

Prerequisites

OpenLDAP is installed.

The account and password are imported on OpenLDAP.

The server where OpenLDAP is located has opened the corresponding authentication port.

This feature is supported by the Enterprise Edition only.

Enterpriseonly

•

•

•

8.1.4 OpenLDAP authentication

- 364/629 - 2021 Vesoft Inc.

https://www.openldap.org/

Procedures

Take the existing account test2 and password passwdtest2 on OpenLDAP as an example.

Connect to Nebula Graph, create and authorize the shadow account test2 corresponding to OpenLDAP.

!!! note

Edit the configuration file nebula-graphd.conf (The default path is /usr/local/nebula/etc/):

SimpleBindAuth (Recommended)

SearchBindAuth

Restart Nebula Graph services to make the new configuration valid.

Run the login test.

!!! note

1.

nebula> CREATE USER test2 WITH PASSWORD '';
nebula> GRANT ROLE ADMIN ON basketballplayer TO test2;

 When creating an account in Nebula Graph, the password can be set arbitrarily.

2.

•

Whether to get the configuration information from the configuration file.
--local_config=true
Whether to enable authentication.
--enable_authorize=true
Authentication methods include password, ldap, and cloud.
--auth_type=ldap
The address of the OpenLDAP server.
--ldap_server=192.168.8.211
The port of the OpenLDAP server.
--ldap_port=389
The name of the Schema in OpenLDAP.
--ldap_scheme=ldap
The prefix of DN.
--ldap_prefix=uid=
The suffix of DN.
--ldap_suffix=,ou=it,dc=sys,dc=com

•

Whether to get the configuration information from the configuration file.
--local_config=true
Whether to enable authentication.
--enable_authorize=true
Authentication methods include password, ldap, and cloud.
--auth_type=ldap
The address of the OpenLDAP server.
--ldap_server=192.168.8.211
The port of the OpenLDAP server.
--ldap_port=389
The name of the Schema in OpenLDAP.
--ldap_scheme=ldap
The DN that binds the target.
--ldap_basedn=ou=it,dc=sys,dc=com

3.

4.

$./nebula-console --addr 127.0.0.1 --port 9669 -u test2 -p passwdtest2
2021/09/08 03:49:39 [INFO] connection pool is initialized successfully

Welcome to Nebula Graph!

 After using OpenLDAP for authentication, local users (including `root`) cannot log in normally.

Last update: September 27, 2021

8.1.4 OpenLDAP authentication

- 365/629 - 2021 Vesoft Inc.

8.2 Backup and restore data with snapshots

Nebula Graph supports using snapshots to back up and restore data. When data loss or misoperation occurs, the data will be

restored through the snapshot.

8.2.1 Prerequisites

Nebula Graph authentication is disabled by default. In this case, all users can use the snapshot feature.

If authentication is enabled, only the GOD role user can use the snapshot feature. For more information about roles, see Roles and

privileges.

8.2.2 Precautions

To prevent data loss, create a snapshot as soon as the system structure changes, for example, after operations such as ADD

HOST , DROP HOST , CREATE SPACE , DROP SPACE , and BALANCE are performed.

Nebula Graph cannot automatically delete the invalid files created by a failed snapshot task. You have to manually delete

them by using DROP SNAPSHOT .

Customizing the storage path for snapshots is not supported for now. The default path is /usr/local/nebula/data .

8.2.3 Snapshot form and path

Nebula Graph snapshots are stored in the form of directories with names like SNAPSHOT_2021_03_09_08_43_12 . The suffix

2021_03_09_08_43_12 is generated automatically based on the creation time (UTC).

When a snapshot is created, snapshot directories will be automatically created in the checkpoints directory on the leader Meta

server and each Storage server.

To fast locate the path where the snapshots are stored, you can use the Linux command find . For example:

8.2.4 Create snapshots

Run CREATE SNAPSHOT to create a snapshot for all the graph spaces based on the current time for Nebula Graph. Creating a

snapshot for a specific graph space is not supported yet.

8.2.5 View snapshots

To view all existing snapshots, run SHOW SNAPSHOTS .

•

•

•

$ find |grep 'SNAPSHOT_2021_03_09_08_43_12'
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data/000081.sst
...

If the creation fails, delete the snapshot and try again.

Note

nebula> CREATE SNAPSHOT;

nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+------------------+
| Name | Status | Hosts |
+--------------------------------+---------+------------------+
| "SNAPSHOT_2021_03_09_08_43_12" | "VALID" | "127.0.0.1:9779" |

8.2 Backup and restore data with snapshots

- 366/629 - 2021 Vesoft Inc.

The parameters in the return information are described as follows.

| Parameter | Description | |-----------

+---| | Name | The name of the

snapshot directory. The prefix SNAPSHOT indicates that the file is a snapshot file, and the suffix indicates the time the snapshot was

created (UTC). | | Status | The status of the snapshot. VALID indicates that the creation succeeded, while INVALID indicates that it

failed. | | Hosts | IP addresses and ports of all Storage servers at the time the snapshot was created. |

8.2.6 Delete snapshots

To delete a snapshot with the given name, run DROP SNAPSHOT .

Example:

8.2.7 Restore data with snapshots

Currently, there is no command to restore data with snapshots. You need to manually copy the snapshot file to the corresponding

folder, or you can make it by using a shell script. The logic implements as follows:

After the snapshot is created, the checkpoints directory is generated in the installation directory of the Meta server and Storage

server, and saves the created snapshot. Taking this topic as an example, when there are two graph spaces, the snapshots created

are saved in /usr/local/nebula/data/meta/nebula/0/checkpoints , /usr/local/nebula/data/storage/ nebula/3/checkpoints and /usr/local/

nebula/data/storage/nebula/4/checkpoints .

To restore the lost data through snapshots, users can take a snapshot at an appropriate time, copy the internal folders data and

wal to their respective parent directories (at the same level with checkpoints), overwrite the previous data and wal , and then

restart the cluster.

| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |
+--------------------------------+---------+------------------+

DROP SNAPSHOT <snapshot_name>;

nebula> DROP SNAPSHOT SNAPSHOT_2021_03_09_08_43_12;
nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+------------------+
| Name | Status | Hosts |
+--------------------------------+---------+------------------+
| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |
+--------------------------------+---------+------------------+

1.

$ ls /usr/local/nebula/data/meta/nebula/0/checkpoints/
SNAPSHOT_2021_03_09_09_10_52
$ ls /usr/local/nebula/data/storage/nebula/3/checkpoints/
SNAPSHOT_2021_03_09_09_10_52
$ ls /usr/local/nebula/data/storage/nebula/4/checkpoints/
SNAPSHOT_2021_03_09_09_10_52

2.

Last update: November 1, 2021

8.2.6 Delete snapshots

- 367/629 - 2021 Vesoft Inc.

8.3 Group&Zone

The Group&Zone feature groups the nodes where Storage services are located (also called Storage nodes) to isolate resources.

8.3.1 Background

Storage nodes can be added into a Zone, and multiple Zones form a Group. If you specify a Group when creating a space, the

space will be created and stored on the Storage nodes within the Group. Data partitions and replicas are stored evenly in each

Zone as shown below.

Suppose that 8 Storage nodes are divided into 4 Zones, with each one having 2 Storage nodes, and then add Zone1, Zone2, and

Zone3 into Group1, add Zone3 and Zone4 into Group2.

After specifying Group1 when you create a space called S1, data partitions and replicas will be stored evenly on the nodes in

Zone1, Zone2, and Zone3, and will not be stored on the node in Zone4.

After specifying Group2 when you create another space called S2, data partitions and replicas will be stored evenly on the nodes

in Zone3 and Zone4, and will not be stored on the nodes in Zone1 and Zone2.

The above example briefly introduces the zone feature. Users can isolate resources by balanced planning of Zones and Groups.

8.3.2 Scenarios

Create a space on specified Storage nodes to isolate resources.

Perform rolling upgrade of a cluster which requires stopping one or more nodes before the cluster is upgraded, and then

restart the nodes until all services on the nodes in the cluster are updated to the latest version.

•

•

8.3 Group&Zone

- 368/629 - 2021 Vesoft Inc.

8.3.3 Precautions

A Zone is a collection of Storage nodes, and each Storage node can only be added into one Zone.

Replicas can be restored in a Zone, and only one replica of the same partition can exist in a Zone.

Many Zones can form a Group for easy management and resource isolation.

A Zone can be added into multiple Groups.

If you specify a Group when creating a space, replicas in the space will be distributed evenly in each Zone within the Group.

You can create multiple spaces using a Group FF
0Cbut note that the number of Zones in the Group needs to be greater than or

equal to the number of replicas (replica_factor) specified when creating a space.

8.3.4 Syntax

ADD ZONE

Create a Zone and add Storage nodes into the Zone.

For example:

ADD HOST...INTO ZONE

Add a Storage node into a created Zone.

DROP HOST...FROM ZONE

Delete a Storage node from a Zone.

SHOW ZONES

View all Zones.

DESCRIBE ZONE

View a specified Zone.

•

•

•

•

•

•

ADD ZONE <zone_name> <host1>:<port1> [,<host2>:<port2>...];

nebula> ADD ZONE zone1 192.168.8.111:9779, 192.168.8.129:9779;

Use the BALANCE command to implement load balance after the Storage node is added into a created Zone.

Note

ADD HOST <host1>:<port1> INTO ZONE <zone_name>;

You cannot delete a Storage node that is being used in a Group directly until the related space is deleted.

Note

DROP HOST <host1>:<port1> FROM ZONE <zone_name>;

SHOW ZONES;

8.3.3 Precautions

- 369/629 - 2021 Vesoft Inc.

DROP ZONE

Delete a Zone.

ADD GROUP

Create a Group and add one or more Zones into the Group.

For example:

ADD ZONE...INTO GROUP

Add a Zone into a created Group.

DROP ZONE...FROM GROUP

Delete a Zone from a GROUP.

SHOW GROUPS

View all Groups.

DESCRIBE GROUP

View a specified Group.

DESCRIBE ZONE <zone_name>;
DESC ZONE <zone_name>;

You cannot delete a Zone that has been added into a Group until the Zone is removed from the Group or the Group to which the Zone

belongs is deleted.

Note

DROP ZONE <zone_name>;

ADD GROUP <group_name> <zone_name> [,<zone_name>...];

nebula> ADD GROUP group1 zone1,zone2;

Use the BALANCE command to implement load balance after the Zone is added into a created Group.

Note

ADD ZONE <zone_name> INTO GROUP <group_name>;

You cannot delete a Zone that is being used in a Group directly until the related space is deleted.

Note

DROP ZONE <zone_name> FROM GROUP <group_name>;

SHOW GROUPS;

8.3.4 Syntax

- 370/629 - 2021 Vesoft Inc.

DROP GROUP

Delete a Group.

DESCRIBE GROUP <group_name>;
DESC GROUP <group_name>;

You cannot delete a Group that is being used directly until the related space is deleted.

Note

DROP GROUP <group_name>;

Last update: October 28, 2021

8.3.4 Syntax

- 371/629 - 2021 Vesoft Inc.

8.4 SSL encryption

Nebula Graph supports data transmission with SSL encryption between clients, the Graph service, the Meta service, and the

Storage service. This topic describes how to enable SSL encryption.

8.4.1 Precaution

Enabling SSL encryption will slightly affect the performance, such as causing operation latency.

8.4.2 Parameters

8.4.3 Certificate modes

To use SSL encryption, SSL certificates are required. Nebula Graph supports two certificate modes.

Self-signed certificate mode

In this mode, users need to make the signed certificate by themselves and set cert_path , key_path , and password_path in the

corresponding file according to encryption policies.

CA-signed certificate mode

In this mode, users need to apply for the signed certificate from a certificate authority and set cert_path , key_path , and

password_path in the corresponding file according to encryption policies.

8.4.4 Encryption policies

Nebula Graph supports three encryption policies. For details, see Usage explanation.

Encrypt the data transmission between clients, the Graph service, the Meta service, and the Storage service.

Add enable_ssl = true to the configuration files of nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf .

Encrypt the data transmission between clients and the Graph service.

This policy applies to the case that the clusters are set in the same server room. Only the port of the Graph service is open to

the outside because other services can communicate over the internal network without encryption. Add enable_graph_ssl =

true to the configuration file of nebula-graphd.conf .

Encrypt the data transmission related to the Meta service in the cluster.

This policy applies to transporting classified information to the Meta service. Add enable_meta_ssl = true to the configuration

files of nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf .

Parameter Default value Description

cert_path - The path to the PEM certification.

key_path - The path to the key certification.

password_path - The path to the password file certification.

ca_path - The path to the trusted CA file.

enable_ssl false Whether to enable SSL encryption.

enable_graph_ssl false Whether to enable SSL encryption in the Graph service only.

enable_meta_ssl false Whether to enable SSL encryption in the Meta service only.

•

•

•

•

•

8.4 SSL encryption

- 372/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/a67d166b284cae1b534bf8d19c936ee38bf12e29/docs/rfcs/0001-ssl-transportation.md#usage-explanation

8.4.5 Steps

Ensure the certificate mode and the encryption policy.

Add the certificate configuration and the policy configuration in corresponding files.

For example, the three configuration files need to be set as follows when using a self-signed certificate and encrypt data

transmission between clients, the Graph service, the Meta service, and the Storage service.

Set the SSL and the trusted CA in clients. For code examples, see nebula-test-run.py.

1.

2.

--cert_path=xxxxxx
--key_path=xxxxx
--password_path=xxxxxx
--enable_ssl=true

3.

Last update: October 15, 2021

8.4.5 Steps

- 373/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/v2.6.0/tests/nebula-test-run.py

9. Practices

9.1 Compaction

This topic gives some information about compaction.

In Nebula Graph, Compaction is the most important background process and has an important effect on performance.

Compaction reads the data that is written on the hard disk, then re-organizes the data structure and the indexes, and then writes

back to the hard disk. The read performance can increase by times after compaction. Thus, to get high read performance, trigger

compaction (full compaction) manually when writing a large amount of data into Nebula Graph.

Nebula Graph has two types of compaction : automatic compaction and full compaction .

9.1.1 Automatic compaction

Automatic compaction is automatically triggered when the system reads data, writes data, or the system restarts. The read

performance can increase in a short time. Automatic compaction is enabled by default. But once triggered during peak hours, it

can cause unexpected IO occupancy that has an unwanted effect on the performance.

9.1.2 Full compaction

Full compaction enables large-scale background operations for a graph space such as merging files, deleting the data expired by

TTL. This operation needs to be initiated manually. Use the following statements to enable full compaction :

The preceding statement returns the job ID. To show the compaction progress, use the following statement:

9.1.3 Operation suggestions

These are some operation suggestions to keep Nebula Graph performing well.

After data import is done, run SUBMIT JOB COMPACT .

Run SUBMIT JOB COMPACT periodically during off-peak hours (e.g. early morning).

To control the read and write traffic limitation for compactions , set the following parameter in the nebula-storaged.conf

configuration file.

Note that compaction leads to long-time hard disk IO. We suggest that users do compaction during off-peak hours (for example, early

morning).

Note

We recommend you to do the full compaction during off-peak hours because full compaction has a lot of IO operations.

Note

nebula> USE <your_graph_space>;
nebula> SUBMIT JOB COMPACT;

nebula> SHOW JOB <job_id>;

•

•

•

Limit the read/write rate to 20MB/s.
--rate_limit=20 (in MB/s)

9. Practices

- 374/629 - 2021 Vesoft Inc.

9.1.4 FAQ

"Where are the logs related to Compaction stored?"

By default, the logs are stored under the LOG file in the /usr/local/nebula/data/storage/nebula/{1}/data/ directory, or similar to

LOG.old.1625797988509303 . You can find the following content.

If the number of L0 files is large, the read performance will be greatly affected and compaction can be triggered.

"Can I do full compactions for multiple graph spaces at the same time?"

Yes, you can. But the IO is much larger at this time and the efficiency may be affected.

"How much time does it take for full compactions?"

When rate_limit is set to 20 , you can estimate the full compaction time by dividing the hard disk usage by the rate_limit . If you

do not set the rate_limit value, the empirical value is around 50 MB/s.

"Can I modify --rate_limit dynamically?"

No, you cannot.

"Can I stop a full compaction after it starts?"

No, you cannot. When you start a full compaction, you have to wait till it is done. This is the limitation of RocksDB.

** Compaction Stats [default] **
Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn
KeyDrop
--
 L0 2/0 2.46 KB 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264
0 0
 Sum 2/0 2.46 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264
0 0
 Int 0/0 0.00 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0 0.000
0 0

Last update: November 1, 2021

9.1.4 FAQ

- 375/629 - 2021 Vesoft Inc.

9.2 Storage load balance

You can use the BALANCE statement to balance the distribution of partitions and Raft leaders, or remove redundant Storage servers.

9.2.1 Balance partition distribution

BALANCE DATA starts a task to equally distribute the storage partitions in a Nebula Graph cluster. A group of subtasks will be created

and implemented to migrate data and balance the partition distribution.

DO NOT stop any machine in the cluster or change its IP address until all the subtasks finish. Otherwise, the follow-up subtasks fail.

Danger

9.2 Storage load balance

- 376/629 - 2021 Vesoft Inc.

Examples

After you add new storage hosts into the cluster, no partition is deployed on the new hosts.

Run SHOW HOSTS to check the partition distribution.

Run BALANCE DATA to start balancing the storage partitions. If the partitions are already balanced, BALANCE DATA fails.

A BALANCE task ID is returned after running BALANCE DATA . Run BALANCE DATA <balance_id> to check the status of the BALANCE task.

When all the subtasks succeed, the load balancing process finishes. Run SHOW HOSTS again to make sure the partition distribution

is balanced.

If any subtask fails, run BALANCE DATA again to restart the balancing. If redoing load balancing does not solve the problem, ask for

help in the Nebula Graph community.

9.2.2 Stop data balancing

To stop a balance task, run BALANCE DATA STOP .

If no balance task is running, an error is returned.

If a balance task is running, the task ID (balance_id) is returned.

BALANCE DATA STOP does not stop the running subtasks but cancels all follow-up subtasks. To check the status of the stopped balance

task, run BALANCE DATA <balance_id> .

1.

nebual> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
"storaged0"	9779	"ONLINE"	4	"basketballplayer:4"	"basketballplayer:15"
"storaged1"	9779	"ONLINE"	8	"basketballplayer:8"	"basketballplayer:15"
"storaged2"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:15"
"storaged3"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"storaged4"	9779	"ONLINE"	0	"No valid partition"	"No valid partition"
"Total"			15	"basketballplayer:15"	"basketballplayer:45"
+-------------+------+----------+--------------+-----------------------------------+------------------------+

2.

nebula> BALANCE DATA;
+------------+
| ID |
+------------+
| 1614237867 |
+------------+

3.

nebula> BALANCE DATA 1614237867;
+--+-------------------+
| balanceId, spaceId:partId, src->dst | status |
+--+-------------------+
"[1614237867, 11:1, storaged1:9779->storaged3:9779]"	"SUCCEEDED"
"[1614237867, 11:1, storaged2:9779->storaged4:9779]"	"SUCCEEDED"
"[1614237867, 11:2, storaged1:9779->storaged3:9779]"	"SUCCEEDED"
...	
"Total:22, Succeeded:22, Failed:0, In Progress:0, Invalid:0"	100
+--+-------------------+

4.

BALANCE DATA does not balance the leader distribution. For more information, see Balance leader distribution.

Note

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
"storaged0"	9779	"ONLINE"	4	"basketballplayer:4"	"basketballplayer:9"
"storaged1"	9779	"ONLINE"	8	"basketballplayer:8"	"basketballplayer:9"
"storaged2"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"storaged3"	9779	"ONLINE"	0	"No valid partition"	"basketballplayer:9"
"storaged4"	9779	"ONLINE"	0	"No valid partition"	"basketballplayer:9"
"Total"			15	"basketballplayer:15"	"basketballplayer:45"
+-------------+------+----------+--------------+-----------------------------------+------------------------+

•

•

9.2.2 Stop data balancing

- 377/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

Once all the subtasks are finished or stopped, you can run BALANCE DATA again to balance the partitions again.

If any subtask of the preceding balance task fails, Nebula Graph restarts the preceding balance task.

If no subtask of the preceding balance task fails, Nebula Graph starts a new balance task.

9.2.3 RESET a balance task

If a balance task fails to be restarted after being stopped, run BALANCE DATA RESET PLAN to reset the task. After that, run BALANCE DATA

again to start a new balance task.

9.2.4 Remove storage servers

To remove specified storage servers and scale in the Storage Service, run BALANCE DATA REMOVE <host_list> .

Example

To remove the following storage server,

Run the following command:

Nebula Graph will start a balance task, migrate the storage partitions in storage3 and storage4, and then remove them from the

cluster.

9.2.5 Balance leader distribution

BALANCE DATA only balances the partition distribution. If the raft leader distribution is not balanced, some of the leaders may

overload. To balance the raft leaders, run BALANCE LEADER .

Example

Run SHOW HOSTS to check the balance result.

•

•

Server name IP address Port

storage3 192.168.0.8 9779

storage4 192.168.0.9 9779

BALANCE DATA REMOVE 192.168.0.8:9779,192.168.0.9:9779;

The state of the removed server will change to OFFLINE . This record will be deleted after one day. To retain it, you can change the

meta configuration removed_threshold_sec .

Note

nebula> BALANCE LEADER;

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
"storaged0"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"storaged1"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"storaged2"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"storaged3"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"storaged4"	9779	"ONLINE"	3	"basketballplayer:3"	"basketballplayer:9"
"Total"			15	"basketballplayer:15"	"basketballplayer:45"
+-------------+------+----------+--------------+-----------------------------------+------------------------+

9.2.3 RESET a balance task

- 378/629 - 2021 Vesoft Inc.

In Nebula Graph 2.6.0, switching leaders will cause a large number of short-term request errors (Storage Error E_RPC_FAILURE). For

solutions, see FAQ.

Caution

Last update: November 1, 2021

9.2.5 Balance leader distribution

- 379/629 - 2021 Vesoft Inc.

9.3 Graph data modeling suggestions

This topic provides general suggestions for modeling data in Nebula Graph.

9.3.1 Model for performance

There is no perfect method to model in Nebula Graph. Graph modeling depends on the questions that you want to know from the

data. Your data drives your graph model. Graph data modeling is intuitive and convenient. Create your data model based on your

business model. Test your model and gradually optimize it to fit your business. To get better performance, you can change or re-

design your model multiple times.

Design and evaluate the most important queries

Usually, various types of queries are validated in test scenarios to assess the overall capabilities of the system. However, in most

production scenarios, there are not many types of frequently used queries. You can optimize the data model based on key queries

selected according to the Pareto (80/20) principle.

No predefined bonds between Tags and Edge types

Define the bonds between Tags and Edge types in the application, not Nebula Graph. There are no statements that could get the

bonds between Tags and Edge types.

Tags/Edge types predefine a set of properties

While creating Tags or Edge types, you need to define a set of properties. Properties are part of the Nebula Graph Schema.

Control changes in the business model and the data model

Changes here refer to changes in business models and data models (meta-information), not changes in the data itself.

Some graph databases are designed to be Schema-free, so their data modeling, including the modeling of the graph topology and

properties, can be very flexible. Properties can be re-modeled to graph topology, and vice versa. Such systems are often

specifically optimized for graph topology access.

Nebula Graph 2.6.0 is a strong-Schema (row storage) system, which means that the business model should not change frequently.

For example, the property Schema should not change. It is similar to avoiding ALTER TABLE in MySQL.

On the contrary, vertices and their edges can be added or deleted at low costs. Thus, the easy-to-change part of the business model

should be transformed to vertices or edges, rather than properties.

For example, in a business model, people have relatively fixed properties such as age, gender, and name. But their contact, place

of visit, trade account, and login device are often changing. The former is suitable for modeling as properties and the latter as

vertices or edges.

Breadth-first traversal over depth-first traversal

Nebula Graph has lower performance for depth-first traversal based on the Graph topology, and better performance for

breadth-first traversal and obtaining properties. For example, if model A contains properties "name", "age", and "eye color", it

is recommended to create a tag person and add properties name , age , and eye_color to it. If you create a tag eye_color and an

The following suggestions may not apply to some special scenarios. In these cases, find help in the Nebula Graph community.

Note

•

9.3 Graph data modeling suggestions

- 380/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

edge type has , and then create an edge to represent the eye color owned by the person, the traversal performance will not

be high.

The performance of finding an edge by an edge property is close to that of finding a vertex by a vertex property. For some

databases, it is recommended to re-model edge properties as those of the intermediate vertices. For example, model the

pattern (src)-[edge {P1, P2}]->(dst) as (src)-[edge1]->(i_node {P1, P2})-[edge2]->(dst) . With Nebula Graph 2.6.0, you can use

(src)-[edge {P1, P2}]->(dst) directly to decrease the depth of the traversal and increase the performance.

Edge directions

To query in the opposite direction of an edge, use the following syntax:

(dst)<-[edge]-(src) or GO FROM dst REVERSELY .

If you do not care about the directions or want to query against both directions, use the following syntax:

(src)-[edge]-(dst) or GO FROM src BIDIRECT .

Therefore, there is no need to insert the same edge redundantly in the reversed direction.

Set tag properties appropriately

Put a group of properties that are on the same level into the same tag. Different groups represent different concepts.

Use indexes correctly

Using property indexes helps find VIDs through properties, but can lead to performance reduction by 90% or even more. Only use

an index when you need to find vertices or edges through their properties.

Design VIDs appropriately

See VID.

Long texts

Do not use long texts to create edge properties. Edge properties are stored twice and long texts lead to greater write amplification.

For how edges properties are stored, see Storage architecture. It is recommended to store long texts in HBase or Elasticsearch

and store its address in Nebula Graph.

9.3.2 Dynamic graphs (sequence graphs) are not supported

In some scenarios, graphs need to have the time information to describe how the structure of the entire graph changes over time.
1

The Rank field on Edges in Nebula Graph 2.6.0 can be used to store time in int64, but no field on vertices can do this because if

you store the time information as property values, it will be covered by new insertion. Thus Nebula Graph does not support

sequence graphs.

•

9.3.2 Dynamic graphs (sequence graphs) are not supported

- 381/629 - 2021 Vesoft Inc.

https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks 1.

Last update: September 17, 2021

9.3.2 Dynamic graphs (sequence graphs) are not supported

- 382/629 - 2021 Vesoft Inc.

9.4 System design suggestions

9.4.1 QPS or low-latency first

Nebula Graph 2.6.0 is good at handling small requests with high concurrency. In such scenarios, the whole graph is huge,

containing maybe trillions of vertices or edges, but the subgraphs accessed by each request are not large (containing millions

of vertices or edges), and the latency of a single request is low. The concurrent number of such requests, i.e., the QPS, can be

huge.

On the other hand, in interactive analysis scenarios, the request concurrency is usually not high, but the subgraphs accessed

by each request are large, with thousands of millions of vertices or edges. To lower the latency of big requests in such

scenarios, you can split big requests into multiple small requests in the application, and concurrently send them to multiple

graphd processes. This can decrease the memory used by each graphd process as well. Besides, you can use Nebula

Algorithm for such scenarios.

9.4.2 Horizontal or vertical scaling

Nebula Graph 2.6.0 supports horizontal scaling.

The horizontal scaling of the Storaged process:

- Increasing the number of machines deployed with the Storaged process can increase the overall capability of the cluster

linearly, including increasing the overall QPS and reducing latency.

- However, the number of partitions is fixed when creating a graph space. The service capability of a single partition is

determined by a single server. The operations depending on a single partition include fetching properties of a single vertex

(FETCH), a breadth-first traversal from a single vertex (GO), etc.

The horizontal scaling of the Graphd process:

- Each request from the client is handled by one and only one Graphd process, with no other Graphd processes participating

in the processing of the request.

- Therefore, increasing the number of machines deployed with the Graphd process can increase the overall QPS of the

cluster, but cannot lower the latency of a single request.

Metad does not support horizontal scaling.

Vertical scaling usually has higher hardware costs, but relatively simple operations. Nebula Graph 2.6.0 can also be scaled

vertically.

9.4.3 Data transmission and optimization

Read/write balance. Nebula Graph fits into OLTP scenarios with balanced read/write, i.e., concurrent write and read. It is not

suitable for OLAP scenarios that usually need to write once and read many times.

Select different write methods. For large batches of data writing, use SST files. For small batches of data writing, use INSERT .

Run COMPACTION and BALANCE jobs to optimize data format and storage distribution at the right time.

Nebula Graph 2.6.0 does not support transactions and isolation in the relational database and is closer to NoSQL.

9.4.4 Query preheating and data preheating

Preheat on the application side:

The Grapd process does not support pre-compiling queries and generating corresponding query plans, nor can it cache

previous query results.

The Storagd process does not support preheating data. Only the LSM-Tree and BloomFilter of RocksDB are loaded into

memory at startup.

Once accessed, vertices and edges are cached respectively in two types of LRU cache of the Storage Service.

•

•

•

•

•

•

•

•

•

•

•

•

9.4 System design suggestions

- 383/629 - 2021 Vesoft Inc.

Last update: September 23, 2021

9.4.4 Query preheating and data preheating

- 384/629 - 2021 Vesoft Inc.

9.5 Execution plan

Nebula Graph 2.6.0 applies rule-based execution plans. Users cannot change execution plans, pre-compile queries (and

corresponding plan cache), or accelerate queries by specifying indexes.

To view the execution plan and executive summary, see EXPLAIN and PROFILE.

Last update: September 17, 2021

9.5 Execution plan

- 385/629 - 2021 Vesoft Inc.

9.6 Processing super vertices

9.6.1 Principle introduction

In graph theory, a super vertex, also known as a dense vertex, is a vertex with an extremely high number of adjacent edges. The

edges can be outgoing or incoming.

Super vertices are very common because of the power-law distribution. For example, popular leaders in social networks (Internet

celebrities), top stocks in the stock market, Big Four in the banking system, hubs in transportation networks, websites with high

clicking rates on the Internet, and best sellers in E-commerce.

In Nebula Graph 2.6.0, a vertex and its properties form a key-value pair , with its VID and other meta information as the key . Its

Out-Edge Key-Value and In-Edge Key-Value are stored in the same partition in the form of LSM-trees in hard disks and caches.

Therefore, directed traversals from this vertex and directed traversals ending at this vertex both involve either a large number of

sequential IO scans (ideally, after Compaction or a large number of random IO (frequent writes to the vertex and its ingoing and

outgoing edges).

As a rule of thumb, a vertex is considered dense when the number of its edges exceeds 10,000. Some special cases require

additional consideration 30
02

Indexes for duplicate properties

In a property graph, there is another class of cases similar to super vertices: a property has a very high duplication rate, i.e.,

many vertices with the same tag but different VIDs have identical property and property values.

Property indexes in Nebula Graph 2.6.0 are designed to reuse the functionality of RocksDB in the Storage Service, in which case

indexes are modeled as keys with the same prefix . If the lookup of a property fails to hit the cache, it is processed as a random seek

and a sequential prefix scan on the hard disk to find the corresponding VID. After that, the graph is usually traversed from this

vertex, so that another random read and sequential scan for the corresponding key-value of this vertex will be triggered. The

higher the duplication rate, the larger the scan range.

For more information about property indexes, see How indexing works in Nebula Graph.

Usually, special design and processing are required when the number of duplicate property values exceeds 10,000.

Suggested solutions

SOLUTIONS AT THE DATABASE END

Truncation: Only return a certain number (a threshold) of edges, and do not return other edges exceeding this threshold.

Compact: Reorganize the order of data in RocksDB to reduce random reads and increase sequential reads.

In Nebula Graph 2.6.0, there is not any data structure to store the out/in degree for each vertex. Therefore, there is no direct

method to know whether it is a super vertex or not. You can try to use Spark to count the degrees periodically.

Note

1.

2.

9.6 Processing super vertices

- 386/629 - 2021 Vesoft Inc.

https://nebula-graph.io/posts/how-indexing-works-in-nebula-graph/

SOLUTIONS AT THE APPLICATION END

Break up some of the super vertices according to their business significance:

Delete multiple edges and merge them into one.

For example, in the transfer scenario (Account_A)-[TRANSFER]->(Account_B) , each transfer record is modeled as an edge between

account A and account B, then there may be tens of thousands of transfer records between (Account_A) and (Account_B) .

In such scenarios, merge obsolete transfer details on a daily, weekly, or monthly basis. That is, batch-delete old edges and

replace them with a small number of edges representing monthly total and times . And keep the transfer details of the latest

month.

Split an edge into multiple edges of different types.

For example, in the (Airport)<-[DEPART]-(Flight) scenario, the departure of each flight is modeled as an edge between a flight

and an airport. Departures from a big airport might be enormous.

According to different airlines, divide the DEPART edge type into finer edge types, such as DEPART_CEAIR , DEPART_CSAIR , etc.

Specify the departing airline in queries (graph traversal).

Split vertices.

For example, in the loan network (person)-[BORROW]->(bank) , large bank A will have a very large number of loans and

borrowers.

In such scenarios, you can split the large vertex A into connected sub-vertices A1, A2, and A3.

A1, A2, and A3 can either be three real branches of bank A, such as Beijing branch, Shanghai branch, and Zhejiang branch,

or three virtual branches set up according to certain rules, such as A1: 1-1000, A2: 1001-10000 and A3: 10000+ according to the

number of loans. In this way, any operation on A is converted into three separate operations on A1, A2, and A3.

•

•

•

(Person1)-[BORROW]->(BankA1), (Person2)-[BORROW]->(BankA2), (Person2)-[BORROW]->(BankA3);
(BankA1)-[BELONGS_TO]->(BankA), (BankA2)-[BELONGS_TO]->(BankA), (BankA3)-[BELONGS_TO]->(BankA).

Last update: September 17, 2021

9.6.1 Principle introduction

- 387/629 - 2021 Vesoft Inc.

9.7 Best practices

Nebula Graph is used in a variety of industries. This topic presents a few best practices for using Nebula Graph. For more best

practices, see Blog.

9.7.1 Scenarios

Use cases

User review

Performance

9.7.2 Kernel

Nebula Graph Source Code Explained: Variable-Length Pattern Matching

Adding a Test Case for Nebula Graph

BDD-Based Integration Testing Framework for Nebula Graph: Part Ⅰ

BDD-Based Integration Testing Framework for Nebula Graph: Part II

Understanding Subgraph in Nebula Graph 2.0

Full-Text Indexing in Nebula Graph 2.0

9.7.3 Ecosystem tool

Validating Import Performance of Nebula Importer

Community Contribution | Nebula Graph 2.0 Performance Testing

•

•

•

•

•

•

•

•

•

•

•

Last update: October 26, 2021

9.7 Best practices

- 388/629 - 2021 Vesoft Inc.

https://nebula-graph.io/posts/
https://nebula-graph.io/tags/use-cases/
https://nebula-graph.io/tags/user-review/
https://nebula-graph.io/tags/performance/
https://nebula-graph.io/posts/nebula-graph-source-code-reading-06/
https://nebula-graph.io/posts/add-test-case-nebula-graph/
https://nebula-graph.io/posts/bdd-testing-practice/
https://nebula-graph.io/posts/bdd-testing-practice-volume-2/
https://nebula-graph.io/posts/nebula-graph-subgraph-introduction/
https://nebula-graph.io/posts/how-fulltext-index-works/
https://nebula-graph.io/posts/nebula-importer-practice/
https://nebula-graph.io/posts/v2.0-benchmark-and-nebula-importer-optimize/

10. Client

10.1 Clients overview

Nebula Graph supports multiple types of clients for users to connect to and manage the Nebula Graph database.

Nebula Console: the native CLI client

Nebula CPP: the Nebula Graph client for C++

Nebula Java: the Nebula Graph client for Java

Nebula Python: the Nebula Graph client for Python

Nebula Go: the Nebula Graph client for Golang

•

•

•

•

•

For now, only Nebula Java is thread-safe.

Note

Last update: September 1, 2021

10. Client

- 389/629 - 2021 Vesoft Inc.

10.2 Nebula CPP

Nebula CPP is a C++ client for connecting to and managing the Nebula Graph database.

10.2.1 Prerequisites

You have installed C++ and GCC 4.8 or later versions.

You have prepared the correct resources.

10.2.2 Compatibility with Nebula Graph

10.2.3 Install Nebula CPP

Clone the Nebula CPP source code to the host.

(Recommended) To install a specific version of Nebula CPP, use the Git option --branch to specify the branch. For example, to

install v2.5.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-cpp .

Create a directory named build and change the working directory to it.

Generate the makefile file with CMake.

Compile Nebula CPP.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU}core number,

\frac{the_memory_size(GB)}{2})\).

•

•

Nebula Graph version Nebula CPP version

2.6.0 2.5.0

2.0.1 2.0.0

2.0.0 2.0.0

1.

•

$ git clone --branch v2.5.0 https://github.com/vesoft-inc/nebula-cpp.git

•

$ git clone https://github.com/vesoft-inc/nebula-cpp.git

2.

$ cd nebula-cpp

3.

$ mkdir build && cd build

4.

The default installation path is /usr/local/nebula . To modify it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> option while

running the following command.

Note

$ cmake -DCMAKE_BUILD_TYPE=Release ..

If G++ does not support C++ 11, add the option -DDISABLE_CXX11_ABI=ON .

Note

5.

10.2 Nebula CPP

- 390/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/v2.5.0

Install Nebula CPP.

Update the dynamic link library.

10.2.4 Use Nebula CPP

Compile the CPP file to an executable file, then you can use it. The following steps take using SessionExample.cpp for example.

Use the example code to create the SessionExample.cpp file.

Run the following command to compile the file.

library_folder_path : The storage path of the Nebula Graph dynamic libraries. The default path is /usr/local/nebula/lib64 .

include_folder_path : The storage of the Nebula Graph header files. The default path is /usr/local/nebula/include .

For example:

Core of the example code

This sub-section shows the core of the example code. For all the code, see SessionExample.

$ make -j{N}

6.

$ sudo make install

7.

$ sudo ldconfig

1.

2.

$ LIBRARY_PATH=<library_folder_path>:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I<include_folder_path> -lnebula_graph_client -o session_example

•

•

$ LIBRARY_PATH=/usr/local/nebula/lib64:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I/usr/local/nebula/include -lnebula_graph_client -o session_example

nebula::init(&argc, &argv);
auto address = "192.168.xx.1:9669";
nebula::ConnectionPool pool;
pool.init({address}, nebula::Config{});
auto session = pool.getSession("root", "nebula");

auto result = session.execute("SHOW HOSTS");
std::cout << *result.data;

std::atomic_bool complete{false};
session.asyncExecute("SHOW HOSTS", [&complete](nebula::ExecutionResponse&& cbResult) {
 std::cout << *cbResult.data;
 complete.store(true);
});
session.release();

Last update: September 23, 2021

10.2.4 Use Nebula CPP

- 391/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/blob/master/examples/SessionExample.cpp
https://github.com/vesoft-inc/nebula-cpp/blob/master/examples/SessionExample.cpp

10.3 Nebula Java

Nebula Java is a Java client for connecting to and managing the Nebula Graph database.

10.3.1 Prerequisites

You have installed Java 8.0 or later versions.

10.3.2 Compatibility with Nebula Graph

10.3.3 Download Nebula Java

(Recommended) To install a specific version of Nebula Java, use the Git option --branch to specify the branch. For example, to

install v2.6.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

10.3.4 Use Nebula Java

When importing a Maven project with tools such as IDEA, set the following dependency in pom.xml .

If you cannot download the dependency for the daily development version, set the following content in pom.xml . Released versions

have no such issue.

Nebula Graph version Nebula Java version

2.6.0 2.6.0

2.0.1 2.0.0

2.0.0 2.0.0

2.0.0-rc1 2.0.0-rc1

•

$ git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula-java.git

•

$ git clone https://github.com/vesoft-inc/nebula-java.git

We recommend that each thread uses one session. If multiple threads use the same session, the performance will be reduced.

Note

2.0.0-SNAPSHOT indicates the daily development version that may have unknown issues. We recommend that you replace 2.0.0-

SNAPSHOT with a released version number to use a table version.

Note

<dependency>
 <groupId>com.vesoft</groupId>
 <artifactId>client</artifactId>
 <version>2.0.0-SNAPSHOT</version>
</dependency>

10.3 Nebula Java

- 392/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/tree/v2.6.0

If there is no Maven to manage the project, manually download the JAR file to install Nebula Java.

Core of the example code

This sub-section shows the core of the example code. For all the code, see GraphClientExample.

<repositories>
 <repository>
 <id>snapshots</id>
 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>
 </repository>
</repositories>

NebulaPool pool = new NebulaPool();
Session session = null;
try {
 NebulaPoolConfig nebulaPoolConfig = new NebulaPoolConfig();
 nebulaPoolConfig.setMaxConnSize(100);
 List<HostAddress> addresses = Arrays.asList(new HostAddress("192.168.xx.1", 9669),
 new HostAddress("192.168.xx.2", 9670));
 pool.init(addresses, nebulaPoolConfig);
 session = pool.getSession("root", "nebula", false);

 //create space
 String space = "test";
 String createSpace = "CREATE SPACE IF NOT EXISTS " + space + " (partition_num=15, replica_factor=1, vid_type=fixed_string(30)); ";
 ResultSet resp = session.execute(createSpace);

 //create schema
 String createSchema = "USE " + space + "; CREATE TAG IF NOT EXISTS person(name string, age int);"
 + "CREATE EDGE IF NOT EXISTS like(likeness double)";
 ResultSet resp = session.execute(createSchema);

 //insert vertex
 String insertVertexes = "INSERT VERTEX person(name, age) VALUES " + "'Bob':('Bob', 10), "
 + "'Lily':('Lily', 9), " + "'Tom':('Tom', 10), " + "'Jerry':('Jerry', 13), "
 + "'John':('John', 11);";
 ResultSet resp = session.execute(insertVertexes);

 // inert edge
 String insertEdges = "INSERT EDGE like(likeness) VALUES " + "'Bob'->'Lily':(80.0), "
 + "'Bob'->'Tom':(70.0), " + "'Lily'->'Jerry':(84.0), " + "'Tom'->'Jerry':(68.3), "
 + "'Bob'->'John':(97.2);";
 ResultSet resp = session.execute(insertEdges);

 // query
 String query = "GO FROM \"Bob\" OVER like " + "YIELD properties($$).name, properties($$).age, properties(edge).likeness";
 ResultSet resp = session.execute(query);
 printResult(resp);
}finally {
 if (session != null) {
 session.release();
 }
 pool.close();
}

Last update: October 22, 2021

10.3.4 Use Nebula Java

- 393/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/
https://github.com/vesoft-inc/nebula-java/blob/master/examples/src/main/java/com/vesoft/nebula/examples/GraphClientExample.java

10.4 Nebula Python

Nebula Python is a Python client for connecting to and managing the Nebula Graph database.

10.4.1 Prerequisites

You have installed Python 3.5 or later versions.

10.4.2 Compatibility with Nebula Graph

10.4.3 Install Nebula Python

Install Nebula Python with pip

Install Nebula Python from the source code

Clone the Nebula Python source code to the host.

(Recommended) To install a specific version of Nebula Python, use the Git option --branch to specify the branch. For

example, to install v2.6.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-python.

Run the following command to install dependencies.

Run the following command to install Nebula Python.

10.4.4 Core of the example code

This section shows the core of the example code. For all the code, see Example.

Nebula Graph version Nebula Python version

2.6.0 2.6.0

2.0.1 2.0.0

2.0.0 2.0.0

2.0.0-rc1 2.0.0rc1

$ pip install nebula2-python==<version>

1.

•

$ git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula-python.git

•

$ git clone https://github.com/vesoft-inc/nebula-python.git

2.

$ cd nebula-python

3.

$ pip install -r requirements.txt

To run unit tests in the development mode, install dependencies of requirements-dev.txt .

Note

4.

$ sudo python3 setup.py install

10.4 Nebula Python

- 394/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-python
https://github.com/vesoft-inc/nebula-python/tree/master/example

Connect to the Graph Service

Connect to the Storage Server

Customize configurations.
config = Config()
config.max_connection_pool_size = 10
Initialize the connection pool.
connection_pool = ConnectionPool()
Returns true if the server is healthy, false otherwise.
ok = connection_pool.init([('192.168.xx.1', 9669)], config)

Method 1: Manually specify when to release the session.
Get the session from the connection pool.
session = connection_pool.get_session('root', 'nebula')

Select a graph space.
session.execute('USE basketballplayer')

Run the SHOW TAGS statement.
result = session.execute('SHOW TAGS')
print(result)

Release the session.
session.release()

Method 2: Use session_context to automatically release the session.
with connection_pool.session_context('root', 'nebula') as session:
 session.execute('USE basketballplayer;')
 result = session.execute('SHOW TAGS;')
 print(result)

Close the connection pool.
connection_pool.close()

Set the IP addresses of all Meta servers.
meta_cache = MetaCache([('192.168.xx.1', 9559),
 ('192.168.xx.2', 9559),
 ('192.168.xx.3', 9559)],
 50000)
graph_storage_client = GraphStorageClient(meta_cache)

resp = graph_storage_client.scan_vertex(
 space_name='ScanSpace',
 tag_name='person')
while resp.has_next():
 result = resp.next()
 for vertex_data in result:
 print(vertex_data)

resp = graph_storage_client.scan_edge(
 space_name='ScanSpace',
 edge_name='friend')
while resp.has_next():
 result = resp.next()
 for edge_data in result:
 print(edge_data)

Last update: September 23, 2021

10.4.4 Core of the example code

- 395/629 - 2021 Vesoft Inc.

10.5 Nebula Go

Nebula Go is a Golang client for connecting to and managing the Nebula Graph database.

10.5.1 Prerequisites

You have installed Golang 1.13 or later versions.

10.5.2 Compatibility with Nebula Graph

10.5.3 Download Nebula Go

(Recommended) To install a specific version of Nebula Go, use the Git option --branch to specify the branch. For example, to

install v2.6.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

10.5.4 Install or update

Run the following command to install or update Nebula Go:

tag : Specify the branch, such as master or v2.6.0 .

10.5.5 Core of the example code

This section shows the core of the example code. For all the code, see graph_client_basic_example and

graph_client_goroutines_example.

Nebula Graph version Nebula Go version

2.6.0 2.6.0

2.0.1 2.0.0-GA

2.0.0 2.0.0-GA

•

$ git clone --branch v2.6.0 https://github.com/vesoft-inc/nebula-go.git

•

$ git clone https://github.com/vesoft-inc/nebula-go.git

$ go get -u -v github.com/vesoft-inc/nebula-go@<tag>

const (
 address = "192.168.xx.1"
 port = 9669
 username = "root"
 password = "nebula"
)

func main() {
 hostAddress := nebula.HostAddress{Host: address, Port: port}
 hostList := []nebula.HostAddress{hostAddress}
 testPoolConfig := nebula.GetDefaultConf()
 pool, err := nebula.NewConnectionPool(hostList, testPoolConfig, log)
 defer pool.Close()
 session, err := pool.GetSession(username, password)
 defer session.Release()

 checkResultSet := func(prefix string, res *nebula.ResultSet) {
 if !res.IsSucceed() {
 log.Fatal(fmt.Sprintf("%s, ErrorCode: %v, ErrorMsg: %s", prefix, res.GetErrorCode(), res.GetErrorMsg()))
 }
 }
 {
 createSchema := "CREATE SPACE IF NOT EXISTS basic_example_space(vid_type=FIXED_STRING(20)); " +
 "USE basic_example_space;" +
 "CREATE TAG IF NOT EXISTS person(name string, age int);" +

10.5 Nebula Go

- 396/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-go/tree/v2.6.0
https://github.com/vesoft-inc/nebula-go/blob/master/basic_example/graph_client_basic_example.go
https://github.com/vesoft-inc/nebula-go/blob/master/gorountines_example/graph_client_goroutines_example.go

 "CREATE EDGE IF NOT EXISTS like(likeness double)"
 resultSet, err := session.Execute(createSchema)
 checkResultSet(createSchema, resultSet)
 }
 fmt.Print("\n")
 log.Info("Nebula Go Client Basic Example Finished")
}

Last update: September 1, 2021

10.5.5 Core of the example code

- 397/629 - 2021 Vesoft Inc.

11. Nebula Graph Studio

11.1 Change Log

11.1.1 v3.1.0 (2021.10.29)

Feature enhancements:

Compatible with Nebula Graph v2.6.0.

Added the use of Helm to deploy and start Studio in the Kubernetes cluster.

Added GEO.

Explorer

Added the function of modifying the vertex icon.

Fix:

Schema

Fix the problem that some operations of the tag/edge/property named after keywords will report errors.

Fix the problem of incomplete data types by adding date/time/datetime/int32/int16/int8.

Compatibility:

Remove Studio's dependency on nebula-importer and use http-gateway to be compatible with related functions.

11.1.2 v3.0.0 (2021.08.13)

Feature enhancements:

Compatible with Nebula Graph v2.5.0.

Supported adding COMMENT in Space, Tag, Edge Type, Index while configuration Schema.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: November 2, 2021

11. Nebula Graph Studio

- 398/629 - 2021 Vesoft Inc.

11.2 About Nebula Graph Studio

11.2.1 What is Nebula Graph Studio

Nebula Graph Studio (Studio in short) is a browser-based visualization tool to manage Nebula Graph. It provides you with a

graphical user interface to manipulate graph schemas, import data, explore graph data, and run nGQL statements to retrieve

data. With Studio, you can quickly become a graph exploration expert from scratch. Users can view the latest source code in the

Nebula Graph GitHub repository, see nebula-studio for details.

Released versions

You can deploy Studio using the following methods:

Docker-based. You can deploy Studio with Docker and connect it to Nebula Graph. For more information, see Docker-based

Studio.

RPM-based. You can deploy Studio with RPM and connect it to Nebula Graph. For more information, see RPM-based Studio.

Tar-based. You can deploy Studio with tar and connect it to Nebula Graph. For more information, see tar-based Studio.

Helm-based. You can deploy Studio with Helm in the Kubernetes cluster and connect it to Nebula Graph. For more

information, see Helm-based Studio.

The functions of the above four deployment methods are the same and may be restricted when using Studio. For more

information, see Limitations.

Features

Studio provides these features:

Graphical user interface (GUI) makes Nebula Graph management more user-friendly:

On the Schema page, you can manage schemas with a graphical user interface. It helps you quickly get started with

Nebula Graph.

On the Console page, you can run nGQL statements and read the results in a human-friendly way.

On the Import page, you can operate batch import of vertex and edge data with clicks, and view a real-time import log.

On the Explore page, you can explore the graph data. It helps you dig the relationships among data and improves the

efficiency of data analysis.

Scenarios

You can use Studio in one of these scenarios:

You have a dataset, and you want to explore and analyze data in a visualized way. You can use Docker Compose to deploy

Nebula Graph and then use Studio to explore or analyze data in a visualized way.

You have deployed Nebula Graph and imported a dataset. You want to use a GUI to run nGQL statements or explore and

analyze graph data in a visualized way.

You are a beginner of nGQL (Nebula Graph Query Language) and you prefer to use a GUI rather than a command-line

interface (CLI) to learn the language.

Authentication

Authentication is not enabled in Nebula Graph by default. Users can log into Studio with the root account and any password.

When Nebula Graph enables authentication, users can only sign into Studio with the specified account. For more information, see

Authentication.

•

•

•

•

•

•

•

•

•

•

•

•

11.2 About Nebula Graph Studio

- 399/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-studio

Last update: November 2, 2021

11.2.1 What is Nebula Graph Studio

- 400/629 - 2021 Vesoft Inc.

11.2.2 Explanations of terms

This topic provides explanations of terms you may need to know when using Studio.

Nebula Graph Studio: Referred to as Studio in this manual. Studio is a browser-based visualization tool to manage Nebula

Graph. It provides you with a graphical user interface to manipulate graph schemas, import data, explore graph data, and

run nGQL statements to retrieve data.

Nebula Graph: Nebula Graph is a distributed, scalable, and lightning-fast graph database. It is the optimal solution in the

world capable of hosting graphs with dozens of billions of vertices (nodes) and trillions of edges (relationships) with

millisecond latency. For details, refer to Nebula Graph User Manual.

•

•

Last update: August 27, 2021

11.2.2 Explanations of terms

- 401/629 - 2021 Vesoft Inc.

11.2.3 Limitations

This topic introduces the limitations of Studio.

Nebula Graph versions

Architecture

For now, Docker-based and RPM-based Studio v3.x supports x86_64 architecture only.

Upload data

Only CSV files without headers can be uploaded, but no limitations are applied to the size and store period for a single file. The

maximum data volume depends on the storage capacity of your machine.

Data backup

For now, you can export the queried results in the CSV format on the Console page and export data in the CSV format on the

Explore page. No other backup methods are available.

nGQL statements

On the Console page of Docker-based and RPM-based Studio v3.x, all the nGQL syntaxes except these are supported:

USE <space_name> : You cannot run such a statement on the Console page to choose a graph space. As an alternative, you can

click a graph space name in the drop-down list of Current Graph Space.

You cannot use line breaks (\). As an alternative, you can use the Enter key to split a line.

Browser

We recommend that you use Chrome to get access to Studio.

The Studio version is released independently of the Nebula Graph core. The correspondence between the versions of Studio and the

Nebula Graph core, as shown in the table below.

Note

Nebula Graph version Studio version

1.x 1.x

2.0 & 2.0.1 2.x

2.5.0 & 2.5.1 3.0.0

2.6.0 3.1.0

•

•

Last update: November 2, 2021

11.2.3 Limitations

- 402/629 - 2021 Vesoft Inc.

11.2.4 Check updates

Studio is in development. Users can view the latest releases features through Changelog.

To view the Changelog, on the upper-right corner of the page, click the version and then New version.

Last update: November 2, 2021

11.2.4 Check updates

- 403/629 - 2021 Vesoft Inc.

11.2.5 Shortcuts

This topic lists the shortcuts supported in Studio.

Description Operation

Run nGQL statements in Console Shift + Enter

Select multiple vertices in Schema Shift + Left-click

Zoom out graph in Schema Shift + ‘-’

Zoom in graph in Schema Shift + ‘+’

Show graph in Schema Shift + ‘l’

Rollback in Schema Shift + ‘z’

Delete map in Schema Selected + Shift + 'del'

Expand a vertex in Schema Double Left-click or Shift + Enter

Last update: September 6, 2021

11.2.5 Shortcuts

- 404/629 - 2021 Vesoft Inc.

11.3 Deploy and connect

11.3.1 Deploy Studio

This topic describes how to deploy Studio locally by Docker, RPM, and tar package.

RPM-based Studio

PREREQUISITES

Before you deploy RPM-based Studio, you must confirm that:

The Nebula Graph services are deployed and started. For more information, see Nebula Graph Database Manual.

If your Linux distribution is CentOS, install lsof and Node.js of versions above v10.16.0+.

Before the installation starts, the following ports are not occupied.

INSTALL

Select and download the RPM package according to your needs. It is recommended to select the latest version. Common links

are as follows:

Use sudo rpm -i <rpm> to install RPM package.

For example, install Studio 3.1.0, use the following command:

When the screen returns the following message, it means that the PRM-based Studio has been successfully started.

When Docker-based Studio is started, use http://ip address:7001 to get access to Studio.

You can also try some functions online in Studio.

Note

•

•

node and npm should be installed in /usr/bin/ directory. Avoid the situation that the node command cannot be found during RPM

installation. For example, the default directory of nodejs12 is in /opt/rh/rh-nodejs12 , you can use following commands to build

soft link:

Note

$ sudo ln -s /opt/rh/rh-nodejs12/root/usr/bin/node /usr/bin/node
$ sudo ln -s /opt/rh/rh-nodejs12/root/usr/bin/npm /usr/bin/npm

•

Port Description

7001 Web service provided by Studio.

8080 HTTP service provided by Nebula HTTP Gateway.

1.

Installation package Checksum Nebula version

nebula-graph-studio-3.1.0-1.x86_64.rpm nebula-graph-studio-3.1.0-1.x86_64.rpm.sha256 v2.6.0

2.

sudo rpm -i nebula-graph-studio-3.1.0-1.x86_64.rpm

egg started on http://0.0.0.0:7001
nohup: Add the output to "nohup.out"

3.

11.3 Deploy and connect

- 405/629 - 2021 Vesoft Inc.

https://playground.nebula-graph.io/explorer
https://nodejs.org/en/
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.1.0/nebula-graph-studio-3.1.0-1.x86_64.rpm
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.1.0/nebula-graph-studio-3.1.0-1.x86_64.rpm.sha256

If you can see the Config Server page on the browser, Docker-based Studio is started successfully.

UNINSTALL

Users can uninstall Studio using the following command:

EXCEPTION HANDLING

If the automatic start fails during the installation process or you want to manually start or stop the service, use the following

command:

Start the service manually

Stop the service manually

If you encounter an error bind EADDRINUSE 0.0.0.0:7001 when starting the service, you can use the following command to check

port 7001 usage.

If the port is occupied and the process on that port cannot be terminated, you can use the following command to change Studio

service port and restart the service.

Run ifconfig or ipconfig to get the IP address of the machine where Docker-based Studio is running. On the machine running

Docker-based Studio, you can use http://localhost:7001 to get access to Studio.

Note

sudo rpm -e nebula-graph-studio-3.1.0-1.x86_64

•

bash /usr/local/nebula-graph-studio/scripts/rpm/start.sh

•

bash /usr/local/nebula-graph-studio/scripts/rpm/stop.sh

lsof -i:7001

 //Open the configuration file
 $ vi config/config.default.js

 //Change the port number
 ...
 config.cluster = {
 listen: {
 port: 7001, // Modify this port number and change it to any one currently available

11.3.1 Deploy Studio

- 406/629 - 2021 Vesoft Inc.

tar-based Studio

PREREQUISITES

Before you deploy tar-based Studio , you must do a check of these:

The Nebula Graph services are deployed and started. For more information, see Nebula Graph Database Manual.

The Linux distribution is CentOS, installed lsof and Node.js of version above v10.16.0+.

Before the installation starts, the following ports are not occupied.

INSTALL

Select and download the tar package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Use tar -xvf to decompress the tar package.

 hostname: '0.0.0.0',
 },
 };
 ...

 //Restart npm
 $ npm run start

•

•

node and npm should be installed in /usr/bin/ directory. Avoid the situation that the node command cannot be found during RPM

installation. For example, the default directory of nodejs12 is in /opt/rh/rh-nodejs12 , you can use following commands to build

soft link:

Note

$ sudo ln -s /opt/rh/rh-nodejs12/root/usr/bin/node /usr/bin/node
$ sudo ln -s /opt/rh/rh-nodejs12/root/usr/bin/npm /usr/bin/npm

•

Port Description

7001 Web service provided by Studio

8080 Nebula-http-gateway, Client's HTTP service

1.

Installation package Studio version

nebula-graph-studio-3.1.0-1.x86_64.tar.gz 3.1.0

2.

tar -xvf nebula-graph-studio-3.1.0-1.x86_64.tar.gz

11.3.1 Deploy Studio

- 407/629 - 2021 Vesoft Inc.

https://nodejs.org/en/
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.1.0/nebula-graph-studio-3.1.0-1.x86_64.tar.gz

PROCEDURE

Deploy and start nebula-http-gateway.

Deploy and start nebula-graph-studio.

When tar-based Studio is started, use http://ip address:7001 to get access to Studio.

If you can see the Config Server page on the browser, Docker-based Studio is started successfully.

STOP SERVICE

You can use kill pid to stop the service:

The root directory nebula-graph-studio has two installation packages: nebula-graph-studio and nebula-importer. You need to deploy

and start the services separately on the same machine to complete the deployment of Studio.

Note

1.

$ cd nebula-http-gateway
$ nohup ./nebula-httpd &

2.

$ cd nebula-graph-studio
$ npm run start

Studio 2.6.0 version is not dependent on nebula-importer, so the installation and deployment procedure is different from Studio

v3.0.0.

Caution

3.

Run ifconfig or ipconfig to get the IP address of the machine where Docker-based Studio is running. On the machine running

Docker-based Studio, you can use http://localhost:7001 to get access to Studio.

Note

11.3.1 Deploy Studio

- 408/629 - 2021 Vesoft Inc.

Docker-based Studio

PREREQUISITES

Before you deploy Docker-based Studio, you must do a check of these:

The Nebula Graph services are deployed and started. For more information, see Nebula Graph Database Manual.

On the machine where Studio will run, Docker Compose is installed and started. For more information, see Docker Compose

Documentation.

Before the installation starts, the following ports are not occupied.

$ kill $(lsof -t -i :8080) # stop nebula-http-gateway
$ cd nebula-graph-studio
$ npm run stop # stop nebula-graph-studio

•

•

•

Port Description

7001 Web service provided by Studio

8080 Nebula-http-gateway, Client's HTTP service

11.3.1 Deploy Studio

- 409/629 - 2021 Vesoft Inc.

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

PROCEDURE

To deploy and start Docker-based Studio, run the following commands. Here we use Nebula Graph v2.6.0 for demonstration:

Download the configuration files for the deployment.

Create the nebula-graph-studio-v3 directory and decompress the installation package to the directory.

Change to the nebula-graph-studio-v3 directory.

Pull the Docker image of Studio.

Build and start Docker-based Studio. In this command, -d is to run the containers in the background.

If these lines are returned, Docker-based Studio v3.x is deployed and started.

When Docker-based Studio is started, use http://ip address:7001 to get access to Studio.

If you can see the Config Server page on the browser, Docker-based Studio is started successfully.

1.

Installation package Nebula Graph version

nebula-graph-studio-v3.tar.gz v2.6.0

2.

mkdir nebula-graph-studio-v3 && tar -zxvf nebula-graph-studio-v3.gz -C nebula-graph-studio-v3

3.

cd nebula-graph-studio-v3

4.

docker-compose pull

5.

docker-compose up -d

Creating docker_client_1 ... done
Creating docker_web_1 ... done
Creating docker_nginx_1 ... done

6.

Run ifconfig or ipconfig to get the IP address of the machine where Docker-based Studio is running. On the machine running

Docker-based Studio, you can use http://localhost:7001 to get access to Studio.

Note

11.3.1 Deploy Studio

- 410/629 - 2021 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/nebula-graph-studio-v3.tar.gz

Next to do

On the Config Server page, connect Docker-based Studio to Nebula Graph. For more information, see Connect to Nebula Graph.

Last update: November 2, 2021

11.3.1 Deploy Studio

- 411/629 - 2021 Vesoft Inc.

11.3.2 Deploy Studio with Helm

This topic describes how to deploy Studio with Helm.

Prerequisites

Before installing Studio, you need to install the following software and ensure the correct version of the software:

Install

Use Git to clone the source code of Studio to the host.

Make the nebula-studio directory the current working directory. bash

 $ cd nebula-studio

Assume using release name: my-studio , installed Studio in Helm Chart.

When Studio is started, use http://address-of-node:30070/ to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

Uninstall

Next to do

On the Config Server page, connect Docker-based Studio to Nebula Graph. For more information, see Connect to Nebula Graph.

Software Requirement

Kubernetes >= 1.14

Helm >= 3.2.0

1.

$ git clone https://github.com/vesoft-inc/nebula-studio.git

2.

3.

$ helm upgrade --install my-studio --set service.type=NodePort --set service.port=30070 deployment/helm

4.

 $ helm uninstall my-studio

11.3.2 Deploy Studio with Helm

- 412/629 - 2021 Vesoft Inc.

https://kubernetes.io
https://helm.sh

Configuration

Parameter Default value Description

replicaCount 0 The number of replicas for Deployment.

image.httpGateway.name vesoft/nebula-http-

gateway

The image name of nebula-http-gateway.

image.nebulaStudio.name vesoft/nebula-graph-

studio

The image name of nebula-graph-studio.

image.nginx.name nginx The image name of nginx.

image.httpGateway.version v2.1.1 The image version of nebula-http-gateway.

image.nebulaStudio.version v3.1.0 The image version of nebula-graph-studio.

image.nginx.version alpine The image version of nginx.

service.type ClusterIP The service type, which should be one of 'NodePort',

'ClusterIP', and 'LoadBalancer'.

service.port 7001 The expose port for nebula-graph-studio's web.

resources.httpGateway {} The resource limits/requests for nebula-http-gateway.

resources.nebulaStudio {} The resource limits/requests for nebula-studio.

resources.nginx {} The resource limits/requests for nginx.

persistent.storageClassName "" The name of storageClass. The default value will be used if not

specified.

persistent.size 5Gi The persistent volume size.

Last update: November 2, 2021

11.3.2 Deploy Studio with Helm

- 413/629 - 2021 Vesoft Inc.

11.3.3 Connect to Nebula Graph

After successfully launching Studio, you need to configure to connect to Nebula Graph. This topic describes how Studio connects

to the Nebula Graph database.

Prerequisites

Before connecting to the Nebula Graph database, you need to confirm the following information:

The Nebula Graph services and Studio are started. For more information, see Deploy Studio.

You have the local IP address and the port used by the Graph service of Nebula Graph. The default port is 9669 .

You have a Nebula Graph account and its password.

•

•

Run ifconfig or ipconfig on the machine to get the IP address.

Note

•

If authentication is enabled in Nebula Graph and different role-based accounts are created, you must use the assigned account

to connect to Nebula Graph. If authentication is disabled, you can use the root and any password to connect to Nebula Graph.

For more information, see Nebula Graph Database Manual.

Note

11.3.3 Connect to Nebula Graph

- 414/629 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/

Procedure

To connect Studio to Nebula Graph, follow these steps:

11.3.3 Connect to Nebula Graph

- 415/629 - 2021 Vesoft Inc.

On the Config Server page of Studio, configure these fields:

Host: Enter the IP address and the port of the Graph service of Nebula Graph. The valid format is IP:port . The default port

is 9669 .

Username and Password: Fill in the log in account according to the authentication settings of Nebula Graph.

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and no account information has been created, you can only log in as GOD role and use root

and nebula as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their

accounts and passwords.

After the configuration, click the Connect button.

If you can see the Explore page, Studio is successfully connected to Nebula Graph.

1.

•

When Nebula Graph and Studio are deployed on the same machine, you must enter the IP address of the machine, but not

127.0.0.1 or localhost , in the Host field.

Note

•

•

•

•

2.

11.3.3 Connect to Nebula Graph

- 416/629 - 2021 Vesoft Inc.

One session continues for up to 30 minutes. If you do not operate Studio within 30 minutes, the active session will time out and

you must connect to Nebula Graph again.

Next to do

When Studio is successfully connected to Nebula Graph, you can do these operations:

If your account has GOD or ADMIN privilege, you can create a schema on the Console page or on the Schema page.

If your account has GOD, ADMIN, DBA, or USER privilege, you can batch import data on the Import page or insert data with

nGQL statements on the Console page.

If your account has GOD, ADMIN, DBA, USER, or GUEST privilege, you can retrieve data with nGQL statements on the

Console page or explore and analyze data on the Explore page.

•

•

•

Last update: September 6, 2021

11.3.3 Connect to Nebula Graph

- 417/629 - 2021 Vesoft Inc.

11.3.4 Clear connection

Clear connection

If you want to reset Nebula Graph, you can clear the connection and reconfigure the database.

When the Studio is still connected to a Nebula Graph database, you can choose setting > clear connect at the toolbar. If the

Config Server page is displayed on the browser, it means that Studio has successfully disconnected from the Nebula Graph

database.

Last update: September 6, 2021

11.3.4 Clear connection

- 418/629 - 2021 Vesoft Inc.

11.4 Quick start

11.4.1 Design a schema

To manipulate graph data in Nebula Graph with Studio, you must have a graph schema. This article introduces how to design a

graph schema for Nebula Graph.

A graph schema for Nebula Graph must have these essential elements:

Tags (namely vertex types) and their properties.

Edge types and their properties.

In this article, you can install the sample data set basketballplayer and use it to explore a pre-designed schema.

This table gives all the essential elements of the schema.

This figure shows the relationship (serve/follow) between a player and a team.

•

•

Element Name Property name

(Data type)

Description

Tag player - name (string)

- age (int)

Represents the player.

Tag team - name (string) Represents the team.

Edge type serve - start_year (int)

- end_year (int)

Represent the players behavior.

This behavior connects the player to the team, and the

direction is from player to team.

Edge type follow - degree (int) Represent the players behavior.

This behavior connects the player to the player, and the

direction is from a player to a player.

11.4 Quick start

- 419/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Last update: September 6, 2021

11.4.1 Design a schema

- 420/629 - 2021 Vesoft Inc.

11.4.2 Create a schema

To batch import data into Nebula Graph, you must have a graph schema. You can create a schema on the Console page or on the

Schema page of Studio.

Prerequisites

To create a graph schema on Studio, you must do a check of these:

Studio is connected to Nebula Graph.

Your account has the privilege of GOD, ADMIN, or DBA.

The schema is designed.

A graph space is created.

Create a schema with Schema

To create a schema on the Schema page, follow these steps:

Create tags. For more information, see Operate tags.

Create edge types. For more information, see Operate edge types.

You can use nebula-console to create a schema. For more information, see Nebula Graph Manual and Get started with Nebula Graph.

Note

•

•

•

•

If no graph space exists and your account has the GOD privilege, you can create a graph space on the Console page. For more

information, see CREATE SPACE.

Note

1.

2.

11.4.2 Create a schema

- 421/629 - 2021 Vesoft Inc.

Create a schema with Console

To create a schema on the Console page, follow these steps:

In the toolbar, click the Console tab.

In the Current Graph Space field, choose a graph space name. In this example, basketballplayer is used.

In the input box, enter these statements one by one and click the button .

If the preceding statements are executed successfully, the schema is created. You can run the statements as follows to view the

schema.

If the schema is created successfully, in the result window, you can see the definition of the tags and edge types.

Next to do

When a schema is created, you can import data.

1.

2.

3.

// To create a tag named "player", with two property
nebula> CREATE TAG player(name string, age int);

// To create a tag named "team", with one property
nebula> CREATE TAG team(name string);

// To create an edge type named "follow", with one properties
nebula> CREATE EDGE follow(degree int);

// To create an edge type named "serve", with two properties
nebula> CREATE EDGE serve(start_year int, end_year int);

// To list all the tags in the current graph space
nebula> SHOW TAGS;

// To list all the edge types in the current graph space
nebula> SHOW EDGES;

// To view the definition of the tags and edge types
DESCRIBE TAG player;
DESCRIBE TAG team;
DESCRIBE EDGE follow;
DESCRIBE EDGE serve;

Last update: September 6, 2021

11.4.2 Create a schema

- 422/629 - 2021 Vesoft Inc.

11.4.3 Import data

After CSV files of data and a schema are created, you can use the Import page to batch import vertex and edge data into Nebula

Graph for graph exploration and data analysis.

Prerequisites

To batch import data, do a check of these:

Studio is connected to Nebula Graph.

A schema is created.

CSV files meet the demands of the Schema.

Your account has privilege of GOD, ADMIN, DBA, or USER.

•

•

•

•

11.4.3 Import data

- 423/629 - 2021 Vesoft Inc.

Procedure

To batch import data, follow these steps:

11.4.3 Import data

- 424/629 - 2021 Vesoft Inc.

In the toolbar, click the Import tab.

On the Select Space page, choose a graph space name. In this example, basketballplayer is used. And then click the Next

button.

On the Upload Files page, click the Upload Files button and then choose CSV files. In this example, edge_serve.csv ,

edge_follow.csv , vertex_player.csv , and vertex_team.csv are chosen.

On the Select Files page, do a check of the file size and click Preview or Delete in the Operations column to make sure that

all source data is correct. And then click the Next button.

On the Map Vertices page, click the + Bind Datasource button, and in the dialog box, choose a CSV file. In this example,

vertex_player.csv or vertex_team.csv is chosen.

In the DataSource X tab, click the + Tag button.

In the vertexId section, do these operations:

a. In the CSV Index column, click Mapping.

b. In the dialog box, choose a column from the CSV file. In this example, the only one cloumn of vertex_player.csv is chosen to

generate VIDs representing players and the playerID column of vertex_player.csv is chosen to generate VIDs representing

players.

!!! Note

In the TAG 1 section, do these operations:

a. In the TAG drop-down list, choose a tag name. In this example, player is used for the vertex_player.csv file, and team is used

for the vertex_team.csv file.

1.

2.

3.

You can choose multiple CSV files at the same time. The CSV file used in this article can be downloaded in the Design a schema.

Note

4.

5.

6.

7.

 In the same graph space, the VID is always unique and cannot be repeated. For VID information, see [VID](../../1.introduction/3.vid.md) "Click to enter the
Nebula Graph Manual".

8.

11.4.3 Import data

- 425/629 - 2021 Vesoft Inc.

/docs-2.0/nebula-studio/quick-start/st-ug-plan-schema.md

b. In the property list, click Mapping to choose a data column from the CSV file as the value of a property. In this example, for

the player tag, choose Column 1 for the age property and set its type to int. And choose Column 2 for the name property and

set its type to string.

(Optional) If necessary, repeat Step 5 through Step 8 for more tags.

When the configuration is done, click the Next button.

When Config validation was successful prompts, data mapping for the vertices is successful.

On the Map Edges page, click the + Bind Datasource button, and in the dialog box, choose a CSV file. In this example, the

edge_follow.csv file is chosen.

In the Type drop-down list, choose an edge type name. In this example, follow is chosen.

In the property list, click Mapping to choose a column from the edge_follow.csv file as values of a property for the edges. srcId

and dstId are the VIDs of the source vertex and destination vertex of an edge. In this example, srcId must be set to the VIDs of

the player and dstId must be set to the VIDs of another player. Rank is optional.

When the configuration is done, click the Next button.

On the Import page, click the Start Import button. On the log window, you can see the import progress. The consumed time

depends on the data volume. During data import, you can click the Stop Import button to stop data import. When the log

window shows information as follows, the data import is done.

9.

10.

11.

12.

13.

14.

15.

11.4.3 Import data

- 426/629 - 2021 Vesoft Inc.

Next to do

When the data are imported to v2.6.0, you can query graph data.

Last update: September 6, 2021

11.4.3 Import data

- 427/629 - 2021 Vesoft Inc.

11.4.4 Query graph data

When data is imported, you can use the Console page or the Explore page to query graph data.

For example, if you want to query the edge properties of the player named player100 to the team named team204 , you can perform

these optional operations:

On the Console tab: Run FETCH PROP ON serve "player100" -> "team204"; . The result window shows all the property information

of this vertex. When the result returns, click the View Subgraph button and then you can view the vertex information in a

visualized way.

On the Explore tab: Click the Start with Vertices button. In the dialog box, enter player101 and then click the Add button.

On the board, you can see the vertex. Move your mouse pointer on the vertex to see the vertex details, as shown in the

preceding figure.

Users can also perform the following query operations online through Studio.

Note

•

•

Last update: September 6, 2021

11.4.4 Query graph data

- 428/629 - 2021 Vesoft Inc.

https://playground.nebula-graph.io/explore

11.5 Operation guide

11.5.1 Use Schema

Operate graph spaces

When Studio is connected to Nebula Graph, you can create or delete a graph space. You can use the Console page or the

Schema page to do these operations. This article only introduces how to use the Schema page to operate graph spaces in Nebula

Graph.

STUDIO VERSION

Studio of v3.1.0 or later versions supports this function. For more information, see check updates.

PREREQUISITES

To operate a graph space on the Schema page of Studio, you must do a check of these:

Studio is connected to Nebula Graph.

Your account has the authority of GOD. It means that:

If the authentication is enabled in Nebula Graph, you can use root and any password to sign in to Studio.

If the authentication is disabled in Nebula Graph, you must use root and its password to sign in to Studio.

CREATE A GRAPH SPACE

To create a graph space on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

On the Graph Space List page, click the + Create button.

On the Create page, do these settings:

Name: Specify a name to the new graph space. In this example, basketballplayer is used. The name must be distinct in the

database. The name cannot be used keywords or reserved keywords as identifiers. For more information, see keywords.

Vid type: The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 . A graph space can only select one VID type. In

this example, FIXED_STRING(32) is used. For more information, see VID.

Comment: The remarks of a certain property or the space itself. The maximum length is 256 bytes. By default, there will be

no comments on a space. But in this example, Statistics of basketball players is used.

Optional Parameters: Set the values of partition_num and replica_factor respectively. In this example, these parameters

are set to 100 and 1 respectively. For more information, see CREATE SPACE syntax.

In the Equivalent to the following nGQL statement panel, you can see the statement equivalent to the preceding settings.

Confirm the settings and then click the + Create button. If the graph space is created successfully, you can see it on the graph

space list.

•

•

•

•

1.

2.

3.

•

•

•

•

CREATE SPACE basketballplayer (partition_num = 100, replica_factor = 1, vid_type = FIXED_STRING(32)) COMMENT = "Statistics of basketball players"

4.

11.5 Operation guide

- 429/629 - 2021 Vesoft Inc.

DELETE A GRAPH SPACE

To delete a graph space on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In the graph space list, find a graph space and then the button in the Operations column.

3. On the dialog box, confirm the information and then click the OK button. When the graph space is deleted successfully, it is

removed from the graph space list.

NEXT TO DO

After a graph space is created, you can create or edit a schema, including:

Operate tags

Operate edge types

Operate indexes

Deleting the space will delete all the data in it, and the deleted data cannot be restored if it is not backed up.

Danger

1.

2.

•

•

•

11.5.1 Use Schema

- 430/629 - 2021 Vesoft Inc.

Last update: September 23, 2021

11.5.1 Use Schema

- 431/629 - 2021 Vesoft Inc.

Operate tags

After a graph space is created in Nebula Graph, you can create tags. With Studio, you can use the Console page or the Schema

page to create, retrieve, update, or delete tags. This topic introduces how to use the Schema page to operate tags in a graph

space only.

STUDIO VERSION

Studio of v3.1.0 or later versions supports this function. For more information, see check updates.

PREREQUISITES

To operate a tag on the Schema page of Studio, you must do a check of these:

Studio is connected to Nebula Graph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

•

•

•

11.5.1 Use Schema

- 432/629 - 2021 Vesoft Inc.

CREATE A TAG

To create a tag on the Schema page, follow these steps:

11.5.1 Use Schema

- 433/629 - 2021 Vesoft Inc.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space, and then click its name or the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Tag tab and click the + Create button.

On the Create page, do these settings:

a. Name: Specify an appropriate name for the tag. In this example, course is specified.

b. (Optional) If necessary, in the upper left corner of the Define Properties panel, click the check box to expand the panel and

do these settings:

- To define a property: Enter a property name, a data type, and a default value.

- To add multiple properties: Click the Add Property button and define more properties.

- To cancel a defined property: Besides the Defaults column, click the button .

c. (Optional) If no index is set for the tag, you can set the TTL configuration: In the upper left corner of the Set TTL panel, click

the check box to expand the panel and configure TTL_COL and TTL_ DURATION . For more information about both parameters, see

TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the

nGQL statement equivalent to these settings.

1.

2.

3.

4.

5.

6.

11.5.1 Use Schema

- 434/629 - 2021 Vesoft Inc.

Confirm the settings and then click the + Create button. When the tag is created successfully, the Define Properties panel

shows all its properties on the list.

7.

11.5.1 Use Schema

- 435/629 - 2021 Vesoft Inc.

EDIT A TAG

To edit a tag on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space, and then click its name or the button in the Operations column.

In Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab, find a tag and then the button in the Operations column.

On the Edit page, do these settings:

To edit a Comment: Click Edit under the Name.

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default

value.

To delete a property: On the Define Properties panel, find a property and then click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set the TTL

configuration.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and

TTL_DURATION .

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check

box to delete the configuration.

When the configuration is done, in the Equivalent to the following nGQL statement panel, you can see the equivalent

ALTER TAG statement.

DELETE A TAG

To delete a tag on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In Graph Space List, find a graph space, and then click its name or the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Tag tab, find a tag and then the button in the Operations column.

CLick OK.

NEXT TO DO

After the tag is created, you can use the Console page to insert vertex data one by one manually or use the Import page to bulk

import vertex data.

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

6.

Confirm the impact before deleting the tag. The deleted data cannot be restored if it is not backed up.

Danger

1.

2.

3.

4.

5.

Last update: September 23, 2021

11.5.1 Use Schema

- 436/629 - 2021 Vesoft Inc.

Operate edge types

After a graph space is created in Nebula Graph, you can create edge types. With Studio, you can choose to use the Console page

or the Schema page to create, retrieve, update, or delete edge types. This topic introduces how to use the Schema page to

operate edge types in a graph space only.

STUDIO VERSION

Studio of v3.1.0 or later versions supports this function. For more information, see check updates.

PREREQUISITES

To operate an edge type on the Schema page of Studio, you must do a check of these:

Studio is connected to Nebula Graph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

•

•

•

11.5.1 Use Schema

- 437/629 - 2021 Vesoft Inc.

CREATE AN EDGE TYPE

To create an edge type on the Schema page, follow these steps:

11.5.1 Use Schema

- 438/629 - 2021 Vesoft Inc.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Edge Type tab and click the + Create button.

On the Create page, do these settings:

Name: Specify an appropriate name for the edge type. In this example, serve is used.

(Optional) If necessary, under the name, click the Comment to input content.

(Optional) If necessary, in the upper left corner of the Define Properties panel, click the check box to expand the panel and

do these settings:

To define a property: Enter a property name, a data type, and a default value.

To add multiple properties: Click the Add Property button and define more properties.

To delete a defined property: Besides the Defaults column, click the button .

(Optional) If no index is set for the edge type, you can set the TTL configuration: In the upper left corner of the Set TTL

panel, click the check box to expand the panel, and configure TTL_COL and TTL_ DURATION . For more information about both

parameters, see TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the

nGQL statement equivalent to these settings.

Confirm the settings and then click the + Create button. When the edge type is created successfully, the Define Properties

panel shows all its properties on the list.

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

6.

7.

11.5.1 Use Schema

- 439/629 - 2021 Vesoft Inc.

EDIT AN EDGE TYPE

To edit an edge type on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

On the Edit page, do these operations:

To edit a Comment: Click Edit under the Name.

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default

value.

To delete a property: On the Define Properties panel, find a property, click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set TTL.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and

TTL_DURATION .

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check

box to delete the configuration.

When the configuration is done, in the Equivalent to the following nGQL statement panel, you can see the equivalent

ALTER EDGE statement.

DELETE AN EDGE TYPE

To delete an edge type on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In Graph Space List, find a graph space and then click its name or click the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

NEXT TO DO

After the edge type is created, you can use the Console page to insert edge data one by one manually or use the Import page to

bulk import edge data.

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

6.

Confirm the impact before deleting the Edge type. The deleted data cannot be restored if it is not backed up.

Danger

1.

2.

3.

4.

5.

Last update: September 23, 2021

11.5.1 Use Schema

- 440/629 - 2021 Vesoft Inc.

Operate Indexes

You can create an index for a Tag and/or an Edge type. An index lets traversal start from vertices or edges with the same property

and it can make a query more efficient. You can create two index types: Tag Index and Edge type Index. With Studio, you can use

the Console page or the Schema page to create, retrieve, and delete indexes. This topic introduces how to use the Schema page

to operate an index only.

STUDIO VERSION

Studio of v3.1.0 or later versions supports this function. For more information, see check updates.

PREREQUISITES

To operate an index on the Schema page of Studio, you must do a check of these:

Studio is connected to Nebula Graph.

A graph Space, Tags, and Edge Types are created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE AN INDEX

To create an index on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

On the Graph Space List page, find a graph space, and then click its name or the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Index tab and then click the + Create button.

On the Create page, do these settings:

Index Type: Choose to create an index for a tag or for an edge type. In this example, Edge Type is chosen.

Name: Choose a tag name or an edge type name. In this example, follow is chosen.

Index Name: Specify a name for the new index. In this example, follow_index is used.

Indexed Properties: Click Add, and then, in the dialog box, choose a property. If necessary, repeat this step to choose more

properties. You can drag the properties to sort them. In this example, degree is chosen.

Comment: The remarks of a certain property or the index itself. The maximum length is 256 bytes. By default, there will be

no comments on an index. But in this example, follow_index is used.

When the settings are done, the Equivalent to the following nGQL statement panel shows the statement equivalent to the

settings.

You can create an index when a Tag or an Edge Type is created. But an index can decrease the write speed during data import. We

recommend that you import data firstly and then create and rebuild an index. For more information, see nGQL Manual.

Note

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

The order of the indexed properties has an effect on the result of the LOOKUP statement. For more information, see nGQL

Manual.

Note

•

6.

11.5.1 Use Schema

- 441/629 - 2021 Vesoft Inc.

Confirm the settings and then click the + Create button. When an index is created, the index list shows the new index.

VIEW INDEXES

To view indexes on the Schema page, follow these steps:

In the toolbar, click the Schema tab.

In the graph space list, find a graph space, and then click its name or the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Index tab, in the upper left corner, choose an index type, Tag or Edge Type.

In the list, find an index and click its row. All its details are shown in the expanded row.

1.

1.

2.

3.

4.

5.

11.5.1 Use Schema

- 442/629 - 2021 Vesoft Inc.

DELETE AN INDEX

To delete an index on Schema, follow these steps:

In the toolbar, click the Schema tab.

In the graph space list, find a graph space, and then click its name or the button in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change

the graph space.

Click the Index tab, find an index and then the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

1.

2.

3.

4.

5.

Last update: September 23, 2021

11.5.1 Use Schema

- 443/629 - 2021 Vesoft Inc.

11.5.2 Use Console

Console

Studio console interface as shown in following.

11.5.2 Use Console

- 444/629 - 2021 Vesoft Inc.

The following table lists various functions on the console interface.

number function descriptions

1 toolbar Click the Console tab to enter the console page.

2 select a space Select a space in the Current Graph Space list.

descriptions: Studio does not support running the USE <space_name> statements directly

in the input box.

3 input box
After inputting the nGQL statements, click the button to run the statement. You can

input multiple statements and run them at the same time, separated by ; .

4 clean input box
Click button to clear the content entered in the input box.

5 history list
Click button representing the statement record. In the statement running record

list, click one of the statements, and the statement will be automatically entered in the

input box. The list provides the record of the last 15 statements.

6 run
After inputting the nGQL statement in the input box, click button to indicate the

operation to start running the statement.

7 statement

running status

After running the nGQL statement, the statement running status is displayed. If the

statement runs successfully, the statement is displayed in green. If the statement fails,

the statement is displayed in red.

8 result window Display the results of the statement execution. If the statement returns results, the

results window will display the returned results in tabular form.

9 export CSV file After running the nGQL statement and return the result, click the Export CSV File

button to export the result as a CSV file.

10 open in

explore

According to the running nGQL statement, the user can click the graph exploration

function key to import the returned results into graph exploration for visual display, such

as open in explore and view subgraphs.

Last update: September 6, 2021

11.5.2 Use Console

- 445/629 - 2021 Vesoft Inc.

Open in Explore

With the Open in Explore function, you can run nGQL statements on the Console page to query vertex or edge data and then

view the result on the Explore page in a visualized way.

SUPPORTED VERSIONS

Studio of v3.1.0 or later versions supports this function. For more information, see check updates.

PREREQUISITES

To use the Open in Explore function, you must do a check of these:

Studio is connected to Nebula Graph. For more information, see Connect to Nebula Graph.

A dataset exists in the database. For more information, see Import data.

•

•

11.5.2 Use Console

- 446/629 - 2021 Vesoft Inc.

QUERY AND VISUALIZE EDGE DATA

To query edge data on the Console page and then view the result on the Explore page, follow these steps:

11.5.2 Use Console

- 447/629 - 2021 Vesoft Inc.

In the toolbar, click the Console tab.

In the Current Graph Space field, choose a graph space name. In this example, basketballplayer is chosen.

In the input box, enter an nGQL statement and click the button .

Here is an nGQL statement example.

In the query result, you can see the start year and end year of the service team for the player whose playerId is palyer102 . As

shown below.

Click the Open in Explore button.

In the dialog box, configure as follows:

a. Click Edge Type.

b. In the Edge Type field, enter an edge type name. In this example, serve is used.

c. In the Src ID field, choose a column name from the result table representing the VIDs of the source vertices. In this example,

serve._src is chosen.

d. In the Dst ID field, choose a column name from the result table representing the VIDs of the destination vertices. In this

example, serve._dst is chosen.

e. (Optional) If the result table contains the ranking information of the edges, in the Rank field, choose a column name

representing the rank of the edges. If no ranking information exists in the result, leave the Rank field blank.

f. When the configuration is done, click the Import button.

1.

2.

3.

The query result must contain the VIDs of the source vertex and the destination vertex of an edge.

Note

nebula> GO FROM "player102" OVER serve YIELD src(edge),dst(edge);

4.

5.

11.5.2 Use Console

- 448/629 - 2021 Vesoft Inc.

If some data exists on the board of Explore, choose a method to insert data:

Incremental Insertion: Click this button to add the result to the existing data on the board.

Insert After Clear: Click this button to clear the existing data from the board and then add the data to the board.

When the data is inserted, you can view the visualized representation of the edge data.

6.

•

•

11.5.2 Use Console

- 449/629 - 2021 Vesoft Inc.

QUERY AND VISUALIZE VERTEX DATA

To query vertex data on the Console page and then view the result on the Explore page, follow these steps:

In the toolbar, click the Console tab.

In the Current Graph Space field, choose a graph space name. In this example, basketballplayer is chosen.

In the input box, enter an nGQL statement and click the button .

Here is an nGQL statement example.

The query result gives the information of the player whose playerId is player100 , as shown in this figure.

Click the Open in Explore button.

In the dialog box, configure as follows:

a. Click Vertex.

b. In the Vertex ID field, choose a column name from the result table representing the VIDs of the vertices. In this example,

VertexID is chosen.

c. When the configuration is done, click the Import button.

If some data exists on the board of Explore, choose a method to insert data:

Incremental Insertion: Click this button to add the queried result to the existing data on the board.

Insert After Clear: Click this button to clear the existing data from the board and then add the data.

When the data is inserted, you can view the visualized representation of the vertex data.

1.

2.

3.

The query result must contain the VIDs of the vertices.

Note

nebula> FETCH PROP ON player "player100" YIELD properties(vertex).name;

4.

5.

6.

•

•

11.5.2 Use Console

- 450/629 - 2021 Vesoft Inc.

NEXT TO DO

On the Explore page, you can expand the board to explore and analyze graph data.

Last update: October 22, 2021

11.5.2 Use Console

- 451/629 - 2021 Vesoft Inc.

View subgraphs

With the View Subgraphs function, you can run a FIND SHORTEST | ALL PATH or a GET SUBGRAPH statement on the Console

page and then view the result on the Explore page.

STUDIO VERSION

Studio of v3.1.0 supports this function. To update the version, see Check updates.

PREREQUISITES

To use the View Subgraphs function, you must do a check of these:

The version of Studio is v3.1.0 or later.

Studio is connected to Nebula Graph.

A dataset exists in the database. In the example of this article, the basketballplayer dataset is used. For more information,

see Import data.

•

•

•

Users can view subgraphs online in Studio.

Note

11.5.2 Use Console

- 452/629 - 2021 Vesoft Inc.

https://playground.nebula-graph.com.cn/explore

PROCEDURE

To query the paths or subgraph on the Console page and then view them on the Explore page, follow these steps:

In the navigation bar, click the Console tab.

In the Current Graph Space dropdown list, choose a graph space name. In this example, baskteballplayer is chosen.

In the input box, enter a FIND SHORTEST PATH , FIND ALL PATH , or GET SUBGRAPH statement and click Run .

Here is an nGQL statement example.

Take the FIND ALL PATH for example, query the path information as shown in this figure.

Click the View Subgraphs button.

(Optional) If some data exists on the board of Explore, choose a method to insert data:

Incremental Insertion: Click this button to add the result to the existing data on the board.

Insert After Clear: Click this button to clear the existing data from the board and then add the data to the board.

When the data is inserted, you can view the visualized representation of the paths. Operations such as expanding vertices, moving

the canvas, modifying the color and icon of the vertices, and displaying the properties of the vertices and edges on the page are

supported.

1.

2.

3.

nebula> FIND ALL PATH FROM "player114" to "player100" OVER follow;

4.

5.

•

•

11.5.2 Use Console

- 453/629 - 2021 Vesoft Inc.

NEXT TO DO

On the Explore page, you can expand the graph to explore and analyze graph data.

Last update: November 2, 2021

11.5.2 Use Console

- 454/629 - 2021 Vesoft Inc.

11.6 Troubleshooting

11.6.1 Connecting to the database error

Problem description

According to the connect Studio operation, it prompts failed.

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM THAT THE FORMAT OF THE HOST FIELD IS CORRECT

You must fill in the IP address (graph_server_ip) and port of the Nebula Graph database Graph service. If no changes are made, the

port defaults to 9669 . Even if Nebula Graph and Studio are deployed on the current machine, you must use the local IP address

instead of 127.0.0.1 , localhost or 0.0.0.0 .

STEP2: CONFIRM THAT THE USERNAME AND PASSWORD ARE CORRECT

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

STEP3: CONFIRM THAT NEBULA GRAPH SERVICE IS NORMAL

Check Nebula Graph service status. Regarding the operation of viewing services:

If you compile and deploy Nebula Graph on a Linux server, refer to the Nebula Graph service.

If you use Nebula Graph deployed by Docker Compose and RPM, refer to the Nebula Graph service status and ports.

If the Nebula Graph service is normal, proceed to Step 4 to continue troubleshooting. Otherwise, please restart Nebula Graph

service.

STEP4: CONFIRM THE NETWORK CONNECTION OF THE GRAPH SERVICE IS NORMAL

Run a command (for example, telnet 9669) on the Studio machine to confirm whether Nebula Graph's Graph service network

connection is normal.

If the connection fails, check according to the following steps:

If Studio and Nebula Graph are on the same machine, check if the port is exposed.

If Studio and Nebula Graph are not on the same machine, check the network configuration of the Nebula Graph server, such

as firewall, gateway, and port.

If you cannot connect to the Nebula Graph service after troubleshooting with the above steps, please go to the Nebula Graph

forum for consultation.

•

•

If you used docker-compose up -d to satrt Nebula Graph before, you must run the docker-compose down to stop Nebula Graph.

Note

•

•

Last update: September 23, 2021

11.6 Troubleshooting

- 455/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

11.6.2 Cannot access to Studio

Problem description

I follow the document description and visit 127.0.0.1:7001 or 0.0.0.0:7001 after starting Studio, why can’t I open the page?

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM SYSTEM ARCHITECTURE

It is necessary to confirm whether the machine where the Studio service is deployed is of x86_64 architecture. Currently, Studio

only supports x86_64 architecture.

STEP2: CHECK IF THE STUDIO SERVICE STARTS NORMALLY

Run docker-compose ps to check if the service has started normally.

If the service is normal, the return result is as follows. Among them, the State column should all be displayed as Up .

If the above result is not returned, stop Studio and restart it first. For details, refer to Deploy Studio.

STEP3: CONFIRM ADDRESS

If Studio and the browser are on the same machine, users can use localhost:7001 , 127.0.0.1:7001 or 0.0.0.0:7001 in the browser to

access Studio.

If Studio and the browser are not on the same machine, you must enter <studio_server_ip>:7001 in the browser. Among them,

studio_server_ip refers to the IP address of the machine where the Studio service is deployed.

STEP4: CONFIRM NETWORK CONNECTION

Run curl <studio_server_ip>:7001 -I to confirm if it is normal. If it returns HTTP/1.1 200 OK , it means that the network is connected

normally.

If the connection is refused, check according to the following steps:

If the connection fails, check according to the following steps:

If Studio and Nebula Graph are on the same machine, check if the port is exposed.

If Studio and Nebula Graph are not on the same machine, check the network configuration of the Nebula Graph server, such

as firewall, gateway, and port.

If you cannot connect to the Nebula Graph service after troubleshooting with the above steps, please go to the Nebula Graph

forum for consultation.

 Name Command State Ports
 --
 nebula-web-docker_client_1 ./nebula-go-api Up 0.0.0.0:32782->8080/tcp
 nebula-web-docker_importer_1 nebula-importer --port=569 ... Up 0.0.0.0:32783->5699/tcp
 nebula-web-docker_nginx_1 /docker-entrypoint.sh ngin ... Up 0.0.0.0:7001->7001/tcp, 80/tcp
 nebula-web-docker_web_1 docker-entrypoint.sh npm r ... Up 0.0.0.0:32784->7001/tcp

If you used docker-compose up -d to satrt Nebula Graph before, you must run the docker-compose down to stop Nebula Graph.

Note

•

•

Last update: September 1, 2021

11.6.2 Cannot access to Studio

- 456/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

11.6.3 FAQ

If you find that a function cannot be used, it is recommended to troubleshoot the problem according to the following steps:

Confirm that Nebula Graph is the latest version. If you use Docker Compose to deploy the Nebula Graph database, it is

recommended to run docker-compose pull && docker-compose up -d to pull the latest Docker image and start the container.

Confirm that Studio is the latest version. For more information, refer to check updates.

Search the nebula forum, nebula and nebula-studio projects on the GitHub to confirm if there are already similar problems.

If none of the above steps solve the problem, you can submit a problem on the forum.

Why can't I use a function?

1.

2.

3.

4.

Last update: September 6, 2021

11.6.3 FAQ

- 457/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula-studio

12. Nebula Importer

12.1 Nebula Importer

Nebula Importer (Importer) is a standalone import tool for CSV files with Nebula Graph. Importer can read the local CSV file and

then import the data into the Nebula Graph database.

12.1.1 Scenario

Importer is used to import the contents of a local CSV file into the Nebula Graph.

12.1.2 Advantage

Lightweight and fast: no complex environment can be used, fast data import.

Flexible filtering: You can flexibly filter CSV data through configuration files.

12.1.3 Prerequisites

Before using Nebula Importer, make sure:

Nebula Graph service has been deployed. There are currently three deployment modes:

Deploy Nebula Graph with Docker Compose

Install Nebula Graph with RPM or DEB package

Install Nebula Graph by compiling the source code

Schema is created in Nebula Graph, including space, Tag and Edge type, or set by parameter

clientSettings.postStart.commands .

Golang environment has been deployed on the machine running the Importer. For details, see Build Go environment.

12.1.4 Steps

Configure the YAML file and prepare the CSV file to be imported to use the tool to batch write data to Nebula Graph.

Source code compile and run

Clone repository.

Access the directory nebula-importer .

Compile the source code.

•

•

•

•

•

•

•

•

1.

$ git clone -b v2.6.0 https://github.com/vesoft-inc/nebula-importer.git

Use the correct branch. Nebula Graph 1.x and 2.x have different RPC protocols, so:

The Nebula Importer V1 branch can only connect to Nebula Graph 1.x.

The Nebula Importer Master branch and v2 branch can connect to Nebula Graph 2.x.

Note

•

•

2.

$ cd nebula-importer

3.

$ make build

12. Nebula Importer

- 458/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula-importer/blob/release-v2.0.0-ga/docs/golang-install-en.md

Start the service.

No network compilation mode

If the server cannot be connected to the Internet, it is recommended to upload the source code and various dependency packages

to the corresponding server for compilation on the machine that can be connected to the Internet. The operation steps are as

follows:

Clone repository.

Use the following command to download and package the dependent source code.

Upload the compressed package to a server that cannot be connected to the Internet.

Unzip and compile.

Run in Docker mode

Instead of installing the Go locale locally, you can use Docker to pull the image of the Nebula Importer and mount the local

configuration file and CSV data file into the container. The command is as follows:

<config_file> : The absolute path to the local YAML configuration file.

<csv_data_dir> : The absolute path to the local CSV data file.

<version> : Nebula Graph 2.x Please fill in 'v2'.

12.1.5 Configuration File Description

Nebula Importer uses configuration(nebula-importer/examples/v2/example.yaml) files to describe information about the files to be

imported, the Nebula Graph server, and more. You can refer to the example configuration file: Configuration without Header/

Configuration with Header. This section describes the fields in the configuration file by category.

4.

$./nebula-importer --config <yaml_config_file_path>

For details about the YAML configuration file, see configuration file description at the end of topic.

Note

1.

$ git clone -b 2.6.0 https://github.com/vesoft-inc/nebula-importer.git

2.

$ cd nebula-importer
$ go mod vendor
$ cd .. && tar -zcvf nebula-importer.tar.gz nebula-importer

3.

4.

$ tar -zxvf nebula-importer.tar.gz
$ cd nebula-importer
$ go build -mod vendor cmd/importer.go

$ docker run --rm -ti \
 --network=host \
 -v <config_file>:<config_file> \
 -v <csv_data_dir>:<csv_data_dir> \
 vesoft/nebula-importer:<version>
 --config <config_file>

•

•

•

A relative path is recommended. If you use a local absolute path, check that the path maps to the path in the Docker.

Note

12.1.5 Configuration File Description

- 459/629 - 2021 Vesoft Inc.

https://hub.docker.com/r/vesoft/nebula-importer

Basic configuration

The example configuration is as follows:

Client configuration

The client configuration stores the configurations associated with Nebula Graph.

The example configuration is as follows:

version: v2
description: example
removeTempFiles: false

Parameter Default value Required Description

version v2 Yes Target version of Nebula Graph.

description example No Description of the configuration file.

removeTempFiles false No Whether to delete temporarily generated logs and error data

files.

clientSettings:
 retry: 3
 concurrency: 10
 channelBufferSize: 128
 space: test
 connection:
 user: user
 password: password
 address: 192.168.*.13:9669,192.168.*.14:9669
 postStart:
 commands: |
 UPDATE CONFIGS storage:wal_ttl=3600;
 UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = true };
 afterPeriod: 8s
 preStop:
 commands: |

12.1.5 Configuration File Description

- 460/629 - 2021 Vesoft Inc.

File configuration

File configuration Stores the configuration of data files and logs, and details about the Schema.

FILE AND LOG CONFIGURATION

The example configuration is as follows:

 UPDATE CONFIGS storage:wal_ttl=86400;
 UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = false };

Parameter Default

value

Required Description

clientSettings.retry 3 No Retry times of nGQL statement execution

failures.

clientSettings.concurrency 10 No Number of Nebula Graph client concurrency.

clientSettings.channelBufferSize 128 No Cache queue size per Nebula Graph client.

clientSettings.space - Yes Specifies the Nebula Graph space to import the

data into. Do not import multiple spaces at the

same time to avoid performance impact.

clientSettings.connection.user - Yes Nebula Graph user name.

clientSettings.connection.password - Yes The password for the Nebula Graph user name.

clientSettings.connection.address - Yes Addresses and ports for all Graph services.

clientSettings.postStart.commands - No Configure some of the operations to perform

after connecting to the Nebula Graph server,

and before inserting data.

clientSettings.postStart.afterPeriod - No The interval, between executing the above

commands and executing the insert data

command, such as 8s .

clientSettings.preStop.commands - No Configure some of the actions you performed

before disconnecting from the Nebula Graph

server.

logPath: ./err/test.log
files:
 - path: ./student_without_header.csv
 failDataPath: ./err/studenterr.csv
 batchSize: 128
 limit: 10
 inOrder: false
 type: csv
 csv:
 withHeader: false

12.1.5 Configuration File Description

- 461/629 - 2021 Vesoft Inc.

SCHEMA CONFIGURATION

Schema configuration describes the Meta information of the current data file. Schema types are vertex and edge. Multiple

vertexes or edges can be configured at the same time.

vertex configuration

The example configuration is as follows:

 withLabel: false
 delimiter: ","

Parameter Default

value

Required Description

logPath - No Path for exporting log information, such as errors during import.

files.path - Yes Path for storing data files. If a relative path is used, the path is

merged with the current configuration file directory. You can use

an asterisk (*) for fuzzy matching to import multiple files with

similar names, but the files need to be the same structure.

files.failDataPath - Yes Insert the failed data file storage path, so that data can be

written later.

files.batchSize 128 No The number of statements inserting data in a batch.

files.limit - No Limit on the number of rows of read data.

files.inOrder - No Whether to insert rows in the file in order. If the value is set to

false , the import rate decreases due to data skew.

files.type - Yes The file type.

files.csv.withHeader false Yes Whether there is a header.

files.csv.withLabel false Yes Whether there is a label.

files.csv.delimiter "," Yes Specifies the delimiter for the CSV file. A string delimiter that

supports only one character.

•

schema:
 type: vertex
 vertex:
 vid:
 type: string
 index: 0
 tags:
 - name: student
 props:
 - name: name
 type: string
 index: 1
 - name: age
 type: int
 index: 2
 - name: gender

12.1.5 Configuration File Description

- 462/629 - 2021 Vesoft Inc.

edge configuration

The example configuration is as follows:

 type: string
 index: 3

Parameter Default

value

Required Description

files.schema.type - Yes Schema type. Possible values are vertex and

edge .

files.schema.vertex.vid.type - No The data type of the vertex ID. Possible values are

int and string .

files.schema.vertex.vid.index - No The vertex ID corresponds to the column number

in the CSV file.

files.schema.vertex.tags.name - Yes Tag name.

files.schema.vertex.tags.props.name - Yes Tag property name, which must match the Tag

property in the Nebula Graph.

files.schema.vertex.tags.props.type - Yes Property data type, supporting bool , int , float ,

double , timestamp and string .

files.schema.vertex.tags.props.index - No Property corresponds to the sequence number of

the column in the CSV file.

The sequence numbers of the columns in the CSV file start from 0, that is, the sequence numbers of the first column are 0, and the

sequence numbers of the second column are 1.

Note

•

schema:
 type: edge
 edge:
 name: follow
 withRanking: true
 srcVID:
 type: string
 index: 0
 dstVID:
 type: string
 index: 1
 rank:
 index: 2
 props:
 - name: degree

12.1.5 Configuration File Description

- 463/629 - 2021 Vesoft Inc.

12.1.6 About the CSV file header

According to whether the CSV file has a header or not, the Importer needs to make different Settings on the configuration file. For

relevant examples and explanations, please refer to:

Configuration without Header

Configuration with Header

 type: double
 index: 3

Parameter Default

value

Required Description

files.schema.type - Yes Schema type. Possible values are vertex and edge .

files.schema.edge.name - Yes Edge type name.

files.schema.edge.srcVID.type - No 8F
B9

76
84

8D
77

59
CB

70
B9ID 76

84
65
70

63
6E

7C
7B

57
8B.

files.schema.edge.srcVID.index - No The data type of the starting vertex ID of the edge.

files.schema.edge.dstVID.type - No The data type of the destination vertex ID of the edge.

files.schema.edge.dstVID.index - No The destination vertex ID of the edge corresponds to

the column number in the CSV file.

files.schema.edge.rank.index - No The rank value of the edge corresponds to the column

number in the CSV file.

files.schema.edge.props.name - Yes The Edge Type property name must match the Edge

Type property in the Nebula Graph.

files.schema.edge.props.type - Yes Property data type, supporting bool , int , float ,

double , timestamp and string .

files.schema.edge.props.index - No Property corresponds to the sequence number of the

column in the CSV file.

•

•

Last update: September 17, 2021

12.1.6 About the CSV file header

- 464/629 - 2021 Vesoft Inc.

12.2 Configuration with Header

For a CSV file with header, you need to set withHeader to true in the configuration file, indicating that the first behavior in the CSV

file is the header. The header content has special meanings.

12.2.1 Sample files

The following is an example of a CSV file with header:

sample of vertex

Example data for student_with_header.csv :

The first column is the vertex ID, followed by the properties name , age , and gender .

sample of edge

Example data for follow_with_header.csv :

The first two columns are the start vertex ID and destination vertex ID, respectively. The third column is rank, and the fourth

column is property degree .

12.2.2 Header format description

The header defines the start vertex, the destination vertex, the rank, and some special functions by keywords as follows:

:VID (mandatory): Vertex ID. Need to use :VID(type) form to set data type, for example :VID(string) or :VID(int) .

:SRC_VID (mandatory): The start vertex ID of the edge. The data type needs to be set in the form :SRC_VID(type) .

:DST_VID (mandatory): The destination vertex ID of the edge. The data type needs to be set in the form :DST_VID(type) .

:RANK (optional): The rank value of the edge.

:IGNORE (optional): Ignore this column when inserting data.

:LABEL (optional): Insert (+) or delete (-) the row. Must be column 1. For example:

If the CSV file contains headers, the Importer will parse the Schema of each row of data according to the headers and ignore the

vertex or edge settings in the YAML file.

Caution

•

:VID(string),student.name:string,student.age:int,student.gender:string
student100,Monica,16,female
student101,Mike,18,male
student102,Jane,17,female

•

:SRC_VID(string),:DST_VID(string),:RANK,follow.degree:double
student100,student101,0,92.5
student101,student100,1,85.6
student101,student102,2,93.2
student100,student102,1,96.2

•

•

•

•

•

•

:LABEL,
+,
-,

All columns except the :LABEL column can be sorted in any order, so for larger CSV files, the user has the flexibility to set the header

to select the desired column.

Note

12.2 Configuration with Header

- 465/629 - 2021 Vesoft Inc.

For Tag or Edge type properties, the format is <tag_name/edge_name>.<prop_name>:<prop_type> , described as follows:

<tag_name/edge_name> : Tag or Edge type name.

<prop_name> : property name.

<prop_type> : property type. Support bool , int , float , double , timestamp and string , default string .

Such as student.name:string , follow.degree:double .

12.2.3 Sample configuration

•

•

•

Connected to the Nebula Graph version, set to v2 when connected to 2.x.
version: v2

description: example

Whether to delete temporarily generated logs and error data files.
removeTempFiles: false

clientSettings:

 # Retry times of nGQL statement execution failures.
 retry: 3

 # Number of Nebula Graph client concurrency.
 concurrency: 10

 # Cache queue size per Nebula Graph client.
 channelBufferSize: 128

 # Specifies the Nebula Graph space to import the data into.
 space: student

 # Connection information.
 connection:
 user: root
 password: nebula
 address: 192.168.*.13:9669

 postStart:
 # Configure some of the operations to perform after connecting to the Nebula Graph server, and before inserting data.
 commands: |
 DROP SPACE IF EXISTS student;
 CREATE SPACE IF NOT EXISTS student(partition_num=5, replica_factor=1, vid_type=FIXED_STRING(20));
 USE student;
 CREATE TAG student(name string, age int,gender string);
 CREATE EDGE follow(degree int);

 # The interval between the execution of the above command and the execution of the insert data command.
 afterPeriod: 15s

 preStop:
 # Configure some of the actions you performed before disconnecting from the Nebula Graph server.
 commands: |

Path of the error log file.
logPath: ./err/test.log

CSV file Settings.
files:

 # Path for storing data files. If a relative path is used, the path is merged with the current configuration file directory. The first data file in this example
is vertex data.
 - path: ./student_with_header.csv

 # Insert the failed data file storage path, so that data can be written later.
 failDataPath: ./err/studenterr.csv

 # The number of statements inserting data in a batch.
 batchSize: 10

 # Limit on the number of rows of read data.
 limit: 10

 # Whether to insert rows in the file in order. If the value is set to false, the import rate decreases due to data skew.
 inOrder: true

 # File type. Currently, only CSV files are supported.
 type: csv

 csv:
 # Whether there is a header.
 withHeader: true

 # Whether there is a LABEL.
 withLabel: false

12.2.3 Sample configuration

- 466/629 - 2021 Vesoft Inc.

 # Specifies the delimiter for the CSV file. A string delimiter that supports only one character.
 delimiter: ","

 schema:
 # Schema type. Possible values are vertex and edge.
 type: vertex

 # The second data file in this example is edge data.
- path: ./follow_with_header.csv

 failDataPath: ./err/followerr.csv
 batchSize: 10
 limit: 10
 inOrder: true
 type: csv
 csv:
 withHeader: true
 withLabel: false
 schema:
 # The type of Schema is edge.
 type: edge
 edge:
 # Edge type name.
 name: follow

 # Whether to include rank.
 withRanking: true

The data type of the vertex ID must be the same as the data type of the statement in clientSettings.postStart.commands that creates

the graph space.

Note

Last update: September 6, 2021

12.2.3 Sample configuration

- 467/629 - 2021 Vesoft Inc.

12.3 Configuration without Header

For CSV files without header, you need to set withHeader to false in the configuration file, indicating that the CSV file contains

only data (excluding the header of the first row). You may also need to set the data type and corresponding columns.

12.3.1 Sample files

The following is an example of a CSV file without header:

sample of vertex

Example data for student_without_header.csv :

The first column is the vertex ID, followed by the properties name , age , and gender .

sample of edge

Example data for follow_without_header.csv :

The first two columns are the start vertex ID and destination vertex ID, respectively. The third column is rank, and the fourth

column is property degree .

12.3.2 Sample configuration

•

student100,Monica,16,female
student101,Mike,18,male
student102,Jane,17,female

•

student100,student101,0,92.5
student101,student100,1,85.6
student101,student102,2,93.2
student100,student102,1,96.2

Connected to the Nebula Graph version, set to v2 when connected to 2.x.
version: v2

description: example

Whether to delete temporarily generated logs and error data files.
removeTempFiles: false

clientSettings:

 # Retry times of nGQL statement execution failures.
 retry: 3

 # Number of Nebula Graph client concurrency.
 concurrency: 10

 # Cache queue size per Nebula Graph client.
 channelBufferSize: 128

 # Specifies the Nebula Graph space to import the data into.
 space: student

 # Connection information.
 connection:
 user: root
 password: nebula
 address: 192.168.*.13:9669

 postStart:
 # Configure some of the operations to perform after connecting to the Nebula Graph server, and before inserting data.
 commands: |
 DROP SPACE IF EXISTS student;
 CREATE SPACE IF NOT EXISTS student(partition_num=5, replica_factor=1, vid_type=FIXED_STRING(20));
 USE student;
 CREATE TAG student(name string, age int,gender string);
 CREATE EDGE follow(degree int);

 # The interval between the execution of the above command and the execution of the insert data command.
 afterPeriod: 15s

 preStop:
 # Configure some of the actions you performed before disconnecting from the Nebula Graph server.
 commands: |

Path of the error log file.

12.3 Configuration without Header

- 468/629 - 2021 Vesoft Inc.

logPath: ./err/test.log

CSV file Settings.
files:

 # Path for storing data files. If a relative path is used, the path is merged with the current configuration file directory. The first data file in this example
is vertex data.
 - path: ./student_without_header.csv

 # Insert the failed data file storage path, so that data can be written later.
 failDataPath: ./err/studenterr.csv

 # The number of statements inserting data in a batch.
 batchSize: 10

 # Limit on the number of rows of read data.
 limit: 10

 # Whether to insert rows in the file in order. If the value is set to false, the import rate decreases due to data skew.
 inOrder: true

 # File type. Currently, only CSV files are supported.
 type: csv

 csv:
 # Whether there is a header.
 withHeader: false

 # Whether there is a LABEL.
 withLabel: false

 # Specifies the delimiter for the CSV file. A string delimiter that supports only one character.
 delimiter: ","

 schema:
 # Schema type. Possible values are vertex and edge.
 type: vertex

 vertex:

 # Vertex ID Settings.
 vid:
 # The vertex ID corresponds to the column number in the CSV file. Columns in the CSV file are numbered from 0.
 index: 0

 # The data type of the vertex ID. The optional values are int and string, corresponding to INT64 and FIXED_STRING in the Nebula Graph, respectively.
 type: string

 # Tag Settings.
 # Tag name.
 - name: student

 # property Settings in the Tag.
 props:
 # property name.
 - name: name

 # Property data type.
 type: string

 # Property corresponds to the sequence number of the column in the CSV file.
 index: 1

 - name: age
 type: int
 index: 2
 - name: gender
 type: string
 index: 3

 # The second data file in this example is edge data.
 - path: ./follow_without_header.csv
 failDataPath: ./err/followerr.csv
 batchSize: 10
 limit: 10
 inOrder: true
 type: csv
 csv:
 withHeader: false
 withLabel: false
 schema:
 # The type of Schema is edge.
 type: edge
 edge:
 # Edge type name.
 name: follow

 # Whether to include rank.
 withRanking: true

 # Start vertex ID setting.
 srcVID:
 # Data type.
 type: string

12.3.2 Sample configuration

- 469/629 - 2021 Vesoft Inc.

 # The start vertex ID corresponds to the sequence number of a column in the CSV file.
 index: 0

 # Destination vertex ID.
 dstVID:
 type: string
 index: 1

 # rank setting.
 rank:
 # Rank Indicates the rank number of a column in the CSV file. If index is not set, be sure to set the rank value in the third column. Subsequent columns
set each property in turn.
 index: 2

 # Edge Type property Settings.
 props:
 # property name.
 - name: degree

 # Data type.
 type: double

 # Property corresponds to the sequence number of the column in the CSV file.
 index: 3

The sequence numbers of the columns in the CSV file start from 0, that is, the sequence numbers of the first column are 0, and the

sequence numbers of the second column are 1.

The data type of the vertex ID must be the same as the data type of the statement in clientSettings.postStart.commands that

creates the graph space.

If the index field is not specified, the CSV file must comply with the following rules:

In the vertex data file, the first column must be the vertex ID, followed by the properties, and must correspond to the order in

the configuration file.

In the side data file, the first column must be the start vertex ID, the second column must be the destination vertex ID, if

withRanking is true , the third column must be the rank value, and the following columns must be properties, and must

correspond to the order in the configuration file.

Note

•

•

•

•

•

Last update: September 1, 2021

12.3.2 Sample configuration

- 470/629 - 2021 Vesoft Inc.

13. Nebula Exchange

13.1 Introduction

13.1.1 What is Nebula Exchange

Nebula Exchange (Exchange) is an Apache Spark™ application for bulk migration of cluster data to Nebula Graph in a distributed

environment, supporting batch and streaming data migration in a variety of formats.

Exchange consists of Reader, Processor, and Writer. After Reader reads data from different sources and returns a DataFrame, the

Processor iterates through each row of the DataFrame and obtains the corresponding value based on the mapping between

fields in the configuration file. After iterating through the number of rows in the specified batch, Writer writes the captured data

to the Nebula Graph at once. The following figure illustrates the process by which Exchange completes the data conversion and

migration.

Scenarios

Exchange applies to the following scenarios:

Streaming data from Kafka and Pulsar platforms, such as log files, online shopping data, activities of game players,

information on social websites, financial transactions or geospatial services, and telemetry data from connected devices or

instruments in the data center, are required to be converted into the vertex or edge data of the property graph and import

them into the Nebula Graph database.

Batch data, such as data from a time period, needs to be read from a relational database (such as MySQL) or a distributed file

system (such as HDFS), converted into vertex or edge data for a property graph, and imported into the Nebula Graph

database.

A large volume of data needs to be generated into SST files that Nebula Graph can recognize and then imported into the

Nebula Graph database.

•

•

•

13. Nebula Exchange

- 471/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange

Advantages

Exchange has the following advantages:

High adaptability: It supports importing data into the Nebula Graph database in a variety of formats or from a variety of

sources, making it easy to migrate data.

SST import: It supports converting data from different sources into SST files for data import.

Resumable data import: It supports resumable data import to save time and improve data import efficiency.

Asynchronous operation: An insert statement is generated in the source data and sent to the Graph service. Then the insert

operation is performed.

Great flexibility: It supports importing multiple Tags and Edge types at the same time. Different Tags and Edge types can be

from different data sources or in different formats.

Statistics: It uses the accumulator in Apache Spark™ to count the number of successful and failed insert operations.

Easy to use: It adopts the Human-Optimized Config Object Notation (HOCON) configuration file format and has an object-

oriented style, which is easy to understand and operate.

Data source

Exchange 2.6.0 supports converting data from the following formats or sources into vertexes and edges that Nebula Graph can

recognize, and then importing them into Nebula Graph in the form of nGQL statements:

Data stored in HDFS or locally:

Apache Parquet

Apache ORC

JSON

CSV

Apache HBase™

Data repository:

Hive

MaxCompute

Graph database: Neo4j (Client version 2.4.5-M1)

Relational database: MySQL

Column database: ClickHouse

Stream processing software platform: Apache Kafka®

Publish/Subscribe messaging platform: Apache Pulsar 2.4.5

In addition to importing data as nGQL statements, Exchange supports generating SST files for data sources and then importing

SST files via Console.

•

•

•

Resumable data import is currently supported when migrating Neo4j data only.

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: October 22, 2021

13.1.1 What is Nebula Exchange

- 472/629 - 2021 Vesoft Inc.

13.1.2 Limitations

This topic describes some of the limitations of using Exchange 2.x.

Nebula Graph releases

The correspondence between the Nebula Exchange release (the JAR version) and the Nebula Graph release is as follows.

JAR packages are available in two ways: compile them yourself or download them from the Maven repository.

If you are using Nebula Graph 1.x, use Nebula Exchange 1.x.

Environment

Exchange 2.x supports the following operating systems:

CentOS 7

macOS

Software dependencies

To ensure the healthy operation of Exchange, ensure that the following software has been installed on the machine:

Apache Spark: 2.4.x

Java: 1.8

Scala: 2.10.7, 2.11.12, or 2.12.10

Hadoop Distributed File System (HDFS) needs to be deployed in the following scenarios:

Migrate HDFS data

Generate SST files

Exchange client Nebula Graph

2.5-SNAPSHOT nightly

2.6.0 2.6.0

2.5.1 2.5.030
012.5.1

2.5.0 2.5.0, 2.5.1

2.1.0 2.0.0, 2.0.1

2.0.1 2.0.0, 2.0.1

2.0.0 2.0.0, 2.0.1

•

•

•

•

•

•

•

Last update: November 1, 2021

13.1.2 Limitations

- 473/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/tree/v1.0/tools

13.2 Compile Exchange

This topic describes how to compile Nebula Exchange. Users can also download the compiled .jar file directly.

13.2.1 Prerequisites

Install Maven.

Download pulsar-spark-connector_2.11, and unzip it to io/streamnative/connectors directory of the local Maven library.

13.2.2 Steps

Clone the repository nebula-exchange in the / directory.

Switch to the directory nebula-exchange .

Package Nebula Exchange.

After the compilation is successful, you can view a directory structure similar to the following in the current directory.

In the target directory, users can find the exchange-2.x.y.jar file.

When migrating data, you can refer to configuration file target/classes/application.conf .

13.2.3 Failed to download the dependency package

If downloading dependencies fails when compiling:

Check the network settings and ensure that the network is normal.

Modify the mirror part of Maven installation directory libexec/conf/settings.xml :

•

•

1.

git clone -b v2.6 https://github.com/vesoft-inc/nebula-exchange.git

2.

cd nebula-exchange/nebula-exchange

3.

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true

.
├── README-CN.md
├── README.md
├── pom.xml
├── src
│ ├── main
│ └── test
└── target
 ├── classes
 ├── classes.timestamp
 ├── maven-archiver
 ├── nebula-exchange-2.x.y-javadoc.jar
 ├── nebula-exchange-2.x.y-sources.jar
 ├── nebula-exchange-2.x.y.jar
 ├── original-nebula-exchange-2.x.y.jar
 └── site

The JAR file version changes with the release of the Nebula Java Client. Users can view the latest version on the Releases page.

Note

•

•

<mirror>
 <id>alimaven</id>
 <mirrorOf>central</mirrorOf>
 <name>aliyun maven</name>
 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>
</mirror>

13.2 Compile Exchange

- 474/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/
https://maven.apache.org/download.cgi
https://oss-cdn.nebula-graph.com.cn/jar-packages/pulsar-spark-connector_2.11.zip
https://github.com/vesoft-inc/nebula-java/releases
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange/src/main/resources/application.conf

Last update: October 22, 2021

13.2.3 Failed to download the dependency package

- 475/629 - 2021 Vesoft Inc.

13.3 Exchange configurations

13.3.1 Options for import

After editing the configuration file, run the following commands to import specified source data into the Nebula Graph database.

First import

Import the reload file

If some data fails to be imported during the first import, the failed data will be stored in the reload file. Use the parameter -r

to import the reload file.

The following table lists command parameters.

For more Spark parameter configurations, see Spark Configuration.

•

<spark_install_path>/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path>

•

<spark_install_path>/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path> -
r "<reload_file_path>"

The version number of a JAR file is subject to the name of the JAR file that is actually compiled.

Note

If users use the yarn-cluster mode to submit a job, see the following command:

Note

$SPARK_HOME/bin/spark-submit --master yarn-cluster \
--class com.vesoft.nebula.exchange.Exchange \
--files application.conf \
--conf spark.driver.extraClassPath=./ \
--conf spark.executor.extraClassPath=./ \
nebula-exchange-2.6.0.jar \
-c application.conf

Parameter Required Default

value

Description

--class Yes - Specify the main class of the driver.

--master Yes - Specify the URL of the master process in a Spark cluster. For more

information, see master-urls.

-c / --

config

Yes - Specify the path of the configuration file.

-h /

--hive

No false Indicate support for importing Hive data.

-D / --dry No false Check whether the format of the configuration file meets the

requirements, but it does not check whether the configuration items of

tags and edges are correct. This parameter cannot be added when users

import data.

-r / --

reload

No - Specify the path of the reload file that needs to be reloaded.

13.3 Exchange configurations

- 476/629 - 2021 Vesoft Inc.

https://spark-reference-doc-cn.readthedocs.io/zh_CN/latest/deploy-guide/running-on-yarn.html
https://spark.apache.org/docs/latest/submitting-applications.html#master-urls
https://spark.apache.org/docs/latest/configuration.html#runtime-environment

Last update: October 12, 2021

13.3.1 Options for import

- 477/629 - 2021 Vesoft Inc.

13.3.2 Parameters in the configuration file

This topic describes how to configure the file application.conf when users use Nebula Exchange.

Before configuring the application.conf file, it is recommended to copy the file name application.conf and then edit the file name

according to the file type of a data source. For example, change the file name to csv_application.conf if the file type of the data

source is CSV.

The application.conf file contains the following content types:

Spark configurations

Hive configurations (optional)

Nebula Graph configurations

Vertex configurations

Edge configurations

Spark configurations

This topic lists only some Spark parameters. For more information, see Spark Configuration.

•

•

•

•

•

Parameter Type Default

value

Required Description

spark.app.name string - No The drive name in Spark.

spark.driver.cores int 1 No The number of CPU cores used by a driver, only

applicable to a cluster mode.

spark.driver.maxResultSize string 1G No The total size limit (in bytes) of the serialized

results of all partitions in a single Spark

operation (such as collect). The minimum value

is 1M, and 0 means unlimited.

spark.executor.memory string 1G No The amount of memory used by a Spark driver

which can be specified in units, such as 512M

or 1G.

spark.cores.max int 16 No The maximum number of CPU cores of

applications requested across clusters (rather

than from each node) when a driver runs in a

coarse-grained sharing mode on a standalone

cluster or a Mesos cluster. The default value is

spark.deploy.defaultCores on a Spark

standalone cluster manager or the value of the

infinite parameter (all available cores) on

Mesos.

13.3.2 Parameters in the configuration file

- 478/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange/src/main/resources/application.conf
https://spark.apache.org/docs/latest/configuration.html#application-properties

Hive configurations (optional)

Users only need to configure parameters for connecting to Hive if Spark and Hive are deployed in different clusters. Otherwise,

please ignore the following configurations.

Parameter Type Default value Required Description

hive.warehouse string - Yes The warehouse path in

HDFS. Enclose the path in

double quotes and start

with hdfs:// .

hive.connectionURL string - Yes The URL of a JDBC

connection. For example,

"jdbc:mysql://

127.0.0.1:3306/hive_spark?

characterEncoding=UTF-8" .

hive.connectionDriverName string "com.mysql.jdbc.Driver" Yes The driver name.

hive.connectionUserName list[string] - Yes The username for

connections.

hive.connectionPassword list[string] - Yes The account password.

13.3.2 Parameters in the configuration file

- 479/629 - 2021 Vesoft Inc.

Nebula Graph configurations

Vertex configurations

For different data sources, the vertex configurations are different. There are many general parameters and some specific

parameters. General parameters and specific parameters of different data sources need to be configured when users configure

vertices.

Parameter Type Default value Required Description

nebula.address.graph list[string] ["127.0.0.1:9669"] Yes The addresses of all Graph services, including

IPs and ports, separated by commas (,).

Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.address.meta list[string] ["127.0.0.1:9559"] Yes The addresses of all Meta services, including

IPs and ports, separated by commas (,).

Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.user string - Yes The username with write permissions for

Nebula Graph.

nebula.pswd string - Yes The account password.

nebula.space string - Yes The name of the graph space where data needs

to be imported.

nebula.path.local string "/tmp" No The local SST file path which needs to be set

when users import SST files.

nebula.path.remote string "/sst" No The remote SST file path which needs to be set

when users import SST files.

nebula.path.hdfs.namenode string "hdfs://name_node:

9000"

No The NameNode path which needs to be set

when users import SST files.

nebula.connection.timeout int 3000 No The timeout set for Thrift connections. Unit: ms.

nebula.connection.retry int 3 No Retries set for Thrift connections.

nebula.execution.retry int 3 No Retries set for executing nGQL statements.

nebula.error.max int 32 No The maximum number of failures during the

import process. When the number of failures

reaches the maximum, the Spark job submitted

will stop automatically .

nebula.error.output string /tmp/errors No The path to output error logs. Failed nGQL

statement executions are saved in the error

log.

nebula.rate.limit int 1024 No The limit on the number of tokens in the token

bucket when importing data.

nebula.rate.timeout int 1000 No The timeout period for getting tokens from a

token bucket. Unit: milliseconds.

13.3.2 Parameters in the configuration file

- 480/629 - 2021 Vesoft Inc.

GENERAL PARAMETERS

SPECIFIC PARAMETERS OF PARQUET/JSON/ORC DATA SOURCES

SPECIFIC PARAMETERS OF CSV DATA SOURCES

SPECIFIC PARAMETERS OF HIVE DATA SOURCES

Parameter Type Default

value

Required Description

tags.name string - Yes The tag name defined in Nebula Graph.

tags.type.source string - Yes Specify a data source. For example, csv .

tags.type.sink string client Yes Specify an import method. Optional values are

client and SST .

tags.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a header

or a column name, please use that name directly.

If a CSV file does not have a header, use the form

of [_c0, _c1, _c2] to represent the first column,

the second column, the third column, and so on.

tags.nebula.fields list[string] - Yes Property names defined in Nebula Graph, the

order of which must correspond to tags.fields .

For example, [_c1, _c2] corresponds to [name,

age] , which means that values in the second

column are the values of the property name , and

values in the third column are the values of the

property age .

tags.vertex.field string - Yes The column of vertex IDs. For example, when a

CSV file has no header, users can use _c0 to

indicate values in the first column are vertex IDs.

tags.batch int 256 Yes The maximum number of vertices written into

Nebula Graph in a single batch.

tags.partition int 32 Yes The number of Spark partitions.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the

path in double quotes and start with hdfs:// .

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the

path in double quotes and start with hdfs:// .

tags.separator string , Yes The separator. The default value is a comma (,).

tags.header bool true Yes Whether the file has a header.

Parameter Type Default

value

Required Description

tags.exec string - Yes The statement to query data sources. For example,

select name,age from mooc.users .

13.3.2 Parameters in the configuration file

- 481/629 - 2021 Vesoft Inc.

SPECIFIC PARAMETERS OF MAXCOMPUTE DATA SOURCES

SPECIFIC PARAMETERS OF NEO4J DATA SOURCES

Parameter Type Default

value

Required Description

tags.table string - Yes The table name of the MaxCompute.

tags.project string - Yes The project name of the MaxCompute.

tags.odpsUrl string - Yes The odpsUrl of the MaxCompute service. For

more information about odpsUrl, see

Endpoints.

tags.tunnelUrl string - Yes The tunnelUrl of the MaxCompute service. For

more information about tunnelUrl, see

Endpoints.

tags.accessKeyId string - Yes The accessKeyId of the MaxCompute service.

tags.accessKeySecret string - Yes The accessKeySecret of the MaxCompute

service.

tags.partitionSpec string - No Partition descriptions of MaxCompute tables.

tags.sentence string - No Statements to query data sources. The table

name in the SQL statement is the same as the

value of the table above.

Parameter Type Default value Required Description

tags.exec string - Yes Statements to query data sources. For

example: match (n:label) return

n.neo4j-field-0 .

tags.server string "bolt://

127.0.0.1:7687"

Yes The server address of Neo4j.

tags.user string - Yes The Neo4j username with read

permissions.

tags.password string - Yes The account password.

tags.database string - Yes The name of the database where source

data is saved in Neo4j.

tags.check_point_path string /tmp/test No The directory set to import progress

information, which is used for resuming

transfers. If not set, the resuming

transfer is disabled.

13.3.2 Parameters in the configuration file

- 482/629 - 2021 Vesoft Inc.

https://www.alibabacloud.com/help/doc-detail/34951.html
https://www.alibabacloud.com/help/doc-detail/34951.html

SPECIFIC PARAMETERS OF MYSQL DATA SOURCES

SPECIFIC PARAMETERS OF CLICKHOUSE DATA SOURCES

SPECIFIC PARAMETERS OF HBASE DATA SOURCES

Parameter Type Default

value

Required Description

tags.host string - Yes The MySQL server address.

tags.port string - Yes The MySQL server port.

tags.database string - Yes The database name.

tags.table string - Yes The name of a table used as a data source.

tags.user string - Yes The MySQL username with read permissions.

tags.password string - Yes The account password.

tags.sentence string - Yes Statements to query data sources. For example:

"select teamid, name from basketball.team order by

teamid;" .

Parameter Type Default

value

Required Description

tags.url string - Yes The JDBC URL of ClickHouse.

tags.user string - Yes The ClickHouse username with read

permissions.

tags.password string - Yes The account password.

tags.numPartition string - Yes The number of ClickHouse partitions.

tags.sentence string - Yes Statements to query data sources.

Parameter Type Default value Required Description

tags.host string 127.0.0.1 Yes The Hbase server address.

tags.port string 2181 Yes The Hbase server port.

tags.table string - Yes The name of a table used as a data

source.

tags.columnFamily string - Yes The column family which a table

belongs to.

13.3.2 Parameters in the configuration file

- 483/629 - 2021 Vesoft Inc.

SPECIFIC PARAMETERS OF PULSAR DATA SOURCES

SPECIFIC PARAMETERS OF KAFKA DATA SOURCES

SPECIFIC PARAMETERS OF SST DATA SOURCES

Edge configurations

For different data sources, configurations of edges are also different. There are general parameters and some specific parameters.

General parameters and specific parameters of different data sources need to be configured when users configure edges.

For the specific parameters of different data sources for edge configurations, please refer to the introduction of specific

parameters of different data sources above, and pay attention to distinguishing tags and edges.

Parameter Type Default

value

Required Description

tags.service string "pulsar://

localhost:

6650"

Yes The Pulsar server address.

tags.admin string "http://

localhost:

8081"

Yes The admin URL used to connect pulsar.

tags.options.<topic\|

topics\| topicsPattern>

string - Yes Options offered by Pulsar, which can

be configured by choosing one from

topic , topics , and topicsPattern .

tags.interval.seconds int 10 Yes The interval for reading messages.

Unit: seconds.

Parameter Type Default

value

Required Description

tags.service string - Yes The Kafka server address.

tags.topic string - Yes The message type.

tags.interval.seconds int 10 Yes The interval for reading messages.

Unit: seconds.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of the source file specified to

generate SST files.

13.3.2 Parameters in the configuration file

- 484/629 - 2021 Vesoft Inc.

GENERAL PARAMETERS

Parameter Type Default

value

Required Description

edges.name string - Yes The edge type name defined in Nebula Graph.

edges.type.source string - Yes The data source of edges. For example, csv .

edges.type.sink string client Yes The method specified to import data. Optional

values are client and SST .

edges.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a header

or column name, please use that name directly.

If a CSV file does not have a header, use the

form of [_c0, _c1, _c2] to represent the first

column, the second column, the third column,

and so on.

edges.nebula.fields list[string] - Yes Edge names defined in Nebula Graph, the order

of which must correspond to edges.fields . For

example, [_c2, _c3] corresponds to

[start_year, end_year] , which means that values

in the third column are the values of the start

year, and values in the fourth column are the

values of the end year.

edges.source.field string - Yes The column of source vertices of edges. For

example, _c0 indicates a value in the first

column that is used as the source vertex of an

edge.

edges.target.field string - Yes The column of destination vertices of edges. For

example, _c0 indicates a value in the first

column that is used as the destination vertex of

an edge.

edges.ranking int - No The column of rank values. If not specified, all

rank values are 0 by default.

edges.batch int 256 Yes The maximum number of edges written into

Nebula Graph in a single batch.

edges.partition int 32 Yes The number of Spark partitions.

Last update: October 22, 2021

13.3.2 Parameters in the configuration file

- 485/629 - 2021 Vesoft Inc.

13.4 Use Nebula Exchange

13.4.1 Import data from CSV files

This topic provides an example of how to use Exchange to import Nebula Graph data stored in HDFS or local CSV files.

To import a local CSV file to Nebula Graph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running normally.

If files are stored locally and Nebula Graph is a cluster architecture, you need to place the files in the same directory locally

on each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.4 Use Nebula Exchange

- 486/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS CSV FILES

Confirm the following information:

Process CSV files to meet Schema requirements.

Obtain the CSV file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set CSV data source configuration. In this

example, the copied file is called csv_application.conf . For details on each configuration item, see Parameters in the configuration

file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

1.

Exchange supports uploading CSV files with or without headers.

Note

2.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 executor: {
 memory:1G
 }

 cores {
 max: 16

13.4.1 Import data from CSV files

- 487/629 - 2021 Vesoft Inc.

 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }

 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }

 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".
 path: "hdfs://192.168.*.*:9000/data/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has headers, use the actual column names.
 fields: [_c1, _c2]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 # The value of vertex must be the same as the column names in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:_c0
 # policy:hash
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag Team.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: team
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.

13.4.1 Import data from CSV files

- 488/629 - 2021 Vesoft Inc.

 sink: client
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".
 path: "hdfs://192.168.*.*:9000/data/vertex_team.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has headers, use the actual column names.
 fields: [_c1]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 # The value of vertex must be the same as the column names in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:_c0
 # policy:hash
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # If more vertexes need to be added, refer to the previous configuration to add them.
]
 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # Specify the Edge Type name defined in Nebula Graph.
 name: follow
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".
 path: "hdfs://192.168.*.*:9000/data/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has headers, use the actual column names.
 fields: [_c2]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be the same as the column names in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: _c0
 }
 target: {
 field: _c1
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # Specify a column as the source of the rank (optional).

 #ranking: rank

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32

13.4.1 Import data from CSV files

- 489/629 - 2021 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import CSV data into Nebula Graph. For descriptions of the parameters, see Options for import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

 }

 # Set the information about the Edge Type serve.
 {
 # Specify the Edge Type name defined in Nebula Graph.
 name: serve
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".
 path: "hdfs://192.168.*.*:9000/data/edge_serve.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has headers, use the actual column names.
 fields: [_c2,_c3]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be the same as the column names in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: _c0
 }
 target: {
 field: _c1
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # Specify a column as the source of the rank (optional).
 #ranking: _c5

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

]
 # If more edges need to be added, refer to the previous configuration to add them.
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <csv_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/csv_application.conf

13.4.1 Import data from CSV files

- 490/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: October 22, 2021

13.4.1 Import data from CSV files

- 491/629 - 2021 Vesoft Inc.

13.4.2 Import data from JSON files

This topic provides an example of how to use Exchange to import Nebula Graph data stored in HDFS or local JSON files.

Data set

This topic takes the basketballplayer dataset as an example. Some sample data are as follows:

player

team

follow

serve

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

•

{"id":"player100","age":42,"name":"Tim Duncan"}
{"id":"player101","age":36,"name":"Tony Parker"}
{"id":"player102","age":33,"name":"LaMarcus Aldridge"}
{"id":"player103","age":32,"name":"Rudy Gay"}
...

•

{"id":"team200","name":"Warriors"}
{"id":"team201","name":"Nuggets"}
...

•

{"src":"player100","dst":"player101","degree":95}
{"src":"player101","dst":"player102","degree":90}
...

•

{"src":"player100","dst":"team204","start_year":"1997","end_year":"2016"}
{"src":"player101","dst":"team204","start_year":"1999","end_year":"2018"}
...

•

•

•

•

•

•

13.4.2 Import data from JSON files

- 492/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and Nebula Graph is a cluster architecture, you need to place the files in the same directory locally

on each machine in the cluster.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS JSON FILES

Confirm the following information:

Process JSON files to meet Schema requirements.

Obtain the JSON file storage path.

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

13.4.2 Import data from JSON files

- 493/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set JSON data source configuration. In this

example, the copied file is called json_application.conf . For details on each configuration item, see Parameters in the configuration

file.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 executor: {
 memory:1G
 }

 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }

 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }

 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to JSON.
 source: json

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the JSON file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".
 path: "hdfs://192.168.*.*:9000/data/vertex_player.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple column names need to be specified, separate them by commas.
 fields: [age,name]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 # The value of vertex must be the same as that in the JSON file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

13.4.2 Import data from JSON files

- 494/629 - 2021 Vesoft Inc.

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag Team.
{
 # Specify the Tag name defined in Nebula Graph.
 name: team
 type: {
 # Specify the data source file format to JSON.
 source: json

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the JSON file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".
 path: "hdfs://192.168.*.*:9000/data/vertex_team.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple column names need to be specified, separate them by commas.
 fields: [name]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [name]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 # The value of vertex must be the same as that in the JSON file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # If more vertexes need to be added, refer to the previous configuration to add them.
]
 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # Specify the Edge Type name defined in Nebula Graph.
 name: follow
 type: {
 # Specify the data source file format to JSON.
 source: json

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the JSON file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".
 path: "hdfs://192.168.*.*:9000/data/edge_follow.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be the same as that in the JSON file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src
 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

13.4.2 Import data from JSON files

- 495/629 - 2021 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import JSON data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 # Specify the Edge type name defined in Nebula Graph.
 name: serve
 type: {
 # Specify the data source file format to JSON.
 source: json

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the JSON file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".
 path: "hdfs://192.168.*.*:9000/data/edge_serve.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple column names need to be specified, separate them by commas.
 fields: [start_year,end_year]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be the same as that in the JSON file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src
 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: _c5

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

]
 # If more edges need to be added, refer to the previous configuration to add them.
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <json_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-echange/nebula-exchange/target/nebula-exchange-2.6.0.jar -
c /root/nebula-exchange/nebula-exchange/target/classes/json_application.conf

GO FROM "player100" OVER follow;

13.4.2 Import data from JSON files

- 496/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

Last update: January 18, 2022

13.4.2 Import data from JSON files

- 497/629 - 2021 Vesoft Inc.

13.4.3 Import data from ORC files

This topic provides an example of how to use Exchange to import Nebula Graph data stored in HDFS or local ORC files.

To import a local ORC file to Nebula Graph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and Nebula Graph is a cluster architecture, you need to place the files in the same directory locally

on each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.4.3 Import data from ORC files

- 498/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS ORC FILES

Confirm the following information:

Process ORC files to meet Schema requirements.

Obtain the ORC file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set ORC data source configuration. In this

example, the copied file is called orc_application.conf . For details on each configuration item, see Parameters in the configuration

file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 executor: {
 memory:1G
 }

 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.

13.4.3 Import data from ORC files

- 499/629 - 2021 Vesoft Inc.

 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }

 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }

 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 name: player
 type: {
 # Specify the data source file format to ORC.
 source: orc

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the ORC file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".
 path: "hdfs://192.168.*.*:9000/data/vertex_player.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [age,name]

 # Specify the property names defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 # The value of vertex must be consistent with the field in the ORC file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag team.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: team
 type: {
 # Specify the data source file format to ORC.
 source: orc

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the ORC file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".
 path: "hdfs://192.168.*.*:9000/data/vertex_team.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [name]

 # Specify the property names defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 # The value of vertex must be consistent with the field in the ORC file.

13.4.3 Import data from ORC files

- 500/629 - 2021 Vesoft Inc.

 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # If more vertexes need to be added, refer to the previous configuration to add them.
]
 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # Specify the Edge Type name defined in Nebula Graph.
 name: follow
 type: {
 # Specify the data source file format to ORC.
 source: orc

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the ORC file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".
 path: "hdfs://192.168.*.*:9000/data/edge_follow.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [degree]

 # Specify the property names defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be consistent with the field in the ORC file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src
 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge type serve.
 {
 # Specify the Edge type name defined in Nebula Graph.
 name: serve
 type: {
 # Specify the data source file format to ORC.
 source: orc

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the ORC file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".
 path: "hdfs://192.168.*.*:9000/data/edge_serve.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [start_year,end_year]

 # Specify the property names defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.
 # The value of vertex must be consistent with the field in the ORC file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src

13.4.3 Import data from ORC files

- 501/629 - 2021 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import ORC data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: _c5

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # If more edges need to be added, refer to the previous configuration to add them.
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <orc_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/orc_application.conf

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.3 Import data from ORC files

- 502/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.4 Import data from Parquet files

This topic provides an example of how to use Exchange to import Nebula Graph data stored in HDFS or local Parquet files.

To import a local Parquet file to Nebula Graph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and Nebula Graph is a cluster architecture, you need to place the files in the same directory locally

on each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.4.4 Import data from Parquet files

- 503/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS PARQUET FILES

Confirm the following information:

Process Parquet files to meet Schema requirements.

Obtain the Parquet file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Parquet data source configuration. In this

example, the copied file is called parquet_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 executor: {
 memory:1G
 }

 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.

13.4.4 Import data from Parquet files

- 504/629 - 2021 Vesoft Inc.

 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }

 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }

 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to Parquet.
 source: parquet

 # Specifies how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the Parquet file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".
 path: "hdfs://192.168.*.13:9000/data/vertex_player.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula
Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [age,name]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 # The value of vertex must be consistent with the field in the Parquet file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag team.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: team
 type: {
 # Specify the data source file format to Parquet.
 source: parquet

 # Specifies how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the Parquet file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".
 path: "hdfs://192.168.11.13:9000/data/vertex_team.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula
Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [name]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [name]

13.4.4 Import data from Parquet files

- 505/629 - 2021 Vesoft Inc.

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 # The value of vertex must be consistent with the field in the Parquet file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:id
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # If more vertexes need to be added, refer to the previous configuration to add them.
]
 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # Specify the Edge Type name defined in Nebula Graph.
 name: follow
 type: {
 # Specify the data source file format to Parquet.
 source: parquet

 # Specifies how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the Parquet file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".
 path: "hdfs://192.168.11.13:9000/data/edge_follow.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula
Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [degree]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.
 # The values of vertex must be consistent with the fields in the Parquet file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src
 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge type serve.
 {
 # Specify the Edge type name defined in Nebula Graph.
 name: serve
 type: {
 # Specify the data source file format to Parquet.
 source: parquet

 # Specifies how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Specify the path to the Parquet file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".
 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".
 path: "hdfs://192.168.11.13:9000/data/edge_serve.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the Nebula
Graph.
 # If multiple values need to be specified, separate them with commas.
 fields: [start_year,end_year]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.

13.4.4 Import data from Parquet files

- 506/629 - 2021 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import Parquet data into Nebula Graph. For a description of the parameters, see Options for

import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

 # The values of vertex must be consistent with the fields in the Parquet file.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: src
 }
 target: {
 field: dst
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: _c5

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

]
 # If more edges need to be added, refer to the previous configuration to add them.
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <parquet_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/parquet_application.conf

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.4 Import data from Parquet files

- 507/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.5 Import data from HBase

This topic provides an example of how to use Exchange to import Nebula Graph data stored in HBase.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in HBase. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

HBase: 2.2.7

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

hbase(main):002:0> scan "player"
ROW COLUMN+CELL
 player100 column=cf:age, timestamp=1618881347530, value=42
 player100 column=cf:name, timestamp=1618881354604, value=Tim Duncan
 player101 column=cf:age, timestamp=1618881369124, value=36
 player101 column=cf:name, timestamp=1618881379102, value=Tony Parker
 player102 column=cf:age, timestamp=1618881386987, value=33
 player102 column=cf:name, timestamp=1618881393370, value=LaMarcus Aldridge
 player103 column=cf:age, timestamp=1618881402002, value=32
 player103 column=cf:name, timestamp=1618881407882, value=Rudy Gay
 ...

hbase(main):003:0> scan "team"
ROW COLUMN+CELL
 team200 column=cf:name, timestamp=1618881445563, value=Warriors
 team201 column=cf:name, timestamp=1618881453636, value=Nuggets
 ...

hbase(main):004:0> scan "follow"
ROW COLUMN+CELL
 player100 column=cf:degree, timestamp=1618881804853, value=95
 player100 column=cf:dst_player, timestamp=1618881791522, value=player101
 player101 column=cf:degree, timestamp=1618881824685, value=90
 player101 column=cf:dst_player, timestamp=1618881816042, value=player102
 ...

hbase(main):005:0> scan "serve"
ROW COLUMN+CELL
 player100 column=cf:end_year, timestamp=1618881899333, value=2016
 player100 column=cf:start_year, timestamp=1618881890117, value=1997
 player100 column=cf:teamid, timestamp=1618881875739, value=team204
 ...

•

•

•

•

•

•

•

13.4.5 Import data from HBase

- 508/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set HBase data source configuration. In this

example, the copied file is called hbase_application.conf . For details on each configuration item, see Parameters in the

configuration file.

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }

13.4.5 Import data from HBase

- 509/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set information about Tag player.
 # If you want to set RowKey as the data source, enter rowkey and the actual column name of the column family.
 {
 # The Tag name in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to HBase.
 source: hbase
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }
 host:192.168.*.*
 port:2181
 table:"player"
 columnFamily:"cf"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [age,name]
 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 # For example, if rowkey is the source of the VID, enter rowkey.
 vertex:{
 field:rowkey
 }

 # Number of pieces of data written to Nebula Graph in a single batch.
 batch: 256

 # Number of Spark partitions
 partition: 32
 }
 # Set Tag Team information.
 {
 name: team
 type: {
 source: hbase
 sink: client
 }
 host:192.168.*.*
 port:2181
 table:"team"
 columnFamily:"cf"
 fields: [name]
 nebula.fields: [name]
 vertex:{
 field:rowkey
 }
 batch: 256
 partition: 32
 }

]

13.4.5 Import data from HBase

- 510/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import HBase data into Nebula Graph. For descriptions of the parameters, see Options for import.

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to HBase.
 source: hbase

 # Specify how to import the Edge type data into Nebula Graph.
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 host:192.168.*.*
 port:2181
 table:"follow"
 columnFamily:"cf"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]
 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.
 # In target, use a column in the follow table as the source of the edge's destination vertex.
 source:{
 field:rowkey
 }

 target:{
 field:dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type: {
 source: hbase
 sink: client
 }
 host:192.168.*.*
 port:2181
 table:"serve"
 columnFamily:"cf"

 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source:{
 field:rowkey
 }

 target:{
 field:teamid
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 batch: 256
 partition: 32
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <hbase_application.conf_path>

13.4.5 Import data from HBase

- 511/629 - 2021 Vesoft Inc.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/hbase_application.conf

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.5 Import data from HBase

- 512/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.6 Import data from MySQL

This topic provides an example of how to use Exchange to import Nebula Graph data stored in MySQL.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in MySQL. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

MySQL: 8.0.23

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

mysql> desc player;
+----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+-------------+------+-----+---------+-------+
playerid	varchar(30)	YES		NULL	
age	int	YES		NULL	
name	varchar(30)	YES		NULL	
+----------+-------------+------+-----+---------+-------+

mysql> desc team;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| teamid | varchar(30) | YES | | NULL | |
| name | varchar(30) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+

mysql> desc follow;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
src_player	varchar(30)	YES		NULL	
dst_player	varchar(30)	YES		NULL	
degree	int	YES		NULL	
+------------+-------------+------+-----+---------+-------+

mysql> desc serve;
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
playerid	varchar(30)	YES		NULL	
teamid	varchar(30)	YES		NULL	
start_year	int	YES		NULL	
end_year	int	YES		NULL	
+------------+-------------+------+-----+---------+-------+

•

•

•

•

•

•

•

13.4.6 Import data from MySQL

- 513/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set MySQL data source configuration. In this case,

the copied file is called mysql_application.conf . For details on each configuration item, see Parameters in the configuration file.

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {

13.4.6 Import data from MySQL

- 514/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 # The Tag name in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to MySQL.
 source: mysql
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 host:192.168.*.*
 port:3306
 database:"basketball"
 table:"player"
 user:"test"
 password:"123456"
 sentence:"select playerid, age, name from basketball.player order by playerid;"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [age,name]
 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 vertex: {
 field:playerid
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }
 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: mysql
 sink: client
 }

 host:192.168.*.*
 port:3306
 database:"basketball"
 table:"team"
 user:"test"
 password:"123456"
 sentence:"select teamid, name from basketball.team order by teamid;"

 fields: [name]
 nebula.fields: [name]
 vertex: {
 field: teamid
 }
 batch: 256

13.4.6 Import data from MySQL

- 515/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import MySQL data into Nebula Graph. For a description of the parameters, see Options for import.

 partition: 32
 }

]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to MySQL.
 source: mysql

 # Specify how to import the Edge type data into Nebula Graph.
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 host:192.168.*.*
 port:3306
 database:"basketball"
 table:"follow"
 user:"test"
 password:"123456"
 sentence:"select src_player,dst_player,degree from basketball.follow order by src_player;"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]
 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.
 # In target, use a column in the follow table as the source of the edge's destination vertex.
 source: {
 field: src_player
 }

 target: {
 field: dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type: {
 source: mysql
 sink: client
 }

 host:192.168.*.*
 port:3306
 database:"basketball"
 table:"serve"
 user:"test"
 password:"123456"
 sentence:"select playerid,teamid,start_year,end_year from basketball.serve order by playerid;"
 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source: {
 field: playerid
 }
 target: {
 field: teamid
 }
 batch: 256
 partition: 32
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <mysql_application.conf_path>

13.4.6 Import data from MySQL

- 516/629 - 2021 Vesoft Inc.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/mysql_application.conf

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.6 Import data from MySQL

- 517/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.7 Import data from ClickHouse

This topic provides an example of how to use Exchange to import data stored on ClickHouse into Nebula Graph.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

ClickHouse: docker deployment yandex/clickhouse-server tag: latest(2021.07.01)

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.4.7 Import data from ClickHouse

- 518/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set ClickHouse data source configuration. In this

example, the copied file is called clickhouse_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {
 max: 16
 }
 }

Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3

13.4.7 Import data from ClickHouse

- 519/629 - 2021 Vesoft Inc.

 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 name: player
 type: {
 # Specify the data source file format to ClickHouse.
 source: clickhouse
 # Specify how to import the data of vertexes into Nebula Graph: Client or SST.
 sink: client
 }

 # JDBC URL of ClickHouse
 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"
 password:"123456"

 # The number of ClickHouse partitions
 numPartition:"5"

 sentence:"select * from player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [name,age]
 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 vertex: {
 field:playerid
 # policy:hash
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: clickhouse
 sink: client
 }
 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"
 user:"user"
 password:"123456"
 numPartition:"5"
 sentence:"select * from team"
 fields: [name]
 nebula.fields: [name]
 vertex: {
 field:teamid
 }
 batch: 256
 partition: 32
 }
]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to ClickHouse.
 source: clickhouse

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # JDBC URL of ClickHouse
 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"
 password:"123456"

13.4.7 Import data from ClickHouse

- 520/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import ClickHouse data into Nebula Graph. For descriptions of the parameters, see Options for

import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

 # The number of ClickHouse partitions.
 numPartition:"5"

 sentence:"select * from follow"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]
 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertexes.
 source: {
 field:src_player
 }

 # In target, use a column in the follow table as the source of the edge's destination vertexes.
 target: {
 field:dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type: {
 source: clickhouse
 sink: client
 }
 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"
 user:"user"
 password:"123456"
 numPartition:"5"
 sentence:"select * from serve"
 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source: {
 field:playerid
 }
 target: {
 field:teamid
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 batch: 256
 partition: 32
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <clickhouse_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/clickhouse_application.conf

13.4.7 Import data from ClickHouse

- 521/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.7 Import data from ClickHouse

- 522/629 - 2021 Vesoft Inc.

13.4.8 Import data from Neo4j

This topic provides an example of how to use Exchange to import Nebula Graph data stored in Neo4j.

Implementation method

Exchange uses Neo4j Driver 4.0.1 to read Neo4j data. Before batch export, you need to write Cypher statements that are

automatically executed based on labels and relationship types and the number of Spark partitions in the configuration file to

improve data export performance.

When Exchange reads Neo4j data, it needs to do the following:

The Reader in Exchange replaces the statement following the Cypher RETURN statement in the exec part of the configuration file

with COUNT(*) , and executes this statement to get the total amount of data, then calculates the starting offset and size of each

partition based on the number of Spark partitions.

(Optional) If the user has configured the check_point_path directory, Reader reads the files in the directory. In the transferring

state, Reader calculates the offset and size that each Spark partition should have.

In each Spark partition, the Reader in Exchange adds different SKIP and LIMIT statements to the Cypher statement and calls the

Neo4j Driver for parallel execution to distribute data to different Spark partitions.

The Reader finally processes the returned data into a DataFrame.

At this point, Exchange has finished exporting the Neo4j data. The data is then written in parallel to the Nebula Graph database.

The whole process is illustrated below.

Data set

This topic takes the basketballplayer dataset as an example.

1.

2.

3.

4.

13.4.8 Import data from Neo4j

- 523/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

FF
1ACPU Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

CPU cores: 14

Memory: 251 GB

Spark: Stand-alone, 2.4.6 pre-build for Hadoop 2.7

Neo4j: 3.5.20 Community Edition

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with Nebula Graph write permission.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer
nebula> USE basketballplayer;

Create the Tag player
nebula> CREATE TAG player(name string, age int);

Create the Tag team
nebula> CREATE TAG team(name string);

Create the Edge type follow
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve
nebula> CREATE EDGE serve(start_year int, end_year int);

13.4.8 Import data from Neo4j

- 524/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

For more information, see Quick start workflow.

STEP 2: CONFIGURING SOURCE DATA

To speed up the export of Neo4j data, create indexes for the corresponding properties in the Neo4j database. For more

information, refer to the Neo4j manual.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Neo4j data source configuration. In this

example, the copied file is called neo4j_application.conf . For details on each configuration item, see Parameters in the

configuration file.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }

 driver: {
 cores: 1
 maxResultSize: 1G
 }

 executor: {
 memory:1G
 }

 cores:{
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 user: root
 pswd: nebula
 space: basketballplayer

 connection {
 timeout: 3000
 retry: 3
 }

 execution {
 retry: 3
 }

 error: {
 max: 32
 output: /tmp/errors
 }

 rate: {
 limit: 1024
 timeout: 1000
 }
 }

 # Processing vertexes
 tags: [

 # Set the information about the Tag player
 {
 name: player
 type: {
 source: neo4j
 sink: client
 }
 server: "bolt://192.168.*.*:7687"
 user: neo4j
 password:neo4j
 database:neo4j
 exec: "match (n:player) return n.id as id, n.age as age, n.name as name"
 fields: [age,name]
 nebula.fields: [age,name]
 vertex: {
 field:id
 }
 partition: 10
 batch: 1000
 check_point_path: /tmp/test

13.4.8 Import data from Neo4j

- 525/629 - 2021 Vesoft Inc.

https://neo4j.com/docs/cypher-manual/current/query-tuning/indexes/

Exec configuration

When configuring either the tags.exec or edges.exec parameters, you need to fill in the Cypher query. To prevent loss of data

during import, it is strongly recommended to include ORDER BY clause in Cypher queries. Meanwhile, in order to improve data

import efficiency, it is better to select indexed properties for ordering. If there is no index, users can also observe the default order

and select the appropriate properties for ordering to improve efficiency. If the pattern of the default order cannot be found, users

can order them by the ID of the vertex or relationship and set the partition to a small value to reduce the ordering pressure of

Neo4j.

 }
 # Set the information about the Tag Team
 {
 name: team
 type: {
 source: neo4j
 sink: client
 }
 server: "bolt://192.168.*.*:7687"
 user: neo4j
 password:neo4j
 database:neo4j
 exec: "match (n:team) return n.id as id,n.name as name"
 fields: [name]
 nebula.fields: [name]
 vertex: {
 field:id
 }
 partition: 10
 batch: 1000
 check_point_path: /tmp/test
 }
]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow
 {
 name: follow
 type: {
 source: neo4j
 sink: client
 }
 server: "bolt://192.168.*.*:7687"
 user: neo4j
 password:neo4j
 database:neo4j
 exec: "match (a:player)-[r:follow]->(b:player) return a.id as src, b.id as dst, r.degree as degree order by id(r)"
 fields: [degree]
 nebula.fields: [degree]
 source: {
 field: src
 }
 target: {
 field: dst
 }
 #ranking: rank
 partition: 10
 batch: 1000
 check_point_path: /tmp/test
 }
 # Set the information about the Edge Type serve
 {
 name: serve
 type: {
 source: neo4j
 sink: client
 }
 server: "bolt://192.168.*.*:7687"
 user: neo4j
 password:neo4j
 database:neo4j
 exec: "match (a:player)-[r:serve]->(b:team) return a.id as src, b.id as dst, r.start_year as start_year, r.end_year as end_year order by id(r)"
 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source: {
 field: src
 }
 target: {
 field: dst
 }
 #ranking: rank
 partition: 10
 batch: 1000
 check_point_path: /tmp/test
 }
]
}

13.4.8 Import data from Neo4j

- 526/629 - 2021 Vesoft Inc.

Exchange needs to execute different SKIP and LIMIT Cypher statements on different Spark partitions, so SKIP and LIMIT clauses

cannot be included in the Cypher statements corresponding to tags.exec and edges.exec .

tags.vertex or edges.vertex configuration

Nebula Graph uses ID as the unique primary key when creating vertexes and edges, overwriting the data in that primary key if it

already exists. So, if a Neo4j property value is given as the Nebula Graph'S ID and the value is duplicated in Neo4j, duplicate IDs

will be generated. One and only one of their corresponding data will be stored in the Nebula Graph, and the others will be

overwritten. Because the data import process is concurrently writing data to Nebula Graph, the final saved data is not guaranteed

to be the latest data in Neo4j.

check_point_path configuration

If breakpoint transfers are enabled, to avoid data loss, the state of the database should not change between the breakpoint and the

transfer. For example, data cannot be added or deleted, and the partition quantity configuration should not be changed.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import Neo4j data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

Using the ORDER BY clause lengthens the data import time.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <neo4j_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/neo4j_application.conf

GO FROM "player100" OVER follow;

Last update: October 22, 2021

13.4.8 Import data from Neo4j

- 527/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.9 Import data from Hive

This topic provides an example of how to use Exchange to import Nebula Graph data stored in Hive.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in Hive. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Hive: 2.3.7, Hive Metastore database is MySQL 8.0.22

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

scala> spark.sql("describe basketball.player").show
+--------+---------+-------+
|col_name|data_type|comment|
+--------+---------+-------+
playerid	string	null
age	bigint	null
name	string	null
+--------+---------+-------+

scala> spark.sql("describe basketball.team").show
+----------+---------+-------+
| col_name|data_type|comment|
+----------+---------+-------+
| teamid| string| null|
| name| string| null|
+----------+---------+-------+

scala> spark.sql("describe basketball.follow").show
+----------+---------+-------+
| col_name|data_type|comment|
+----------+---------+-------+
src_player	string	null
dst_player	string	null
degree	bigint	null
+----------+---------+-------+

scala> spark.sql("describe basketball.serve").show
+----------+---------+-------+
| col_name|data_type|comment|
+----------+---------+-------+
playerid	string	null
teamid	string	null
start_year	bigint	null
end_year	bigint	null
+----------+---------+-------+

The Hive data type bigint corresponds to the Nebula Graph int .

Note

•

•

•

•

•

•

•

13.4.9 Import data from Hive

- 528/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

Hadoop has been installed and started, and the Hive Metastore database (MySQL in this example) has been started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: USE SPARK SQL TO CONFIRM HIVE SQL STATEMENTS

After the Spark-shell environment is started, run the following statements to ensure that Spark can read data in Hive.

The following is the result read from the table basketball.player .

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer
nebula> USE basketballplayer;

Create the Tag player
nebula> CREATE TAG player(name string, age int);

Create the Tag team
nebula> CREATE TAG team(name string);

Create the Edge type follow
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve
nebula> CREATE EDGE serve(start_year int, end_year int);

scala> sql("select playerid, age, name from basketball.player").show
scala> sql("select teamid, name from basketball.team").show
scala> sql("select src_player, dst_player, degree from basketball.follow").show
scala> sql("select playerid, teamid, start_year, end_year from basketball.serve").show

+---------+----+-----------------+
| playerid| age| name|
+---------+----+-----------------+
|player100| 42| Tim Duncan|

13.4.9 Import data from Hive

- 529/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 3: MODIFY CONFIGURATION FILE

After Exchange is compiled, copy the conf file target/classes/application.conf to set Hive data source configuration. In this

example, the copied file is called hive_application.conf . For details on each configuration item, see Parameters in the configuration

file.

player101	36	Tony Parker
player102	33	LaMarcus Aldridge
player103	32	Rudy Gay
player104	32	Marco Belinelli
+---------+----+-----------------+
...

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {
 max: 16
 }
 }

 # If Spark and Hive are deployed in different clusters, you need to configure the parameters for connecting to Hive. Otherwise, skip these configurations.
 #hive: {
 # waredir: "hdfs://NAMENODE_IP:9000/apps/svr/hive-xxx/warehouse/"
 # connectionURL: "jdbc:mysql://your_ip:3306/hive_spark?characterEncoding=UTF-8"
 # connectionDriverName: "com.mysql.jdbc.Driver"
 # connectionUserName: "user"
 # connectionPassword: "password"
 #}

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 # The Tag name in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to Hive.
 source: hive
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Set the SQL statement to read the data of player table in basketball database.
 exec: "select playerid, age, name from basketball.player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [age,name]
 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 vertex:{

13.4.9 Import data from Hive

- 530/629 - 2021 Vesoft Inc.

 field:playerid
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }
 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: hive
 sink: client
 }
 exec: "select teamid, name from basketball.team"
 fields: [name]
 nebula.fields: [name]
 vertex: {
 field: teamid
 }
 batch: 256
 partition: 32
 }

]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to Hive.
 source: hive

 # Specify how to import the Edge type data into Nebula Graph.
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Set the SQL statement to read the data of follow table in the basketball database.
 exec: "select src_player, dst_player, degree from basketball.follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]
 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's starting vertex.
 # In target, use a column in the follow table as the source of the edge's destination vertex.
 source: {
 field: src_player
 }

 target: {
 field: dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type: {
 source: hive
 sink: client
 }
 exec: "select playerid, teamid, start_year, end_year from basketball.serve"
 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source: {
 field: playerid
 }
 target: {
 field: teamid
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 batch: 256

13.4.9 Import data from Hive

- 531/629 - 2021 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import Hive data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

 partition: 32
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <hive_application.conf_path> -h

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/hive_application.conf -h

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.9 Import data from Hive

- 532/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.10 Import data from MaxCompute

This topic provides an example of how to use Exchange to import Nebula Graph data stored in MaxCompute.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

MaxCompute: Alibaba Cloud official version

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.4.10 Import data from MaxCompute

- 533/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set MaxCompute data source configuration. In

this example, the copied file is called maxcompute_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3

13.4.10 Import data from MaxCompute

- 534/629 - 2021 Vesoft Inc.

 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {
 name: player
 type: {
 # Specify the data source file format to MaxCompute.
 source: maxcompute
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Table name of MaxCompute.
 table:player

 # Project name of MaxCompute.
 project:project

 # OdpsUrl and tunnelUrl for the MaxCompute service.
 # The address is https://help.aliyun.com/document_detail/34951.html.
 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"
 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.
 accessKeyId:xxx
 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.
 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.
 sentence:"select id, name, age, playerid from player where id < 10"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields:[name, age]
 nebula.fields:[name, age]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 vertex:{
 field: playerid
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: maxcompute
 sink: client
 }
 table:team
 project:project
 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"
 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"
 accessKeyId:xxx
 accessKeySecret:xxx
 partitionSpec:"dt='partition1'"
 sentence:"select id, name, teamid from team where id < 10"
 fields:[name]
 nebula.fields:[name]
 vertex:{
 field: teamid
 }
 batch: 256
 partition: 32
 }
]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type:{

13.4.10 Import data from MaxCompute

- 535/629 - 2021 Vesoft Inc.

 # Specify the data source file format to MaxCompute.
 source:maxcompute

 # Specify how to import the Edge type data into Nebula Graph.
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink:client
 }

 # Table name of MaxCompute.
 table:follow

 # Project name of MaxCompute.
 project:project

 # OdpsUrl and tunnelUrl for MaxCompute service.
 # The address is https://help.aliyun.com/document_detail/34951.html.
 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"
 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.
 accessKeyId:xxx
 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.
 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.
 sentence:"select * from follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields:[degree]
 nebula.fields:[degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.
 source:{
 field: src_player
 }

 # In target, use a column in the follow table as the source of the edge's destination vertex.
 target:{
 field: dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of Spark partitions.
 partition:10

 # The number of data written to Nebula Graph in a single batch.
 batch:10
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type:{
 source:maxcompute
 sink:client
 }
 table:serve
 project:project
 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"
 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"
 accessKeyId:xxx
 accessKeySecret:xxx
 partitionSpec:"dt='partition1'"
 sentence:"select * from serve"
 fields:[start_year,end_year]
 nebula.fields:[start_year,end_year]
 source:{
 field: playerid
 }
 target:{
 field: teamid
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 partition:10
 batch:10
 }
]
}

13.4.10 Import data from MaxCompute

- 536/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import MaxCompute data into Nebula Graph. For a description of the parameters, see Options for

import.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <maxcompute_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/maxcompute_application.conf

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.10 Import data from MaxCompute

- 537/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

13.4.11 Import data from Pulsar

This topic provides an example of how to use Exchange to import Nebula Graph data stored in Pulsar.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Pulsar service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

13.4.11 Import data from Pulsar

- 538/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Pulsar data source configuration. In this

example, the copied file is called pulsar_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer
nebula> USE basketballplayer;

Create the Tag player
nebula> CREATE TAG player(name string, age int);

Create the Tag team
nebula> CREATE TAG team(name string);

Create the Edge type follow
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve
nebula> CREATE EDGE serve(start_year int, end_year int);

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }

 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3

13.4.11 Import data from Pulsar

- 539/629 - 2021 Vesoft Inc.

 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertices
 tags: [
 # Set the information about the Tag player.
 {
 # The corresponding Tag name in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to Pulsar.
 source: pulsar
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }
 # The address of the Pulsar server.
 service: "pulsar://127.0.0.1:6650"
 # admin.url of pulsar.
 admin: "http://127.0.0.1:8081"
 # The Pulsar option can be configured from topic, topics or topicsPattern.
 options: {
 topics: "topic1,topic2"
 }

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [age,name]
 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the Nebula Graph.
 vertex:{
 field:playerid
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 10

 # The number of Spark partitions.
 partition: 10
 # The interval for message reading. Unit: second.
 interval.seconds: 10
 }
 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: pulsar
 sink: client
 }
 service: "pulsar://127.0.0.1:6650"
 admin: "http://127.0.0.1:8081"
 options: {
 topics: "topic1,topic2"
 }
 fields: [name]
 nebula.fields: [name]
 vertex:{
 field:teamid
 }
 batch: 10
 partition: 10
 interval.seconds: 10
 }

]

 # Processing edges
 edges: [
 # Set the information about Edge Type follow
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to Pulsar.
 source: pulsar

 # Specify how to import the Edge type data into Nebula Graph.
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

13.4.11 Import data from Pulsar

- 540/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import Pulsar data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

 # The address of the Pulsar server.
 service: "pulsar://127.0.0.1:6650"
 # admin.url of pulsar.
 admin: "http://127.0.0.1:8081"
 # The Pulsar option can be configured from topic, topics or topicsPattern.
 options: {
 topics: "topic1,topic2"
 }

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 # If multiple column names need to be specified, separate them by commas.
 fields: [degree]
 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.
 # In target, use a column in the follow table as the source of the edge's destination vertex.
 source:{
 field:src_player
 }

 target:{
 field:dst_player
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 10

 # The number of Spark partitions.
 partition: 10

 # The interval for message reading. Unit: second.
 interval.seconds: 10
 }

 # Set the information about the Edge Type serve
 {
 name: serve
 type: {
 source: Pulsar
 sink: client
 }
 service: "pulsar://127.0.0.1:6650"
 admin: "http://127.0.0.1:8081"
 options: {
 topics: "topic1,topic2"
 }

 fields: [start_year,end_year]
 nebula.fields: [start_year,end_year]
 source:{
 field:playerid
 }

 target:{
 field:teamid
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 batch: 10
 partition: 10
 interval.seconds: 10
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <pulsar_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/pulsar_application.conf

13.4.11 Import data from Pulsar

- 541/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.11 Import data from Pulsar

- 542/629 - 2021 Vesoft Inc.

13.4.12 Import data from Kafka

This topic provides a simple guide to importing Data stored on Kafka into Nebula Graph using Exchange.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Nebula Graph: 2.6.0. Deploy Nebula Graph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in Nebula Graph, including names and properties of Tags and Edge types, and more.

The Kafka service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

13.4.12 Import data from Kafka

- 543/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Kafka data source configuration. In this

example, the copied file is called kafka_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.
nebula> USE basketballplayer;

Create the Tag player.
nebula> CREATE TAG player(name string, age int);

Create the Tag team.
nebula> CREATE TAG team(name string);

Create the Edge type follow.
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.
nebula> CREATE EDGE serve(start_year int, end_year int);

If some data is stored in Kafka's value field, you need to modify the source code, get the value from Kafka, parse the value through

the from_JSON function, and return it as a Dataframe.

Note

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.6.0
 }
 driver: {
 cores: 1
 maxResultSize: 1G
 }
 cores {
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 # Specify the IP addresses and ports for Graph and all Meta services.
 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
 # Addresses are separated by commas.
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]

13.4.12 Import data from Kafka

- 544/629 - 2021 Vesoft Inc.

 }
 # The account entered must have write permission for the Nebula Graph space.
 user: root
 pswd: nebula
 # Fill in the name of the graph space you want to write data to in the Nebula Graph.
 space: basketballplayer
 connection {
 timeout: 3000
 retry: 3
 }
 execution {
 retry: 3
 }
 error: {
 max: 32
 output: /tmp/errors
 }
 rate: {
 limit: 1024
 timeout: 1000
 }
 }
 # Processing vertexes
 tags: [
 # Set the information about the Tag player.
 {

 # The corresponding Tag name in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to Kafka.
 source: kafka
 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }
 # Kafka server address.
 service: "127.0.0.1:9092"
 # Message category.
 topic: "topic_name1"

 # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.
 # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.
 # Specify the field name in fields. For example, use key for name in Nebula and value for age in Nebula, as shown in the following.
 fields: [key,value]
 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the Nebula Graph.
 # The key is the same as the value above, indicating that key is used as both VID and property name.
 vertex:{
 field:key
 }

 # The number of data written to Nebula Graph in a single batch.
 batch: 10

 # The number of Spark partitions.
 partition: 10
 # The interval for message reading. Unit: second.
 interval.seconds: 10
 }
 # Set the information about the Tag Team.
 {
 name: team
 type: {
 source: kafka
 sink: client
 }
 service: "127.0.0.1:9092"
 topic: "topic_name2"
 fields: [key]
 nebula.fields: [name]
 vertex:{
 field:key
 }
 batch: 10
 partition: 10
 interval.seconds: 10
 }

]

 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The corresponding Edge Type name in Nebula Graph.
 name: follow

 type: {
 # Specify the data source file format to Kafka.
 source: kafka

 # Specify how to import the Edge type data into Nebula Graph.

13.4.12 Import data from Kafka

- 545/629 - 2021 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULA GRAPH

Run the following command to import Kafka data into Nebula Graph. For a description of the parameters, see Options for import.

For example:

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: client
 }

 # Kafka server address.
 service: "127.0.0.1:9092"
 # Message category.
 topic: "topic_name3"

 # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.
 # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.
 # Specify the field name in fields. For example, use key for degree in Nebula, as shown in the following.
 fields: [key]
 nebula.fields: [degree]

 # In source, use a column in the topic as the source of the edge's source vertex.
 # In target, use a column in the topic as the source of the edge's destination vertex.
 source:{
 field:timestamp
 }

 target:{
 field:offset
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 # The number of data written to Nebula Graph in a single batch.
 batch: 10

 # The number of Spark partitions.
 partition: 10

 # The interval for message reading. Unit: second.
 interval.seconds: 10
 }

 # Set the information about the Edge Type serve.
 {
 name: serve
 type: {
 source: kafka
 sink: client
 }
 service: "127.0.0.1:9092"
 topic: "topic_name4"

 fields: [timestamp,offset]
 nebula.fields: [start_year,end_year]
 source:{
 field:key
 }

 target:{
 field:value
 }

 # (Optional) Specify a column as the source of the rank.
 #ranking: rank

 batch: 10
 partition: 10
 interval.seconds: 10
 }
]
}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.6.0.jar_path> -c <kafka_application.conf_path>

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-2.6.0.jar
-c /root/nebula-exchange/nebula-exchange/target/classes/kafka_application.conf

13.4.12 Import data from Kafka

- 546/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: January 18, 2022

13.4.12 Import data from Kafka

- 547/629 - 2021 Vesoft Inc.

13.4.13 Import data from SST files

This topic provides an example of how to generate the data from the data source into an SST (Sorted String Table) file and save it

on HDFS, and then import it into Nebula Graph. The sample data source is a CSV file.

Precautions

The SST file can be imported only in Linux.

The default value of the property is not supported.

Background information

Exchange supports two data import modes:

Import the data from the data source directly into Nebula Graph as nGQL statements.

Generate the SST file from the data source, and use Console to import the SST file into Nebula Graph.

The following describes the scenarios, implementation methods, prerequisites, and steps for generating an SST file and importing

data.

Scenarios

Suitable for online services, because the generation almost does not affect services (just reads the Schema), and the import

speed is fast.

Suitable for scenarios with a large amount of data from data sources for its fast import speed.

Implementation methods

The underlying code in Nebula Graph uses RocksDB as the key-value storage engine. RocksDB is a storage engine based on the

hard disk, providing a series of APIs for creating and importing SST files to help quickly import massive data.

•

•

•

•

•

Although the import speed is fast, write operations in the corresponding space are blocked during the import period (about 10

seconds). Therefore, you are advised to import data in off-peak hours.

Caution

•

13.4.13 Import data from SST files

- 548/629 - 2021 Vesoft Inc.

The SST file is an internal file containing an arbitrarily long set of ordered key-value pairs for efficient storage of large amounts of

key-value data. The entire process of generating SST files is mainly done by Exchange Reader, sstProcessor, and sstWriter. The

whole data processing steps are as follows:

Reader reads data from the data source.

sstProcessor generates the SST file from the Nebula Graph's Schema information and uploads it to the HDFS. For details about

the format of the SST file, see Data Storage Format.

sstWriter opens a file and inserts data. When generating SST files, keys must be written in sequence.

After the SST file is generated, RocksDB imports the SST file into Nebula Graph using the IngestExternalFile() method. For

example:

When the IngestExternalFile() method is called, RocksDB copies the file to the data directory by default and blocks the RocksDB

write operation. If the key range in the SST file overwrites the Memtable key range, flush the Memtable to the hard disk. After

placing the SST file in an optimal location in the LSM tree, assign a global serial number to the file and turn on the write

operation.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Nebula Graph: 2.6.0.

1.

2.

3.

4.

IngestExternalFileOptions ifo;
Import two SST files
Status s = db_->IngestExternalFile({"/home/usr/file1.sst", "/home/usr/file2.sst"}, ifo);
if (!s.ok()) {
 printf("Error while adding file %s and %s, Error %s\n",
 file_path1.c_str(), file_path2.c_str(), s.ToString().c_str());
 return 1;
}

•

•

•

•

•

•

13.4.13 Import data from SST files

- 549/629 - 2021 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

Nebula Graph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to Nebula Graph.

--ws_storage_http_port in the Meta service configuration file is the same as --ws_http_port in the Storage service

configuration file. For example, 19779 .

--ws_meta_http_port in the Graph service configuration file is the same as --ws_http_port in the Meta service configuration

file. For example, 19559 .

The information about the Schema, including names and properties of Tags and Edge types, and more.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

JDK 1.8 or the later version has been installed and the environment variable JAVA_HOME has been configured.

The Hadoop service has been installed and started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH

Analyze the data to create a Schema in Nebula Graph by following these steps:

Identify the Schema elements. The Schema elements in the Nebula Graph are shown in the following table.

Create a graph space basketballplayer in the Nebula Graph and create a Schema as shown below.

•

•

•

•

•

•

•

•

•

•

To generate SST files of other data sources, see documents of the corresponding data source and check the prerequisites.

To generate SST files only, users do not need to install the Hadoop service on the machine where the Storage service is

deployed.

Note

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space
nebula> CREATE SPACE basketballplayer \
 (partition_num = 10, \
 replica_factor = 1, \
 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer
nebula> USE basketballplayer;

Create the Tag player
nebula> CREATE TAG player(name string, age int);

Create the Tag team
nebula> CREATE TAG team(name string);

Create the Edge type follow
nebula> CREATE EDGE follow(degree int);

Create the Edge type serve
nebula> CREATE EDGE serve(start_year int, end_year int);

13.4.13 Import data from SST files

- 550/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

For more information, see Quick start workflow.

STEP 2: PROCESS CSV FILES

Confirm the following information:

Process CSV files to meet Schema requirements.

Obtain the CSV file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set SST data source configuration. In this

example, the copied file is called sst_application.conf . For details on each configuration item, see Parameters in the configuration

file.

1.

Exchange supports uploading CSV files with or without headers.

Note

2.

{
 # Spark configuration
 spark: {
 app: {
 name: Nebula Exchange 2.0
 }

 master:local

 driver: {
 cores: 1
 maxResultSize: 1G
 }

 executor: {
 memory:1G
 }

 cores:{
 max: 16
 }
 }

 # Nebula Graph configuration
 nebula: {
 address:{
 graph:["127.0.0.1:9669"]
 meta:["127.0.0.1:9559"]
 }
 user: root
 pswd: nebula
 space: basketballplayer

 # SST file configuration
 path:{
 # The local directory that temporarily stores generated SST files
 local:"/tmp"

 # The path for storing the SST file in the HDFS
 remote:"/sst"

 # The NameNode address of HDFS
 hdfs.namenode: "hdfs://*.*.*.*:9000"
 }

 # The connection parameters of clients
 connection {
 # The timeout duration of socket connection and execution. Unit: milliseconds.
 timeout: 30000
 }

 error: {
 # The maximum number of failures that will exit the application.
 max: 32
 # Failed import jobs are logged in the output path.
 output: /tmp/errors
 }

 # Use Google's RateLimiter to limit requests to NebulaGraph.
 rate: {
 # Steady throughput of RateLimiter.
 limit: 1024

 # Get the allowed timeout duration from RateLimiter. Unit: milliseconds.

13.4.13 Import data from SST files

- 551/629 - 2021 Vesoft Inc.

 timeout: 1000
 }
 }

 # Processing vertices
 tags: [
 # Set the information about the Tag player.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: player
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: sst
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".
 path: "hdfs://*.*.*.*:9000/dataset/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has a header, use the actual column name.
 fields: [_c1, _c2]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in Nebula Graph.
 # The value of vertex must be consistent with the column name in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:_c0
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Tag Team.
 {
 # Specify the Tag name defined in Nebula Graph.
 name: team
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: sst
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".
 path: "hdfs://*.*.*.*:9000/dataset/vertex_team.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has a header, use the actual column name.
 fields: [_c1]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in Nebula Graph.
 # The value of vertex must be consistent with the column name in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 vertex: {
 field:_c0
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.

13.4.13 Import data from SST files

- 552/629 - 2021 Vesoft Inc.

 partition: 32
 }

 # If more vertices need to be added, refer to the previous configuration to add them.
]
 # Processing edges
 edges: [
 # Set the information about the Edge Type follow.
 {
 # The Edge Type name defined in Nebula Graph.
 name: follow
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: sst
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".
 path: "hdfs://*.*.*.*:9000/dataset/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has a header, use the actual column name.
 fields: [_c2]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertices.
 # The value of vertex must be consistent with the column name in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: _c0
 }
 target: {
 field: _c1
 }

 # The delimiter specified. The default value is comma.
 separator: ","

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

 # Set the information about the Edge Type serve.
 {
 # Specify the Edge type name defined in Nebula Graph.
 name: serve
 type: {
 # Specify the data source file format to CSV.
 source: csv

 # Specify how to import the data into Nebula Graph: Client or SST.
 sink: sst
 }

 # Specify the path to the CSV file.
 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".
 path: "hdfs://*.*.*.*:9000/dataset/edge_serve.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.
 # If the CSV file has a header, use the actual column name.
 fields: [_c2,_c3]

 # Specify the property name defined in Nebula Graph.
 # The sequence of fields and nebula.fields must correspond to each other.
 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertices.
 # The value of vertex must be consistent with the column name in the above fields or csv.fields.
 # Currently, Nebula Graph 2.6.0 supports only strings or integers of VID.
 source: {
 field: _c0
 }
 target: {
 field: _c1
 }

13.4.13 Import data from SST files

- 553/629 - 2021 Vesoft Inc.

STEP 4: GENERATE THE SST FILE

Run the following command to generate the SST file from the CSV source file. For a description of the parameters, see Options for

import.

For example:

After the task is complete, you can view the generated SST file in the /sst directory (specified by the nebula.path.remote

parameter) on HDFS.

 # The delimiter specified. The default value is comma.
 separator: ","

 # (Optional) Specify a column as the source of the rank.
 #ranking: _c5

 # If the CSV file has a header, set the header to true.
 # If the CSV file does not have a header, set the header to false. The default value is false.
 header: false

 # The number of data written to Nebula Graph in a single batch.
 batch: 256

 # The number of Spark partitions.
 partition: 32
 }

]
 # If more edges need to be added, refer to the previous configuration to add them.
}

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=<shuffle_concurrency> --class com.vesoft.nebula.exchange.Exchange <nebula-
exchange-2.6.0.jar_path> -c <sst_application.conf_path>

When generating SST files, the shuffle operation of Spark will be involved. Note that the configuration of spark.sql.shuffle.partition

should be added when you submit the command.

Note

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=200 --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-
exchange/target/nebula-exchange-2.6.0.jar -c /root/nebula-exchange/nebula-exchange/target/classes/sst_application.conf

If you modify the Schema, such as rebuilding the graph space, modifying the Tag, or modifying the Edge type, you need to regenerate

the SST file because the SST file verifies the space ID, Tag ID, and Edge ID.

Note

13.4.13 Import data from SST files

- 554/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 5: IMPORT THE SST FILE

Connect to the Nebula Graph database using the client tool and import the SST file as follows:

Run the following command to select the graph space you created earlier.

Run the following command to download the SST file:

For example:

Run the following command to import the SST file:

STEP 6: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the Nebula Graph client (for example, Nebula Graph

Studio). For example:

Users can also run the SHOW STATS command to view statistics.

STEP 7: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH

With the data imported, users can recreate and rebuild indexes in Nebula Graph. For details, see Index overview.

Confirm the following information before importing:

Confirm that the Hadoop service has been deployed on all the machines where the Storage service is deployed, and configure

HADOOP_HOME and JAVA_HOME .

The --ws_storage_http_port in the Meta service configuration file (add it manually if it does not exist) is the same as the --

ws_http_port in the Storage service configuration file. For example, both are 19779 .

The --ws_meta_http_port in the Graph service configuration file (add it manually if it does not exist) is the same as the --

ws_http_port in the Meta service configuration file. For example, both are 19559 .

Note

•

•

•

1.

nebula> USE basketballplayer;

2.

nebula> DOWNLOAD HDFS "hdfs://<hadoop_address>:<hadoop_port>/<sst_file_path>";

nebula> DOWNLOAD HDFS "hdfs://*.*.*.*:9000/sst";

3.

nebula> INGEST;

To download the SST file again, delete the download folder in the space ID in the data/storage/nebula directory in the Nebula

Graph installation path, and then download the SST file again. If the space has multiple copies, the download folder needs to be

deleted on all machines where the copies are saved.

If there is a problem with the import and re-importing is required, re-execute INGEST; .

Note

•

•

GO FROM "player100" OVER follow;

Last update: November 2, 2021

13.4.13 Import data from SST files

- 555/629 - 2021 Vesoft Inc.

13.5 Exchange FAQ

13.5.1 Compilation

Some packages not in central repository failed to download, error: Could not resolve dependencies for project xxx

Please check the mirror part of Maven installation directory libexec/conf/settings.xml :

Check whether the value of mirrorOf is configured to * . If it is, change it to central or *,!SparkPackagesRepo,!bintray-streamnative-

maven .

Reason: There are two dependency packages in Exchange's pom.xml that are not in Maven's central repository. pom.xml

configures the repository address for these two dependencies. If the mirrorOf value for the mirror address configured in Maven is

* , all dependencies will be downloaded from the Central repository, causing the download to fail.

13.5.2 Execution

How to submit in Yarn-Cluster mode?

To submit a task in Yarn-Cluster mode, run the following command:

Error: method name xxx not found

Generally, the port configuration is incorrect. Check the port configuration of the Meta service, Graph service, and Storage

service.

Error: NoSuchMethod, MethodNotFound (Exception in thread "main" java.lang.NoSuchMethodError, etc)

Most errors are caused by JAR package conflicts or version conflicts. Check whether the version of the error reporting service is

the same as that used in Exchange, especially Spark, Scala, and Hive.

When Exchange imports Hive data, error: Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found

Check whether the -h parameter is omitted in the command for submitting the Exchange task and whether the table and

database are correct, and run the user-configured exec statement in spark-SQL to verify the correctness of the exec statement.

<mirror>
 <id>alimaven</id>
 <mirrorOf>central</mirrorOf>
 <name>aliyun maven</name>
 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>
</mirror>

$SPARK_HOME/bin/spark-submit --class com.vesoft.nebula.exchange.Exchange \
--master yarn-cluster \
--files application.conf \
--conf spark.driver.extraClassPath=./ \
--conf spark.executor.extraClassPath=./ \
nebula-exchange-2.0.0.jar \
-c application.conf

13.5 Exchange FAQ

- 556/629 - 2021 Vesoft Inc.

Run error: com.facebook.thrift.protocol.TProtocolException: Expected protocol id xxx

Check that the Nebula Graph service port is configured correctly.

For source, RPM, or DEB installations, configure the port number corresponding to --port in the configuration file for each

service.

For docker installation, configure the docker mapped port number as follows:

Execute docker-compose ps in the nebula-docker-compose directory, for example:

Check the Ports column to find the docker mapped port number, for example:

- The port number available for Graph service is 9669.

- The port number for Meta service are 33167, 33168, 33164.

- The port number for Storage service are 33183, 33177, 33185.

Error: Exception in thread "main" com.facebook.thrift.protocol.TProtocolException: The field 'code' has been assigned the invalid value -4

Check whether the version of Exchange is the same as that of Nebula Graph. For more information, see Limitations.

13.5.3 Configuration

Which configuration fields will affect import performance?

batch: The number of data contained in each nGQL statement sent to the Nebula Graph service.

partition: The number of Spark data partitions, indicating the number of concurrent data imports.

nebula.rate: Get a token from the token bucket before sending a request to Nebula Graph.

- limit: Represents the size of the token bucket.

- timeout: Represents the timeout period for obtaining the token.

The values of these four parameters can be adjusted appropriately according to the machine performance. If the leader of the

Storage service changes during the import process, you can adjust the values of these four parameters to reduce the import

speed.

13.5.4 Others

Which versions of Nebula Graph are supported by Exchange?

See Limitations.

•

•

$ docker-compose ps
 Name Command State Ports

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33205->19669/tcp, 0.0.0.0:33204->19670/tcp, 0.0.0.0:9669->9669/tcp
nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33165->19559/tcp, 0.0.0.0:33162->19560/tcp, 0.0.0.0:33167->9559/
tcp, 9560/tcp
nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33166->19559/tcp, 0.0.0.0:33163->19560/tcp, 0.0.0.0:33168->9559/
tcp, 9560/tcp
nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33161->19559/tcp, 0.0.0.0:33160->19560/tcp, 0.0.0.0:33164->9559/
tcp, 9560/tcp
nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33180->19779/tcp, 0.0.0.0:33178->19780/tcp, 9777/tcp, 9778/tcp, 0.
0.0.0:33183->9779/tcp, 9780/tcp
nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33175->19779/tcp, 0.0.0.0:33172->19780/tcp, 9777/tcp, 9778/tcp, 0.
0.0.0:33177->9779/tcp, 9780/tcp
nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33184->19779/tcp, 0.0.0.0:33181->19780/tcp, 9777/tcp, 9778/tcp, 0.
0.0.0:33185->9779/tcp, 9780/tcp

•

•

•

13.5.3 Configuration

- 557/629 - 2021 Vesoft Inc.

What is the relationship between Exchange and Spark Writer?

Exchange is the Spark application developed based on Spark Writer. Both are suitable for bulk migration of cluster data to Nebula

Graph in a distributed environment, but later maintenance work will be focused on Exchange. Compared with Spark Writer,

Exchange has the following improvements:

It supports more abundant data sources, such as MySQL, Neo4j, Hive, HBase, Kafka, Pulsar, etc.

It fixed some problems of Spark Writer. For example, when Spark reads data from HDFS, the default source data is String,

which may be different from the Nebula Graph's Schema. So Exchange adds automatic data type matching and type

conversion. When the data type in the Nebula Graph's Schema is non-String (e.g. double), Exchange converts the source

data of String type to the corresponding type.

•

•

Last update: October 12, 2021

13.5.4 Others

- 558/629 - 2021 Vesoft Inc.

14. Nebula Operator

14.1 What is Nebula Operator

14.1.1 Concept of Nebula Operator

Nebula Operator is a tool to automate the deployment, operation, and maintenance of Nebula Graph clusters on Kubernetes.

Building upon the excellent scalability mechanism of Kubernetes, Nebula Graph introduced its operation and maintenance

knowledge into the Kubernetes system, which makes Nebula Graph a real cloud-native graph database.

14.1.2 How it works

For resource types that do not exist within KubernetesFF
0Cyou can register them by adding custom API objects. The common way is

to use the CustomResourceDefinition.

Nebula Operator abstracts the deployment management of Nebula Graph clusters as a CRD. By combining multiple built-in API

objects including StatefulSet, Service, and ConfigMap, the routine management and maintenance of a Nebula Graph cluster are

coded as a control loop in the Kubernetes system. When a CR instance is submitted, Nebula Operator drives database clusters to

the final state according to the control process.

14.1.3 Features of Nebula Operator

The following features are already available in Nebula Operator:

Deploy and uninstall clusters: Nebula Operator simplifies the process of deploying and uninstalling clusters for users.

Nebula Operator allows you to quickly create, update, or delete a Nebula Graph cluster by simply providing the

corresponding CR file. For more information, see Deploy Nebula Graph Clusters with Kubectl or Deploy Nebula Graph

Clusters with Helm.

Scale clusters: Nebula Operator calls Nebula Graph's native scaling interfaces in a control loop to implement the scaling

logic. You can simply perform scaling operations with YAML configurations and ensure the stability of data. For more

information, see Scale clusters with Kubectl or Scale clusters with Helm.

Cluster Upgrade: Nebula Operator supports cluster upgrading from version 2.5.x to version 2.6.x.

Self-Healing: Nebula Operator calls interfaces provided by Nebula Graph clusters to dynamically sense cluster service

status. Once an exception is detected, Nebula Operator performs fault tolerance. For more information, see Self-Healing.

Balance Scheduling: Based on the scheduler extension interface, the scheduler provided by Nebula Operator evenly

distributes Pods in a Nebula Graph cluster across all nodes.

14.1.4 Limitations

Version limitations

Nebula Operator does not support the v1.x version of Nebula Graph. Nebula Operator version and the corresponding Nebula

Graph version are as follows:

•

•

•

•

•

Nebula Operator version Nebula Graph version

0.9.0 2.5.x ~ 2.6.x

0.8.0 2.5.x

14. Nebula Operator

- 559/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://kubernetes.io
https://www.nebula-cloud.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Feature limitations

Nebula Operator currently only supports manual scaling of Nebula Graph clusters, and does not support automatic scaling of

Nebula Graph clusters.

Last update: November 16, 2021

14.1.4 Limitations

- 560/629 - 2021 Vesoft Inc.

14.2 Overview of using Nebula Operator

To use Nebula Operator to connect to Nebula Graph databases, see steps as follows:

Install Nebula Operator.

Create a Nebula Graph cluster.

For more information, see Deploy Nebula Graph clusters with Kubectl or Deploy Nebula Graph clusters with Helm.

Connect to a Nebula Graph database.

1.

2.

3.

Last update: September 29, 2021

14.2 Overview of using Nebula Operator

- 561/629 - 2021 Vesoft Inc.

14.3 Deploy Nebula Operator

You can deploy Nebula Operator with Helm.

14.3.1 Background

Nebula Operator automates the management of Nebula Graph clusters, and eliminates the need for you to install, scale, upgrade,

and uninstall Nebula Graph clusters, which lightens the burden on managing different application versions.

14.3.2 Prerequisites

Install software

Before installing Nebula Operator, you need to install the following software and ensure the correct version of the software:

If using a role-based access control policy, you need to enable RBAC (optional).

Software Requirement

Kubernetes >= 1.16

Helm >= 3.2.0

CoreDNS >= 1.6.0

CertManager >= 1.2.0

OpenKruise >= 0.8.0

14.3 Deploy Nebula Operator

- 562/629 - 2021 Vesoft Inc.

https://helm.sh/
https://kubernetes.io
https://helm.sh
https://github.com/coredns/coredns
https://cert-manager.io
https://openkruise.io
https://kubernetes.io/docs/admin/authorization/rbac

Description of software

CoreDNS

CoreDNS is a flexible and scalable DNS server that is installed for Pods in Nebula Graph clusters.

Components in a Nebula Graph cluster communicate with each other via DNS resolutions for domain names, like

x.default.svc.cluster.local .

cert-manager

cert-manager is a tool that automates the management of certificates. It leverages extensions of the Kubernetes API and uses

the Webhook server to provide dynamic access control to cert-manager resources. For more information about installation,

see cert-manager installation documentation.

cert-manager is used to validate the numeric value of replicas for each component in a Nebula Graph cluster. If you run it in a

production environment and care about the high availability of Nebula Graph clusters, it is recommended to set the value of

admissionWebhook.create to true before installing cert-manager.

OpenKruise

OpenKruise is a full set of standard extensions for Kubernetes. It works well with original Kubernetes and provides more

powerful and efficient features for managing Pods, sidecar containers, and even container images in clusters. OpenKruise is

required to enable advanced features for StatefulSets when Nebula Operator starts. For information about installation, see

openkruise installation documentation.

14.3.3 Steps

Install Nebula Operator

Add the Nebula Operator chart repository to Helm.

Update information of available charts locally from chart repositories.

For more information about helm repo , see Helm Repo.

Install Nebula Operator.

For example, the command to install Nebula Operator of version 0.9.0 is as follows.

The following software used by Nebula Operator is from the third party. Nebula Operator is not responsible for any problems that

may arise during the software installation.

Note

•

•

If you have set the value of the Nebula Operator configuration item admissionWebhook.create to false , there is no need to install

cert-manager. For details about Nebula Operator configuration items, see the Customize Helm charts section in Install

Nebula Operator below.

Note

•

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=${chart_version}

14.3.3 Steps

- 563/629 - 2021 Vesoft Inc.

https://coredns.io/
https://github.com/coredns/deployment/tree/master/kubernetes
https://cert-manager.io/
https://cert-manager.io/docs/installation/kubernetes/
https://openkruise.io/en-us/
https://openkruise.io/en-us/docs/installation.html
https://helm.sh/docs/helm/helm_repo/

nebula-operator-system is a user-created namespace name. If you have not created this namespace, run kubectl create

namespace nebula-operator-system to create one. You can also use a different name.

0.9.0 is the version of the Nebula Operator chart. It can be unspecified when there is only one chart version in the Nebula

Operator chart repository. Run helm search repo -l nebula-operator to see chart versions.

You can customize the configuration items of the Nebula Operator chart before running the installation command. For more

information, see Customize Helm charts below.

Customize Helm charts

Run helm show values [CHART] [flags] to see configurable options.

For example:

helm install nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=0.9.0

•

•

[k8s@master ~]$ helm show values nebula-operator/nebula-operator
image:
 nebulaOperator:
 image: vesoft/nebula-operator:v0.9.0
 imagePullPolicy: Always
 kubeRBACProxy:
 image: gcr.io/kubebuilder/kube-rbac-proxy:v0.8.0
 imagePullPolicy: Always
 kubeScheduler:
 image: k8s.gcr.io/kube-scheduler:v1.18.8
 imagePullPolicy: Always

imagePullSecrets: []
kubernetesClusterDomain: ""

controllerManager:
 create: true
 replicas: 2
 env: []
 resources:
 limits:
 cpu: 200m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi

admissionWebhook:
 create: true

scheduler:
 create: true
 schedulerName: nebula-scheduler
 replicas: 2
 env: []
 resources:
 limits:
 cpu: 200m
 memory: 20Mi
 requests:
 cpu: 100m
 memory: 100Mi

14.3.3 Steps

- 564/629 - 2021 Vesoft Inc.

Part of the above parameters are described as follows:

You can run helm install [NAME] [CHART] [flags] to specify chart configurations when installing a chart. For more information, see

Customizing the Chart Before Installing.

The following example shows how to specify the Nebula Operator's AdmissionWebhook mechanism to be turned off when you

install Nebula Operator (AdmissionWebhook is enabled by default):

For more information about helm install , see Helm Install.

Update Nebula Operator

After installing Nebula Operator, you can update it by modifying the parameter values in the ${HOME}/nebula-operator/charts/nebula-

operator/values.yaml file.

Clone the Nebula Operator repository to your local server.

Modify the parameter values in ${HOME}/nebula-operator/charts/nebula-operator/values.yaml .

Run the following command to update Nebula Operator.

<namespace_name> is a user-created namespace name. Pods related to the nebula-operator repository are in this namespace.

Parameter Default value Description

image.nebulaOperator.image vesoft/nebula-

operator:v0.9.0

The image of Nebula Operator, version of which

is 0.9.0.

image.nebulaOperator.imagePullPolicy IfNotPresent The image pull policy in Kubernetes.

imagePullSecrets - The image pull secret in Kubernetes.

kubernetesClusterDomain cluster.local The cluster domain.

controllerManager.create true Whether to enable the controller-manager

component.

controllerManager.replicas 2 The numeric value of controller-manager

replicas.

admissionWebhook.create true Whether to enable Admission Webhook.

shceduler.create true Whether to enable Scheduler.

shceduler.schedulerName nebula-scheduler The Scheduler name.

shceduler.replicas 2 The numeric value of nebula-scheduler replicas.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<nebula-operator-system> --set admissionWebhook.create=false

1.

git clone https://github.com/vesoft-inc/nebula-operator.git

2.

3.

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> -f ${HOME}/nebula-operator/charts/nebula-operator/values.yaml

14.3.3 Steps

- 565/629 - 2021 Vesoft Inc.

https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing
https://helm.sh/docs/helm/helm_install/

Upgrade Nebula Operator

Update the information of available charts locally from chart repositories.

Upgrade Operator.

For example:

Output:

Pull the latest CRD configuration file.

Upgrade the CRD configuration file.

For example:

Output:

Uninstall Nebula Operator

Uninstall the Nebula Operator chart.

Delete CRD.

Starting from Nebula Operator 0.9.0, logs and data are stored separately. Managing a Nebula Graph 2.5.x cluster with Nebula

Operator 0.9.0 or later versions can cause compatibility issues. You can backup the data of the Nebula Graph 2.5.x cluster and then

create a 2.6.x cluster with Operator.

Legacy version compatibility

1.

helm repo update

2.

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=0.9.0

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=0.9.0

Release "nebula-operator" has been upgraded. Happy Helming!
NAME: nebula-operator
LAST DEPLOYED: Tue Nov 16 02:21:08 2021
NAMESPACE: nebula-operator-system
STATUS: deployed
REVISION: 3
TEST SUITE: None
NOTES:
Nebula Operator installed!

3.

You need to upgrade the corresponding CRD configurations after Nebula Operator is upgraded. Otherwise, the creation of Nebula

Graph clusters will fail. For information about the CRD configurations, see apps.nebula-graph.io_nebulaclusters.yaml.

Note

helm pull nebula-operator/nebula-operator

4.

kubectl apply -f <crd_file_name>.yaml

kubectl apply -f config/crd/bases/apps.nebula-graph.io_nebulaclusters.yaml

customresourcedefinition.apiextensions.k8s.io/nebulaclusters.apps.nebula-graph.io created

1.

helm uninstall nebula-operator --namespace=<nebula-operator-system>

2.

kubectl delete crd nebulaclusters.apps.nebula-graph.io

14.3.3 Steps

- 566/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v0.9.0/config/crd/bases/apps.nebula-graph.io_nebulaclusters.yaml

14.3.4 What's next

Automate the deployment of Nebula Graph clusters with Nebula Operator. For more information, see Deploy Nebula Graph

Clusters with Kubectl or Deploy Nebula Graph Clusters with Helm.

Last update: November 16, 2021

14.3.4 What's next

- 567/629 - 2021 Vesoft Inc.

14.4 Deploy clusters

14.4.1 Deploy Nebula Graph clusters with Kubectl

Prerequisites

Install Nebula Operator

14.4 Deploy clusters

- 568/629 - 2021 Vesoft Inc.

Create clusters

The following example shows how to create a Nebula Graph cluster by creating a cluster named nebula .

14.4.1 Deploy Nebula Graph clusters with Kubectl

- 569/629 - 2021 Vesoft Inc.

Create a file named apps_v1alpha1_nebulacluster.yaml .

The file contents are as follows:

1.

apiVersion: apps.nebula-graph.io/v1alpha1
kind: NebulaCluster
metadata:
 name: nebula
spec:
 graphd:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 1
 image: vesoft/nebula-graphd
 version: v2.6.0
 service:
 type: NodePort
 externalTrafficPolicy: Local
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 metad:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 1
 image: vesoft/nebula-metad
 version: v2.6.0
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 storaged:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 3
 image: vesoft/nebula-storaged
 version: v2.6.0
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 reference:
 name: statefulsets.apps
 version: v1
 schedulerName: default-scheduler
 imagePullPolicy: Always

14.4.1 Deploy Nebula Graph clusters with Kubectl

- 570/629 - 2021 Vesoft Inc.

The parameters in the file are described as follows:

Create a Nebula Graph cluster.

Parameter Default value Description

metadata.name - The name of the created

Nebula Graph cluster.

spec.graphd.replicas 1 The numeric value of replicas

of the Graphd service.

spec.graphd.images vesoft/nebula-graphd The container image of the

Graphd service.

spec.graphd.version v2.6.0 The version of the Graphd

service.

spec.graphd.service - The Service configurations for

the Graphd service.

spec.graphd.logVolumeClaim.storageClassName - The log disk storage

configurations for the Graphd

service.

spec.metad.replicas 1 The numeric value of replicas

of the Metad service.

spec.metad.images vesoft/nebula-metad The container image of the

Metad service.

spec.metad.version v2.6.0 The version of the Metad

service.

spec.metad.dataVolumeClaim.storageClassName - The data disk storage

configurations for the Metad

service.

spec.metad.logVolumeClaim.storageClassName - The log disk storage

configurations for the Metad

service.

spec.storaged.replicas 3 The numeric value of replicas

of the Storaged service.

spec.storaged.images vesoft/nebula-storaged The container image of the

Storaged service.

spec.storaged.version v2.6.0 The version of the Storaged

service.

spec.storaged.dataVolumeClaim.storageClassName - The data disk storage

configurations for the

Storaged service.

spec.storaged.logVolumeClaim.storageClassName - The log disk storage

configurations for the

Storaged service.

spec.reference.name - The name of the dependent

controller.

spec.schedulerName - The scheduler name.

spec.imagePullPolicy The image policy to pull the

Nebula Graph image. For details,

see Image pull policy.

The image pull policy in

Kubernetes.

2.

14.4.1 Deploy Nebula Graph clusters with Kubectl

- 571/629 - 2021 Vesoft Inc.

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

Output:

Check the status of the Nebula Graph cluster.

Output:

Scaling clusters

You can modify the value of replicas in apps_v1alpha1_nebulacluster.yaml to scale a Nebula Graph cluster.

SCALE OUT CLUSTERS

The following shows how to scale out a Nebula Graph cluster by changing the number of Storage services to 5:

Change the value of the storaged.replicas from 3 to 5 in apps_v1alpha1_nebulacluster.yaml .

Run the following command to update the Nebula Graph cluster CR.

Check the number of Storage services.

Output:

As you can see above, the number of Storage services is scaled up to 5.

kubectl create -f apps_v1alpha1_nebulacluster.yaml

nebulacluster.apps.nebula-graph.io/nebula created

3.

kubectl get nebulaclusters.apps.nebula-graph.io nebula

NAME GRAPHD-DESIRED GRAPHD-READY METAD-DESIRED METAD-READY STORAGED-DESIRED STORAGED-READY AGE
nebula 1 1 1 1 3 3 86s

1.

 storaged:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 5
 image: vesoft/nebula-storaged
 version: v2.6.0
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 reference:
 name: statefulsets.apps
 version: v1
 schedulerName: default-scheduler

2.

kubectl apply -f apps_v1alpha1_nebulacluster.yaml

3.

kubectl get pods -l app.kubernetes.io/cluster=nebula

NAME READY STATUS RESTARTS AGE
nebula-graphd-0 1/1 Running 0 2m
nebula-metad-0 1/1 Running 0 2m
nebula-storaged-0 1/1 Running 0 2m
nebula-storaged-1 1/1 Running 0 2m
nebula-storaged-2 1/1 Running 0 2m
nebula-storaged-3 1/1 Running 0 5m
nebula-storaged-4 1/1 Running 0 5m

14.4.1 Deploy Nebula Graph clusters with Kubectl

- 572/629 - 2021 Vesoft Inc.

SCALE IN CLUSTERS

The principle of scaling in a cluster is the same as scaling out a cluster. You scale in a cluster if the numeric value of the replicas

in apps_v1alpha1_nebulacluster.yaml is changed smaller than the current number. For more information, see the Scale out

clusters section above.

Delete clusters

Run the following command to delete a Nebula Graph cluster with Kubectl:

What's next

Connect to Nebula Graph databases

Nebula Operator currently only supports scaling Graph and Storage services and does not support scale Meta services.

Caution

kubectl delete -f apps_v1alpha1_nebulacluster.yaml

Last update: November 16, 2021

14.4.1 Deploy Nebula Graph clusters with Kubectl

- 573/629 - 2021 Vesoft Inc.

14.4.2 Deploy Nebula Graph clusters with Helm

Prerequisite

Install Nebula Operator

Create clusters

FF
08Add the Nebula Operator chart repository to Helm If you have already added the chart, skip the 1-2 steps and start from step 3).

Update information of available charts locally from chart repositories.

Set environment variables to your desired values.

FF
08

FF
09Create a namespace for your Nebula Graph cluster If you have created one, skip this step .

Apply the variables to the Helm chart to create a Nebula Graph cluster.

Check the status of the Nebula Graph cluster you created.

Output:

Scaling clusters

You can scale a Nebula Graph cluster by defining the value of the replicas corresponding to the different services in the cluster.

For example, run the following command to scale out a Nebula Graph cluster by changing the number of Storage services from 2

(the original value) to 5:

Similarly, you can scale in a Nebula Graph cluster by setting the value of the replicas corresponding to the different services in

the cluster smaller than the original value.

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

export NEBULA_CLUSTER_NAME=nebula # The desired Nebula Graph cluster name.
export NEBULA_CLUSTER_NAMESPACE=nebula # The desired namespace where your Nebula Graph cluster locates.
export STORAGE_CLASS_NAME=gp2 # The desired StorageClass name in your Nebula Graph cluster.

4.

kubectl create namespace "${NEBULA_CLUSTER_NAMESPACE}"

5.

helm install "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \
 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \
 --set nameOverride=${NEBULA_CLUSTER_NAME} \
 --set nebula.storageClassName="${STORAGE_CLASS_NAME}"

6.

kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"

NAME READY STATUS RESTARTS AGE
nebula-graphd-0 1/1 Running 0 5m34s
nebula-graphd-1 1/1 Running 0 5m34s
nebula-metad-0 1/1 Running 0 5m34s
nebula-metad-1 1/1 Running 0 5m34s
nebula-metad-2 1/1 Running 0 5m34s
nebula-storaged-0 1/1 Running 0 5m34s
nebula-storaged-1 1/1 Running 0 5m34s
nebula-storaged-2 1/1 Running 0 5m34s

helm upgrade "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \
 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \
 --set nameOverride=${NEBULA_CLUSTER_NAME} \
 --set nebula.storageClassName="${STORAGE_CLASS_NAME}" \
 --set nebula.storaged.replicas=5

14.4.2 Deploy Nebula Graph clusters with Helm

- 574/629 - 2021 Vesoft Inc.

You can click on nebula-cluster/values.yaml to see more configurable parameters of the nebula-cluster chart. For more information

about the descriptions of configurable parameters, see Configuration parameters of the nebula-cluster Helm chart below.

Delete clusters

Run the following command to delete a Nebula Graph cluster with Helm:

What's next

Connect to Nebula Graph Databases

Nebula Operator currently only supports scaling Graph and Storage services and does not support scale Meta services.

Caution

helm uninstall "${NEBULA_CLUSTER_NAME}" --namespace="${NEBULA_CLUSTER_NAMESPACE}"

14.4.2 Deploy Nebula Graph clusters with Helm

- 575/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v0.9.0/charts/nebula-cluster/values.yaml

Configuration parameters of the nebula-cluster Helm chart

14.4.2 Deploy Nebula Graph clusters with Helm

- 576/629 - 2021 Vesoft Inc.

Parameter Default value Description

nameOverride nil Replaces the name of the

chart in the Chart.yaml file.

nebula.version v2.6.0 The version of Nebula Graph.

nebula.imagePullPolicy IfNotPresent The Nebula Graph image pull

policy. For details, see Image

pull policy.

nebula.storageClassName nil The StorageClass name.

StorageClass is the default

persistent volume type.

nebula.schedulerName default-scheduler The scheduler name of a

Nebula Graph cluster.

nebula.reference {"name": "statefulsets.apps", "version": "v1"} The workload referenced for

a Nebula Graph cluster.

nebula.graphd.image vesoft/nebula-graphd The image name for a

Graphd service. Uses the

value of nebula.version as its

version.

nebula.graphd.replicas 2 The number of the Graphd

service.

nebula.graphd.env [] The environment variables

for the Graphd service.

nebula.graphd.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations

for the Graphd service.

nebula.graphd.logStorage 500Mi The log disk storage capacity

for the Graphd service.

nebula.graphd.podLabels {} Labels for the Graphd pod in

a Nebula Graph cluster.

nebula.graphd.podAnnotations {} Pod annotations for the

Graphd pod in a Nebula

Graph cluster.

nebula.graphd.nodeSelector {} Labels for the Graphd pod to

be scheduled to the specified

node.

nebula.graphd.tolerations {} Tolerations for the Graphd

pod.

nebula.graphd.affinity {} Affinity for the Graphd pod.

nebula.graphd.readinessProbe {} ReadinessProbe for the

Graphd pod.

nebula.graphd.sidecarContainers {} Sidecar containers for the

Graphd pod.

nebula.graphd.sidecarVolumes {} Sidecar volumes for the

Graphd pod.

14.4.2 Deploy Nebula Graph clusters with Helm

- 577/629 - 2021 Vesoft Inc.

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

Parameter Default value Description

nebula.metad.image vesoft/nebula-metad The image name for a Metad

service. Uses the value of

nebula.version as its version.

nebula.metad.replicas 3 The number of the Metad

service.

nebula.metad.env [] The environment variables

for the Metad service.

nebula.metad.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations

for the Metad service.

nebula.metad.logStorage 500Mi The log disk capacity for the

Metad service.

nebula.metad.dataStorage 1Gi The data disk capacity for the

Metad service.

nebula.metad.podLabels {} Labels for the Metad pod in a

Nebula Graph cluster.

nebula.metad.podAnnotations {} Pod annotations for the

Metad pod in a Nebula

Graph cluster.

nebula.metad.nodeSelector {} Labels for the Metad pod to

be scheduled to the specified

node.

nebula.metad.tolerations {} Tolerations for the Metad

pod.

nebula.metad.affinity {} Affinity for the Metad pod.

nebula.metad.readinessProbe {} ReadinessProbe for the

Metad pod.

nebula.metad.sidecarContainers {} Sidecar containers for the

Metad pod.

nebula.metad.sidecarVolumes {} Sidecar volumes for the

Metad pod.

nebula.storaged.image vesoft/nebula-storaged The image name for a

Storaged service. Uses the

value of nebula.version as its

version.

nebula.storaged.replicas 3 The number of Storaged

services.

nebula.storaged.env [] The environment variables

for Storaged services.

nebula.storaged.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations

for Storagedss services.

nebula.storaged.logStorage 500Mi The log disk capacity for the

Metad service.

14.4.2 Deploy Nebula Graph clusters with Helm

- 578/629 - 2021 Vesoft Inc.

Parameter Default value Description

nebula.storaged.dataStorage 1Gi The data disk capacity for the

Metad service.

nebula.storaged.podLabels {} Labels for the Metad pod in a

Nebula Graph cluster.

nebula.storaged.podAnnotations {} Pod annotations for the

Metad pod in a Nebula

Graph cluster.

nebula.storaged.nodeSelector {} Labels for the Metad pod to

be scheduled to the specified

node.

nebula.storaged.tolerations {} Tolerations for the Metad

pod.

nebula.storaged.affinity {} Affinity for the Metad pod.

nebula.storaged.readinessProbe {} ReadinessProbe for the

Metad pod.

nebula.storaged.sidecarContainers {} Sidecar containers for the

Metad pod.

nebula.storaged.sidecarVolumes {} Sidecar volumes for the

Metad pod.

imagePullSecrets [] The Secret to pull the Nebula

Graph cluster image.

Last update: November 16, 2021

14.4.2 Deploy Nebula Graph clusters with Helm

- 579/629 - 2021 Vesoft Inc.

14.5 Configure clusters

14.5.1 Customize configuration parameters for a Nebula Graph cluster

Meta, Storage, and Graph services in a Nebula Cluster have their configurations, which are defined as config in the YAML file of

the CR instance (Nebula Graph cluster) you created. The settings in config are mapped and loaded into the ConfigMap of the

corresponding service in Kubernetes.

The structure of config is as follows.

Prerequisites

You have created a Nebula Graph cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl.

Steps

The following example uses a cluster named nebula to show how to set config for the Graph service in a Nebula Graph cluster.

Run the following command to access the edit page of the nebula cluster.

Add enable_authorize and auth_type under spec.graphd.config .

After customizing the parameters enable_authorize and auth_type , the configurations in the corresponding ConfigMap (nebula-

graphd) of the Graph service will be overwritten.

Learn more

For more information on the configuration parameters of Meta, Storage, and Graph services, see Configurations.

It is not available to customize configuration parameters for Nebula Clusters deployed with Helm.

Note

Config map[string]string `json:"config,omitempty"`

1.

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2.

apiVersion: apps.nebula-graph.io/v1alpha1
kind: NebulaCluster
metadata:
 name: nebula
 namespace: default
spec:
 graphd:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 1
 image: vesoft/nebula-graphd
 version: v2.6.0
 storageClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 config: // Custom configuration parameters for the Graph service in a cluster.
 "enable_authorize": "true"
 "auth_type": "password"
...

14.5 Configure clusters

- 580/629 - 2021 Vesoft Inc.

Last update: November 16, 2021

14.5.1 Customize configuration parameters for a Nebula Graph cluster

- 581/629 - 2021 Vesoft Inc.

14.5.2 Reclaim PVs

Nebula Operator uses PVs (Persistent Volumes) and PVCs (Persistent Volume Claims) to store persistent data. If you accidentally

deletes a Nebula Graph cluster, PV and PVC objects and the relevant data will be retained to ensure data security.

You can define whether to reclaim PVs or not in the configuration file of the cluster's CR instance with the parameter

enablePVReclaim .

If you need to release a graph space and retain the relevant data, update your nebula cluster by setting the parameter

enablePVReclaim to true .

Prerequisites

You have created a cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl.

14.5.2 Reclaim PVs

- 582/629 - 2021 Vesoft Inc.

Steps

The following example uses a cluster named nebula to show how to set enablePVReclaim :

Run the following command to access the edit page of the nebula cluster.

Add enablePVReclaim and set its value to true under spec .

1.

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2.

apiVersion: apps.nebula-graph.io/v1alpha1
kind: NebulaCluster
metadata:
 name: nebula
spec:
 enablePVReclaim: true //Set its value to true.
 graphd:
 image: vesoft/nebula-graphd
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 1
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
 imagePullPolicy: IfNotPresent
 metad:
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 image: vesoft/nebula-metad
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 1
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
 nodeSelector:
 nebula: cloud
 reference:
 name: statefulsets.apps
 version: v1
 schedulerName: default-scheduler
 storaged:
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 image: vesoft/nebula-storaged
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 3
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
...

Last update: November 16, 2021

14.5.2 Reclaim PVs

- 583/629 - 2021 Vesoft Inc.

14.5.3 Balance storage data after scaling out

After the Storage service is scaled out, you can decide whether to balance the data in the Storage service.

The scaling out of the Nebula Graph's Storage service is divided into two stages. In the first stage, the status of all pods is changed

to Ready . In the second stage, the commands of BALANCE DATA 54
8C BALANCE LEADER are executed to balance data. These two stages

decouple the scaling out process of the controller replica from the balancing data process, so that you can choose to perform the

data balancing operation during low traffic period. The decoupling of the scaling out process from the balancing process can

effectively reduce the impact on online services during data migration.

You can define whether to balance data automatically or not with the parameter enableAutoBalance in the configuration file of the

CR instance of the cluster you created.

Prerequisites

You have created a Nebula Graph cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl.

14.5.3 Balance storage data after scaling out

- 584/629 - 2021 Vesoft Inc.

Steps

The following example uses a cluster named nebula to show how to set enableAutoBalance .

14.5.3 Balance storage data after scaling out

- 585/629 - 2021 Vesoft Inc.

Run the following command to access the edit page of the nebula cluster.

Add enableAutoBalance and set its value to true under spec.storaged .

When the value of enableAutoBalance is set to true , the Storage data will be automatically balanced after the Storage service

is scaled out.

When the value of enableAutoBalance is set to false , the Storage data will not be automatically balanced after the Storage

service is scaled out.

When the enableAutoBalance parameter is not set, the system will not automatically balance Storage data by default after the

Storage service is scaled out.

1.

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2.

apiVersion: apps.nebula-graph.io/v1alpha1
kind: NebulaCluster
metadata:
 name: nebula
spec:
 graphd:
 image: vesoft/nebula-graphd
 logVolumeClaim:

resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 1
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
 imagePullPolicy: IfNotPresent
 metad:
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 image: vesoft/nebula-metad
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 1
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
 nodeSelector:
 nebula: cloud
 reference:
 name: statefulsets.apps
 version: v1
 schedulerName: default-scheduler
 storaged:
 enableAutoBalance: true //Set its value to true which means storage data will be balanced after the Storage service is scaled out.
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 image: vesoft/nebula-storaged
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: fast-disks
 replicas: 3
 resources:
 limits:
 cpu: "1"
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 500Mi
 version: v2.6.0
...

•

•

•

14.5.3 Balance storage data after scaling out

- 586/629 - 2021 Vesoft Inc.

Last update: November 16, 2021

14.5.3 Balance storage data after scaling out

- 587/629 - 2021 Vesoft Inc.

14.6 Upgrade Nebula Graph clusters created with Nebula Operator

This topic introduces how to upgrade a Nebula Graph cluster created with Nebula Operator.

14.6.1 Limits

Only Nebula Graph clusters created with Nebula Operator are supported.

Only upgrading Nebula Graph from 2.5.x to 2.6.x is supported.

Upgrading clusters created via Nebula Operator of version 0.8.0 is not supported.

14.6.2 Upgrade a Nebula Graph cluster with Kubectl

Prerequisites

You have created a Nebula Graph cluster with Kubectl. For details, see Create a Nebula Graph cluster with Kubectl.

The version of the Nebula Graph cluster to be upgraded in this topic is 2.5.1 , and its YAML file name is

apps_v1alpha1_nebulacluster.yaml .

Steps

Check the image version of the services in the cluster.

Output:

Edit the apps_v1alpha1_nebulacluster.yaml file by changing the values of all the version parameters from v2.5.1 to v2.6.0.

The modified YAML file reads as follows:

•

•

•

1.

kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

 1 vesoft/nebula-graphd:v2.5.1
1 vesoft/nebula-metad:v2.5.1

 3 vesoft/nebula-storaged:v2.5.1

2.

apiVersion: apps.nebula-graph.io/v1alpha1
kind: NebulaCluster
metadata:
 name: nebula
spec:
 graphd:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 1
 image: vesoft/nebula-graphd
 version: v2.6.0 //Change the value from v2.5.1 to v2.6.0.
 service:
 type: NodePort
 externalTrafficPolicy: Local
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 metad:
 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 1
 image: vesoft/nebula-metad
 version: v2.6.0 //Change the value from v2.5.1 to v2.6.0.
 dataVolumeClaim:
 resources:

14.6 Upgrade Nebula Graph clusters created with Nebula Operator

- 588/629 - 2021 Vesoft Inc.

Run the following command to apply the version update to the cluster CR.

After waiting for about 2 minutes, run the following command to see if the image versions of the services in the cluster have

been changed to v2.6.0.

Output:

14.6.3 Upgrade a Nebula Graph cluster with Helm

Prerequisites

You have created a Nebula Graph cluster with Helm. For details, see Create a Nebula Graph cluster with Helm.

Steps

Update the information of available charts locally from chart repositories.

Set environment variables to your desired values.

Upgrade a Nebula Graph cluster.

For example, upgrade a cluster to v2.6.0.

The value of --set nebula.version specifies the version of the cluster you want to upgrade to.

 requests:
 storage: 2Gi
 storageClassName: gp2
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
storaged:

 resources:
 requests:
 cpu: "500m"
 memory: "500Mi"
 limits:
 cpu: "1"
 memory: "1Gi"
 replicas: 3
 image: vesoft/nebula-storaged
 version: v2.6.0 //Change the value from v2.5.1 to v2.6.0.
 dataVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 logVolumeClaim:
 resources:
 requests:
 storage: 2Gi
 storageClassName: gp2
 reference:
 name: statefulsets.apps
 version: v1
 schedulerName: default-scheduler
 imagePullPolicy: Always

3.

kubectl apply -f apps_v1alpha1_nebulacluster.yaml

4.

kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

 1 vesoft/nebula-graphd:v2.6.0
 1 vesoft/nebula-metad:v2.6.0
 3 vesoft/nebula-storaged:v2.6.0

1.

helm repo update

2.

export NEBULA_CLUSTER_NAME=nebula # The desired Nebula Graph cluster name.
export NEBULA_CLUSTER_NAMESPACE=nebula # The desired namespace where your Nebula Graph cluster locates.

3.

helm upgrade "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \
 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \
 --set nameOverride=${NEBULA_CLUSTER_NAME} \
 --set nebula.version=v2.6.0

14.6.3 Upgrade a Nebula Graph cluster with Helm

- 589/629 - 2021 Vesoft Inc.

Run the following command to check the status and version of the upgraded cluster.

Check cluster status:

Check cluster version:

4.

$ kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"
NAME READY STATUS RESTARTS AGE
nebula-graphd-0 1/1 Running 0 2m
nebula-graphd-1 1/1 Running 0 2m
nebula-metad-0 1/1 Running 0 2m
nebula-metad-1 1/1 Running 0 2m
nebula-metad-2 1/1 Running 0 2m
nebula-storaged-0 1/1 Running 0 2m
nebula-storaged-1 1/1 Running 0 2m
nebula-storaged-2 1/1 Running 0 2m

$ kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c
 1 vesoft/nebula-graphd:v2.6.0
 1 vesoft/nebula-metad:v2.6.0
 3 vesoft/nebula-storaged:v2.6.0

Last update: November 16, 2021

14.6.3 Upgrade a Nebula Graph cluster with Helm

- 590/629 - 2021 Vesoft Inc.

14.7 Connect to Nebula Graph databases with Nebular Operator

After creating a Nebula Graph cluster with Nebula Operator on Kubernetes, you can connect to Nebula Graph databases from

within the cluster and outside the cluster.

14.7.1 Prerequisites

Create a Nebula Graph cluster with Nebula Operator on Kubernetes. For more information, see Deploy Nebula Graph clusters with

Kubectl or Deploy Nebula Graph clusters with Helm.

14.7.2 Connect to Nebula Graph databases from within a Nebula Graph cluster

When a Nebula Graph cluster is created, Nebula Operator automatically creates a Service named <cluster-name>-graphd-svc with

the type ClusterIP under the same namespace. With the IP of the Service and the port number of the Nebula Graph database, you

can connect to the Nebula Graph database.

Run the following command to check the IP of the Service:

Services of the ClusterIP type only can be accessed by other applications in a cluster. For more information, see ClusterIP.

Run the following command to connect to the Nebula Graph database using the IP of the <cluster-name>-graphd-svc Service

above:

For example:

You can also connect to Nebula Graph databases with Fully Qualified Domain Name (FQDN). The domain format is <cluster-

name>-graphd.<cluster-namespace>.svc.<CLUSTER_DOMAIN> :

The default value of CLUSTER_DOMAIN is cluster.local .

14.7.3 Connect to Nebula Graph databases from outside a Nebula Graph cluster via NodePort

You can create a Service of type NodePort to connect to Nebula Graph databases from outside a Nebula Graph cluster with a node

IP and an exposed node port. You can also use load balancing software provided by cloud providers (such as Azure, AWS, etc.) and

set the Service of type LoadBalancer .

The Service of type NodePort forwards the front-end requests via the label selector spec.selector to Graphd pods with labels

app.kubernetes.io/cluster: <cluster-name> and app.kubernetes.io/component: graphd .

1.

$ kubectl get service -l app.kubernetes.io/cluster=<nebula> #<nebula> is a variable value. Replace it with the desired name.
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nebula-graphd-svc ClusterIP 10.98.213.34 <none> 9669/TCP,19669/TCP,19670/TCP 23h
nebula-metad-headless ClusterIP None <none> 9559/TCP,19559/TCP,19560/TCP 23h
nebula-storaged-headless ClusterIP None <none> 9779/TCP,19779/TCP,19780/TCP,9778/TCP 23h

2.

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- <nebula_console_name> -addr <cluster_ip> -port <service_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- nebula-console -addr 10.98.213.34 -port 9669 -u root -p vesoft

- `--image`: The image for the tool Nebula Console used to connect to Nebula Graph databases.
- `<nebula-console>`: The custom Pod name.
- `-addr`: The IP of the `ClusterIP` Service, used to connect to Graphd services.
- `-port`: The port to connect to Graphd services, the default port of which is 9669.
- `-u`: The username of your Nebula Graph account. Before enabling authentication, you can use any existing username. The default username is root.
- `-p`: The password of your Nebula Graph account. Before enabling authentication, you can use any characters as the password.

A successful connection to the database is indicated if the following is returned:

```bash
If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- <nebula_console_name> -addr <cluster_name>-graphd-svc.default.svc.cluster.local -port 
<service_port> -u <username> -p <password>

14.7 Connect to Nebula Graph databases with Nebular Operator

- 591/629 - 2021 Vesoft Inc.

https://kubernetes.io/docs/concepts/services-networking/service/


Steps:

Create a YAML file named graphd-nodeport-service.yaml . The file contents are as follows:

Nebula Graph uses port 9669  by default. 19669  is the port of the Graph service in a Nebula Graph cluster.

The value of targetPort  is the port mapped to the database Pods, which can be customized.

Run the following command to create a NodePort Service.

Check the port mapped on all of your cluster nodes.

Output:

As you see, the mapped port of Nebula Graph databases on all cluster nodes is 32236 .

Connect to Nebula Graph databases with your node IP and the node port above.

For example:

--image : The image for the tool Nebula Console used to connect to Nebula Graph databases.

<nebula-console> : The custom Pod name. The above example uses nebula-console2 .

-addr : The IP of any node in a Nebula Graph cluster. The above example uses 192.168.8.24 .

-port : The mapped port of Nebula Graph databases on all cluster nodes. The above example uses 32236 .

-u : The username of your Nebula Graph account. Before enabling authentication, you can use any existing username. The

default username is root.

-p : The password of your Nebula Graph account. Before enabling authentication, you can use any characters as the

password.

1. 

apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/cluster: nebula
    app.kubernetes.io/component: graphd
    app.kubernetes.io/managed-by: nebula-operator
    app.kubernetes.io/name: nebula-graph
  name: nebula-graphd-svc-nodeport
  namespace: default
spec:
  externalTrafficPolicy: Local
  ports:
  - name: thrift
    port: 9669
    protocol: TCP
    targetPort: 9669
  - name: http
    port: 19669
    protocol: TCP
    targetPort: 19669
  selector:
    app.kubernetes.io/cluster: nebula
    app.kubernetes.io/component: graphd
    app.kubernetes.io/managed-by: nebula-operator
    app.kubernetes.io/name: nebula-graph
  type: NodePort

• 

• 

2. 

kubectl create -f graphd-nodeport-service.yaml

3. 

kubectl get services

NAME                           TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)                                          AGE
nebula-graphd-svc              ClusterIP   10.98.213.34   <none>        9669/TCP,19669/TCP,19670/TCP                     23h
nebula-graphd-svc-nodeport     NodePort    10.107.153.129 <none>        9669:32236/TCP,19669:31674/TCP,19670:31057/TCP   24h
nebula-metad-headless          ClusterIP   None           <none>        9559/TCP,19559/TCP,19560/TCP                     23h
nebula-storaged-headless       ClusterIP   None           <none>        9779/TCP,19779/TCP,19780/TCP,9778/TCP            23h

4. 

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- <nebula_console_name> -addr <node_ip> -port <node_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- nebula-console2 -addr 192.168.8.24 -port 32236 -u root -p vesoft
If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

• 

• 

• 

• 

• 

• 

14.7.3 Connect to Nebula Graph databases from outside a Nebula Graph cluster via NodePort

- 592/629 - 2021 Vesoft Inc.



14.7.4 Connect to Nebula Graph databases from outside a Nebula Graph cluster via Ingress

Nginx Ingress is an implementation of Kubernetes Ingress. Nginx Ingress watches the Ingress resource of a Kubernetes cluster

and generates the Ingress rules into Nginx configurations that enable Nginx to forward 7 layers of traffic.

You can use Nginx Ingress to connect to a Nebula Graph cluster from outside the cluster using a combination of the HostNetwork

and DaemonSet pattern.

As HostNetwork is used, the Nginx Ingress pod cannot be scheduled to the same node. To avoid listening port conflicts, some

nodes can be selected and labeled as edge nodes in advance, which are specially used for the Nginx Ingress deployment. Nginx

Ingress is then deployed on these nodes in a DaemonSet mode.

Ingress does not support TCP or UDP services. For this reason, the nginx-ingress-controller pod uses the flags --tcp-services-

configmap  and --udp-services-configmap  to point to an existing ConfigMap where the key refers to the external port to be used and

the value refers to the format of the service to be exposed. The format of the value is <namespace/service_name>:<service_port> .

For example, the configurations of the ConfigMap named as tcp-services  is as follows:

apiVersion: v1
kind: ConfigMap
metadata:
  name: tcp-services
  namespace: nginx-ingress
data:
  # update 
  9769: "default/nebula-graphd-svc:9669"

14.7.4 Connect to Nebula Graph databases from outside a Nebula Graph cluster via Ingress

- 593/629 - 2021 Vesoft Inc.



Steps are as follows.

Create a file named nginx-ingress-daemonset-hostnetwork.yaml . 

Click on nginx-ingress-daemonset-hostnetwork.yaml to view the complete content of the example YAML file.

Label a node where the DaemonSet named nginx-ingress-controller  in the above YAML file (The node used in this example is

named worker2  with an IP of 192.168.8.160 ) runs.

Run the following command to enable Nginx Ingress in the cluster you created. 

Output:

Since the network type that is configured in Nginx Ingress is hostNetwork , after successfully deploying Nginx Ingress, with the IP

( 192.168.8.160 ) of the node where Nginx Ingress is deployed and with the external port ( 9769 ) you define, you can access Nebula

Graph. 

Use the IP address and the port configured in the preceding steps. You can connect to Nebula Graph with Nebula Console. 

Output:

--image : The image for the tool Nebula Console used to connect to Nebula Graph databases.

<nebula-console>  The custom Pod name. The above example uses nebula-console .

-addr : The IP of the node where Nginx Ingress is deployed. The above example uses 192.168.8.160 .

-port : The port used for external network access. The above example uses 9769 .

-u : The username of your Nebula Graph account. Before enabling authentication, you can use any existing username. The

default username is root.

-p : The password of your Nebula Graph account. Before enabling authentication, you can use any characters as the

password.

A successful connection to the database is indicated if the following is returned:

1. 

The resource objects in the YAML file above use the namespace nginx-ingress . You can run kubectl create namespace nginx-ingress

to create this namespace, or you can customize the namespace.

Note

2. 

kubectl label node worker2 nginx-ingress=true

3. 

kubectl create -f nginx-ingress-daemonset-hostnetwork.yaml

configmap/nginx-ingress-controller created
configmap/tcp-services created
serviceaccount/nginx-ingress created
serviceaccount/nginx-ingress-backend created
clusterrole.rbac.authorization.k8s.io/nginx-ingress created
clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress created
role.rbac.authorization.k8s.io/nginx-ingress created
rolebinding.rbac.authorization.k8s.io/nginx-ingress created
service/nginx-ingress-controller-metrics created
service/nginx-ingress-default-backend created
service/nginx-ingress-proxy-tcp created
daemonset.apps/nginx-ingress-controller created

4. 

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- <nebula_console_name> -addr <host_ip> -port <external_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v2.6.0 --restart=Never -- nebula-console -addr 192.168.8.160 -port 9769 -u root -p vesoft

• 

• 

• 

• 

• 

• 

If you don't see a command prompt, try pressing enter.
(root@nebula) [(none)]>

Last update: November 16, 2021 

14.7.4 Connect to Nebula Graph databases from outside a Nebula Graph cluster via Ingress

- 594/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v0.9.0/config/samples/nginx-ingress-daemonset-hostnetwork.yaml


14.8 Self-healing

Nebula Operator calls the interface provided by Nebula Graph clusters to dynamically sense cluster service status. Once an

exception is detected (for example, a component in a Nebula Graph cluster stops running), Nebula Operator automatically

performs fault tolerance. This topic shows how Nebular Operator performs self-healing by simulating cluster failure of deleting

one Storage service Pod in a Nebula Graph cluster.

14.8.1 Prerequisites

Install Nebula Operator

14.8.2 Steps

Create a Nebula Graph cluster. For more information, see Deploy Nebula Graph clusters with Kubectl or Deploy Nebula Graph

clusters with Helm.

Delete the Pod named <cluster_name>-storaged-2  after all pods are in the Running  status.

<cluster_name>  is the name of your Nebula Graph cluster.

Nebula Operator automates the creation of the Pod named <cluster-name>-storaged-2  to perform self-healing.

Run the kubectl get pods  command to check the status of the Pod <cluster-name>-storaged-2 .

When the status of <cluster-name>-storaged-2  is changed from ContainerCreating  to Running , the self-healing is performed

successfully.

1. 

2. 

kubectl delete pod <cluster-name>-storaged-2 --now

3. 

...
nebula-cluster-storaged-1        1/1     Running             0          5d23h
nebula-cluster-storaged-2        0/1     ContainerCreating   0          1s
...

...
nebula-cluster-storaged-1        1/1     Running     0          5d23h
nebula-cluster-storaged-2        1/1     Running     0          4m2s
...

Last update: September 29, 2021 

14.8 Self-healing

- 595/629 - 2021 Vesoft Inc.



14.9 FAQ

14.9.1 Does Nebula Operator support the v1.x version of Nebula Graph?

No, because the v1.x version of Nebula Graph does not support DNS, and Nebula Operator requires the use of DNS.

14.9.2 Does Nebula Operator support the rolling upgrade feature for Nebula Graph clusters?

Nebula Operator currently supports cluster upgrading from version 2.5.x to version 2.6.x.

14.9.3 Is cluster stability guaranteed if using local storage?

There is no guarantee. Using local storage means that the Pod is bound to a specific node, and Nebula Operator does not currently

support failover in the event of a failure of the bound node.

14.9.4 How to ensure the stability of a cluster when scaling the cluster?

It is suggested to back up data in advance so that you can roll back data in case of failure.

Last update: November 16, 2021 

14.9 FAQ

- 596/629 - 2021 Vesoft Inc.



15. Nebula Algorithm

Nebula Algorithm (Algorithm) is a Spark application based on GraphX. It uses a complete algorithm tool to perform graph

computing on the data in the Nebula Graph database by submitting a Spark task. You can also programmatically use the algorithm

under the lib repository to perform graph computing on DataFrame.

15.1 Prerequisites

Before using the Nebula Algorithm, users need to confirm the following information:

The Nebula Graph services have been deployed and started. For details, see Nebula Installation.

The Spark version is 2.4.x.

The Scala version is 2.11.

(Optional) If users need to clone, compile, and package the latest Algorithm in Github, install Maven.

15.2 Limitations

The data of the vertex ID must be an integer. That is, the vertex ID can be INT or String, but the data itself is an integer.

For non-integer String data, it is recommended to use the algorithm interface. You can use the dense_rank  function of SparkSQL to

encode the data as the Long type instead of the String type.

15.3 Supported algorithms

The graph computing algorithms supported by Nebula Algorithm are as follows.

• 

• 

• 

• 

Algorithm Description Scenario

PageRank The rank of pages Web page ranking, key node mining

Louvain Community discovery Community mining, hierarchical clustering

KCore K core Community discovery, financial risk control

LabelPropagation Label propagation Information spreading, advertising, and community

discovery

ConnectedComponent Connected component Community discovery, island discovery

StronglyConnectedComponent Strongly connected

component

Community discovery

ShortestPath The shortest path Path planning, network planning

TriangleCount Triangle counting Network structure analysis

GraphTriangleCount Graph triangle counting Network structure and tightness analysis

BetweennessCentrality Intermediate centrality Key node mining, node influence computing

DegreeStatic Degree of statistical Graph structure analysis

15. Nebula Algorithm

- 597/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm
https://spark.apache.org/graphx/
https://maven.apache.org/download.cgi


15.4 Implementation methods

Nebula Algorithm implements the graph calculating as follows:

Read the graph data of DataFrame from the Nebula Graph database using the Nebula Spark Connector.

Transform the graph data of DataFrame to the GraphX graph.

Use graph algorithms provided by GraphX (such as PageRank) or self-implemented algorithms (such as Louvain).

For detailed implementation methods, see Scala file.

15.5 Get Nebula Algorithm

15.5.1 Compile and package

Clone the repository nebula-algorithm .

Enter the directory nebula-algorithm .

Compile and package.

After the compilation, a similar file nebula-algorithm-2.5.1.jar  is generated in the directory nebula-algorithm/target .

15.5.2 Download maven from the remote repository

Download address

15.6 How to use

15.6.1 Use algorithm interface (recommended)

The lib  repository provides 10 common graph algorithms.

Add dependencies to the file pom.xml .

Use the algorithm (take PageRank as an example) by filling in parameters. For more algorithms, see Test cases).

1. 

2. 

3. 

1. 

$ git clone -b v2.5 https://github.com/vesoft-inc/nebula-algorithm.git

2. 

$ cd nebula-algorithm

3. 

$ mvn clean package -Dgpg.skip -Dmaven.javadoc.skip=true -Dmaven.test.skip=true

1. 

<dependency>
     <groupId>com.vesoft</groupId>
     <artifactId>nebula-algorithm</artifactId>
     <version>2.5.1</version>
</dependency>

2. 

By default, the DataFrame that executes the algorithm sets the first column as the starting vertex, the second column as the

destination vertex, and the third column as the edge weights (not the rank in the Nebula Graph).

Note

val prConfig = new PRConfig(5, 1.0)
val louvainResult = PageRankAlgo.apply(spark, data, prConfig, false)

15.4 Implementation methods

- 598/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/master/nebula-algorithm/src/main/scala/com/vesoft/nebula/algorithm/lib
https://repo1.maven.org/maven2/com/vesoft/nebula-algorithm/2.5.1/
https://github.com/vesoft-inc/nebula-algorithm/tree/master/nebula-algorithm/src/test/scala/com/vesoft/nebula/algorithm/lib


15.6.2 Submit the algorithm package directly

There are limitations to use sealed packages. For example, when sinking a repository into Nebula Graph, the property name of the

tag created in the sunk graph space must match the preset name in the code. The first method is recommended if the user has

development skills.

Note

15.6.2 Submit the algorithm package directly

- 599/629 - 2021 Vesoft Inc.



Set the Configuration file.1. 

{
  # Configurations related to Spark
  spark: {
    app: {
        name: LPA
        # The number of partitions of Spark
        partitionNum:100
    }
    master:local
  }

  data: {
    # Data source. Optional values are nebula, csv, and json.
    source: csv
    # Data sink. The algorithm result will be written into this sink. Optional values are nebula, csv, and text.
    sink: nebula
    # Whether the algorithm has a weight.
    hasWeight: false
  }

  # Configurations related to Nebula Graph
  nebula: {
    # Data source. When Nebula Graph is the data source of the graph computing, the configuration of `nebula.read` is valid.
    read: {
        # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".
        # To deploy Nebula Graph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.
        # Check the status with `docker-compose ps`.
        metaAddress: "192.168.*.10:9559"
        # The name of the graph space in Nebula Graph.
        space: basketballplayer
        # Edge types in Nebula Graph. When there are multiple labels, the data of multiple edges will be merged.
        labels: ["serve"]
        # The property name of each edge type in Nebula Graph. This property will be used as the weight column of the algorithm. Make sure that it corresponds to 
the edge type.
        weightCols: ["start_year"]
    }

    # Data sink. When the graph computing result sinks into Nebula Graph, the configuration of `nebula.write` is valid.
    write:{
        # The IP addresses and ports of all Graph services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".
        # To deploy by using Docker Compose, fill in the port with which Docker Compose maps to the outside.
        # Check the status with `docker-compose ps`.
        graphAddress: "192.168.*.11:9669"
        # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".
        # To deploy Nebula Graph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.
        # Check the staus with `docker-compose ps`.
        metaAddress: "192.168.*.12:9559"
        user:root
        pswd:nebula
        # Before submitting the graph computing task, create the graph space and tag.
        # The name of the graph space in Nebula Graph.
        space:nb
        # The name of the tag in Nebula Graph. The graph computing result will be written into this tag. The property name of this tag is as follows.
        # PageRank: pagerank
        # Louvain: louvain
        # ConnectedComponent: cc
        # StronglyConnectedComponent: scc
        # LabelPropagation: lpa
        # ShortestPath: shortestpath
        # DegreeStatic: degree30

01inDegree30
01outDegree

        # KCore: kcore
        # TriangleCount: tranglecpunt
        # BetweennessCentrality: betweennedss
        tag:pagerank
    }
    }  

  local: {
    # Data source. When the data source is csv or json, the configuration of `local.read` is valid.
    read:{
        filePath: "hdfs://127.0.0.1:9000/edge/work_for.csv"
        # If the CSV file has a header or it is a json file, use the header. If not, use [_c0, _c1, _c2, ..., _cn] instead.
        # The header of the source VID column.
        srcId:"_c0"
        # The header of the destination VID column.
        dstId:"_c1"
        # The header of the weight column.
        weight: "_c2"
        # Whether the csv file has a header.
        header: false
        # The delimiter in the csv file.
        delimiter:","
    }

    # Data sink. When the graph computing result sinks to the csv or text file, the configuration of `local.write` is valid.
    write:{
        resultPath:/tmp/
    }
    }

15.6.2 Submit the algorithm package directly

- 600/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/blob/v2.5/nebula-algorithm/src/main/resources/application.conf


Submit the graph computing task.

Example:

  algorithm: {
    # The algorithm to execute. Optional values are pagerank, louvain, connectedcomponent,
    # labelpropagation, shortestpaths, degreestatic, kcore,
    # stronglyconnectedcomponent, trianglecount, betweenness,
    executeAlgo: pagerank

    # PageRank
    pagerank: {
        maxIter: 10
        resetProb: 0.15  # The default value is 0.15
    }

    # Louvain
    louvain: {
        maxIter: 20
        internalIter: 10
        tol: 0.5
    }

   # ConnectedComponent/StronglyConnectedComponent
   connectedcomponent: {
       maxIter: 20
   }

   # LabelPropagation
   labelpropagation: {
       maxIter: 20
   }

    # ShortestPath
    shortestpaths: {
        # several vertices to compute the shortest path to all vertices.
        landmarks: "1"
    }

    # DegreeStatic
    degreestatic: {}

    # KCore
    kcore:{
        maxIter:10
        degree:1
    }

    # TriangleCount
    trianglecount:{}

    # BetweennessCentrality
    betweenness:{
        maxIter:5
    }
}
}

2. 

${SPARK_HOME}/bin/spark-submit --master <mode> --class com.vesoft.nebula.algorithm.Main <nebula-algorithm-2.5.1.jar_path> -p <application.conf_path>

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.algorithm.Main /root/nebula-algorithm/target/nebula-algorithm-2.5.1.jar -p /root/nebula-
algorithm/src/main/resources/application.conf

Last update: October 22, 2021 

15.6.2 Submit the algorithm package directly

- 601/629 - 2021 Vesoft Inc.



16. Nebula Spark Connector

Nebula Spark Connector is a Spark connector application for reading and writing Nebula Graph data in Spark standard format.

Nebula Spark Connector consists of two parts: Reader and Writer.

Reader

Provides a Spark SQL interface. This interface can be used to read Nebula Graph data. It reads one vertex or edge type data

at a time and assemble the result into a Spark DataFrame.

Writer

Provides a Spark SQL interface. This interface can be used to write DataFrames into Nebula Graph in a row-by-row or batch-

import way.

For more information, see Nebula Spark Connector.

16.1 Use cases

Nebula Spark Connector applies to the following scenarios:

Migrate data between different Nebula Graph clusters.

Migrate data between different graph spaces in the same Nebula Graph cluster.

Migrate data between Nebula Graph and other data sources.

Graph computing with Nebula Algorithm.

16.2 Benefits

The features of Nebula Spark Connector 2.6.0 are as follows:

Supports multiple connection settings, such as timeout period, number of connection retries, number of execution retries,

etc.

Supports multiple settings for data writing, such as setting the corresponding column as vertex ID, starting vertex ID,

destination vertex ID or attributes.

Supports non-attribute reading and full attribute reading.

Supports reading Nebula Graph data into VertexRDD and EdgeRDD, and supports non-Long vertex IDs.

Unifies the extended data source of SparkSQL, and uses DataSourceV2 to extend Nebula Graph data.

Three write modes, insert , update  and delete , are supported. insert  mode will insert (overwrite) data, update  mode will only

update existing data, and delete  mode will only delete data.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

16. Nebula Spark Connector

- 602/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-spark-connector/blob/v2.6/README_CN.md


16.3 Get Nebula Spark Connector

16.3.1 Compile package

Clone repository nebula-spark-connector .

Make the nebula-spark-connector  directory the current working directory.

Compile package.

After compilation, a similar file nebula-spark-connector-2.6.0-SHANPSHOT.jar  is generated in the directory 

nebula-spark-connector/nebula-spark-connector/target/ .

16.3.2 Download maven remote repository

Download

16.4 How to use

When using Nebula Spark Connector to reading and writing Nebula Graph data, You can refer to the following code.

nebula()  receives two configuration parameters, including connection configuration and read-write configuration.

16.4.1 Reading data from Nebula Graph

Install Nebula Spark Connector of version 2.4.x.

Note

1. 

$ git clone -b v2.6 https://github.com/vesoft-inc/nebula-spark-connector.git

2. 

$ cd nebula-spark-connector/nebula-spark-connector

3. 

$ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true

# Read vertex and edge data from Nebula Graph.
spark.read.nebula().loadVerticesToDF()
spark.read.nebula().loadEdgesToDF()

# Write dataframe data into Nebula Graph as vertex and edges.
dataframe.write.nebula().writeVertices()
dataframe.write.nebula().writeEdges()

val config = NebulaConnectionConfig
  .builder()
  .withMetaAddress("127.0.0.1:9559")
  .withConenctionRetry(2)
  .withExecuteRetry(2)
.withTimeout(6000)

  .build()

val nebulaReadVertexConfig: ReadNebulaConfig = ReadNebulaConfig
  .builder()
  .withSpace("test")
  .withLabel("person")
  .withNoColumn(false)
  .withReturnCols(List("birthday"))
  .withLimit(10)
  .withPartitionNum(10)
  .build()
val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToDF()

val nebulaReadEdgeConfig: ReadNebulaConfig = ReadNebulaConfig
  .builder()
  .withSpace("test")
  .withLabel("knows")
  .withNoColumn(false)
  .withReturnCols(List("degree"))
  .withLimit(10)
  .withPartitionNum(10)

16.3 Get Nebula Spark Connector

- 603/629 - 2021 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-spark-connector/


NebulaConnectionConfig  is the configuration for connecting to the nebula graph, as described below.

ReadNebulaConfig  is the configuration to read Nebula Graph data, as described below.

16.4.2 Write data into Nebula Graph

  .build()
val edge = spark.read.nebula(config, nebulaReadEdgeConfig).loadEdgesToDF()

• 

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... . Read data is

no need to configure withGraphAddress .

withConnectionRetry No The number of retries that the Nebula Java Client connected to the Nebula

Graph. The default value is 1 .

withExecuteRetry No The number of retries that the Nebula Java Client executed query statements.

The default value is 1 .

withTimeout No The timeout for the Nebula Java Client request response. The default value is 

6000 , Unit: ms.

• 

Parameter Required Description

withSpace Yes Nebula Graph space name.

withLabel Yes The Tag or Edge type name within the Nebula Graph space.

withNoColumn No Whether the property is not read. The default value is false , read property. If

the value is true , the property is not read, the withReturnCols  configuration is

invalid.

withReturnCols No Configures the set of properties for vertex or edges to read. the format is 

List(property1,property2,...) , The default value is List() , indicating that all

properties are read.

withLimit No Configure the number of rows of data read from the server by the Nebula Java

Storage Client at a time. The default value is 1000 .

withPartitionNum No Configures the number of Spark partitions to read the Nebula Graph data. The

default value is 100 . This value should not exceed the number of slices in the

graph space (partition_num).

val config = NebulaConnectionConfig
  .builder()
  .withMetaAddress("127.0.0.1:9559")
  .withGraphAddress("127.0.0.1:9669")
  .withConenctionRetry(2)
  .build()

val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig      
  .builder()
  .withSpace("test")
  .withTag("person")
  .withVidField("id")
  .withVidPolicy("hash")
  .withVidAsProp(true)
  .withUser("root")
  .withPasswd("nebula")
  .withBatch(1000)
  .build()    
df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

val nebulaWriteEdgeConfig: WriteNebulaEdgeConfig = WriteNebulaEdgeConfig      
  .builder()
  .withSpace("test")
  .withEdge("friend")
  .withSrcIdField("src")
  .withSrcPolicy(null)
  .withDstIdField("dst")
  .withDstPolicy(null)
  .withRankField("degree")
  .withSrcAsProperty(true)

16.4.2 Write data into Nebula Graph

- 604/629 - 2021 Vesoft Inc.



The default write mode is insert , which can be changed to update  via withWriteMode  configuration:

  .withDstAsProperty(true)
  .withRankAsProperty(true)
  .withUser("root")
  .withPasswd("nebula")
  .withBatch(1000)
  .build()
df.write.nebula(config, nebulaWriteEdgeConfig).writeEdges()

val config = NebulaConnectionConfig
  .builder()
  .withMetaAddress("127.0.0.1:9559")
  .withGraphAddress("127.0.0.1:9669")
  .build()
val nebulaWriteVertexConfig = WriteNebulaVertexConfig
  .builder()
  .withSpace("test")
  .withTag("person")
  .withVidField("id")
  .withVidAsProp(true)
  .withBatch(1000)
  .withWriteMode(WriteMode.UPDATE)

16.4.2 Write data into Nebula Graph

- 605/629 - 2021 Vesoft Inc.



NebulaConnectionConfig  is the configuration for connecting to the nebula graph, as described below.

WriteNebulaVertexConfig  is the configuration of the write vertex, as described below.

  .build()
df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

• 

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withGraphAddress Yes Specifies the IP addresses and ports of Graph Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withConnectionRetry No Number of retries that the Nebula Java Client connected to the Nebula

Graph. The default value is 1 .

• 

Parameter Required Description

withSpace Yes Nebula Graph space name.

withTag Yes The Tag name that needs to be associated when a vertex is written.

withVidField Yes The column in the DataFrame as the vertex ID.

withVidPolicy No When writing the vertex ID, Nebula Graph 2.x use mapping function, supports

HASH only. No mapping is performed by default.

withVidAsProp No Whether the column in the DataFrame that is the vertex ID is also written as an

property. The default value is false . If set to true , make sure the Tag has the

same property name as VidField .

withUser No Nebula Graph user name. If authentication is disabled, you do not need to

configure the user name and password.

withPasswd No The password for the Nebula Graph user name.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert  and update . The default value is 

insert .

16.4.2 Write data into Nebula Graph

- 606/629 - 2021 Vesoft Inc.



WriteNebulaEdgeConfig  is the configuration of the write edge, as described below.• 

Parameter Required Description

withSpace Yes Nebula Graph space name.

withEdge Yes The Edge type name that needs to be associated when a edge is written.

withSrcIdField Yes The column in the DataFrame as the vertex ID.

withSrcPolicy No When writing the starting vertex ID, Nebula Graph 2.x use mapping function,

supports HASH only. No mapping is performed by default.

withDstIdField Yes The column in the DataFrame that serves as the destination vertex.

withDstPolicy No When writing the destination vertex ID, Nebula Graph 2.x use mapping

function, supports HASH only. No mapping is performed by default.

withRankField No The column in the DataFrame as the rank. Rank is not written by default.

withSrcAsProperty No Whether the column in the DataFrame that is the starting vertex is also

written as an property. The default value is false . If set to true , make sure

Edge type has the same property name as SrcIdField .

withDstAsProperty No Whether column that are destination vertex in the DataFrame are also written

as property. The default value is false . If set to true , make sure Edge type

has the same property name as DstIdField .

withRankAsProperty No Whether column in the DataFrame that is the rank is also written as

property.The default value is false . If set to true , make sure Edge type has

the same property name as RankField .

withUser No Nebula Graph user name. If authentication is disabled, you do not need to

configure the user name and password.

withPasswd No The password for the Nebula Graph user name.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert  and update . The default value is 

insert .

Last update: November 23, 2021 

16.4.2 Write data into Nebula Graph

- 607/629 - 2021 Vesoft Inc.



17. Nebula Flink Connector

Nebula Flink Connector is a connector that helps Flink users quickly access Nebula Graph. Nebula Flink Connector supports

reading data from the Nebula Graph database or writing other external data to the Nebula Graph database.

For more information, see Nebula Flink Connector.

17.1 Use cases

Nebula Flink Connector applies to the following scenarios:

Migrate data between different Nebula Graph clusters.

Migrate data between different graph spaces in the same Nebula Graph cluster.

Migrate data between Nebula Graph and other data sources.

• 

• 

• 

Last update: May 20, 2021 

17. Nebula Flink Connector

- 608/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-flink-connector


18. Nebula Bench

Nebula Bench is a performance test tool for Nebula Graph using the LDBC data set.

18.1 Scenario

Generate test data and import Nebula Graph.

Performance testing in the Nebula Graph cluster.

18.2 Test process

Generate test data by using ldbc_snb_datagen.

Import data to Nebula Graph by using the Importer.

Performance testing by using K6 with the XK6-Nebula plug-in.

For detailed usage instructions, see Nebula Bench.

• 

• 

1. 

2. 

3. 

Last update: September 6, 2021 

18. Nebula Bench

- 609/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench/blob/master/README.md


19. Appendix

19.1 Nebula Graph 2.6.0 release notes

19.1.1 Feature

Support TOSS. #2525

Support Group&Zone. #181

Support Geo Spatial. #2954, #2979, #3043

Support SSL encryption. #2584

Support returning the query result in the JSON format. #2824

Support cloning the meta data of SPACE. #2763

Support indexScan when using IN expressions in LOOKUP. #2906

Support integrating Breakpad. #2536

Support copying the local folder of metad to remote. #2532

Support DELETE TAG . #2520

Support the concat function. #2540

Support SHOW META LEADER . #2542

19.1.2 Enhancement

Optimize the limit pushdown computation of index scan. #2905, #2823, #2796

Optimize the sampling at each step and the limit pushdown computation of the go statement. #2904, #2853, #2831

Optimize the YIELD data format. #2555, #2572, #2779, #2895, #2944

Enable prefix bloom filter by default to improve performance. #2860

Support server to verify client version to make sure the connection reliability (client version start from v2.6.0). #2965

Optimize flow control when pulling the entire partition. #2557

SHOW JOBS  only shows SPACE related. #2872

Grant job permission for all roles except GUEST. #2928

Improve memory watermark detection. #2885

Support to kill the slow queries of storage. #2534

19.1.3 Bug fix

Fixed the bug that part of RocksDB data is cleaned when executing raftpart::reset . #2522

Fixed the bug that mismatched dates are inserted. #2527

Fixed the bug that setting millisecond failed but microsecond worked. #2781

Fixed the bug that the Meta service crashed when too much data (millions of lines) are inserted in batches. #2813

Fixed the bug that getting edges crashed when no edge schema exists in SPACE. #2571

Fixed the bug that GO with WHERE clause expression eval when the property data type is FIXED_STRING . #2762

Fixed the bug of FIND ALL PATH. #2773

Fixed the bug that users without roles have the permission to find all roles of SPACE. #2778

Fixed the bug of the CASE expression. #2819

Fixed the bug that the infinite loop is returned when using time(). #2820

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

19. Appendix

- 610/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/pull/2525
https://github.com/vesoft-inc/nebula-storage/pull/181
https://github.com/vesoft-inc/nebula/pull/2954
https://github.com/vesoft-inc/nebula/pull/2979
https://github.com/vesoft-inc/nebula/pull/3043
https://github.com/vesoft-inc/nebula/pull/2584
https://github.com/vesoft-inc/nebula/pull/2824
https://github.com/vesoft-inc/nebula/pull/2763
https://github.com/vesoft-inc/nebula/pull/2906
https://github.com/vesoft-inc/nebula/pull/2536
https://github.com/vesoft-inc/nebula/pull/2532
https://github.com/vesoft-inc/nebula/pull/2520
https://github.com/vesoft-inc/nebula/pull/2540
https://github.com/vesoft-inc/nebula/pull/2542
https://github.com/vesoft-inc/nebula/pull/2905
https://github.com/vesoft-inc/nebula/pull/2823
https://github.com/vesoft-inc/nebula/pull/2796
https://github.com/vesoft-inc/nebula/pull/2904
https://github.com/vesoft-inc/nebula/pull/2853
https://github.com/vesoft-inc/nebula/pull/2831
https://github.com/vesoft-inc/nebula/pull/2555
https://github.com/vesoft-inc/nebula/pull/2572
https://github.com/vesoft-inc/nebula/pull/2779
https://github.com/vesoft-inc/nebula/pull/2895
https://github.com/vesoft-inc/nebula/pull/2944
https://github.com/vesoft-inc/nebula/pull/2860
https://github.com/vesoft-inc/nebula/pull/2965
https://github.com/vesoft-inc/nebula/pull/2557
https://github.com/vesoft-inc/nebula/pull/2872
https://github.com/vesoft-inc/nebula/pull/2928
https://github.com/vesoft-inc/nebula/pull/2885
https://github.com/vesoft-inc/nebula/pull/2534
https://github.com/vesoft-inc/nebula/pull/2522
https://github.com/vesoft-inc/nebula/pull/2527
https://github.com/vesoft-inc/nebula/pull/2781
https://github.com/vesoft-inc/nebula/pull/2813
https://github.com/vesoft-inc/nebula/pull/2571
https://github.com/vesoft-inc/nebula/pull/2762
https://github.com/vesoft-inc/nebula/pull/2773
https://github.com/vesoft-inc/nebula/pull/2778
https://github.com/vesoft-inc/nebula/pull/2819
https://github.com/vesoft-inc/nebula/pull/2820


Fixed the bug that the JOB is still running when the node is already shut down. #2843

Fixed the bug that INSERT  statements may cause inconsistent property values between replicas in the case of multiple

replicas. #2862

Fixed the bug that SPACE goes wrong when submitting job after USE. #3010

Fixed the bug that getting properties of the thrift structure failed when the column is not null. #3012

Fixed the bug that graphd is still running even if the meta service is not ready. #3069

Fixed the bug that dangling edge returns a null vertex when using FIND PATH WITH PROP . #3008

Fixed the bug that executing YIELD DISTINCT  map crashed. #3051

Fixed the bug that the service can still start with a wrong ip/host. #3057

Fixed the bug that repeatedly modifying the same property in one statement returns an error. #3036

Fixed the bug that the multi-step filtering on edge is invalid. #3144

19.1.4 Legacy versions

Release notes of legacy versions

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: November 18, 2021 

19.1.4 Legacy versions

- 611/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/pull/2843
https://github.com/vesoft-inc/nebula/pull/2862
https://github.com/vesoft-inc/nebula/pull/3010
https://github.com/vesoft-inc/nebula/pull/3012
https://github.com/vesoft-inc/nebula/pull/3069
https://github.com/vesoft-inc/nebula/pull/3008
https://github.com/vesoft-inc/nebula/pull/3051
https://github.com/vesoft-inc/nebula/pull/3057
https://github.com/vesoft-inc/nebula/pull/3036
https://github.com/vesoft-inc/nebula/pull/3144
https://nebula-graph.com.cn/tags/release-note/


19.2 FAQ

This topic lists the frequently asked questions for using Nebula Graph 2.6.0. You can use the search box in the help center or the

search function of the browser to match the questions you are looking for.

If the solutions described in this topic cannot solve your problems, ask for help on the Nebula Graph forum or submit an issue on 

GitHub issue.

19.2.1 About manual updates

"Why is the behavior in the manual not consistent with the system?"

Nebula Graph is still under development. Its behavior changes from time to time. Users can submit an issue to inform the team if

the manual and the system are not consistent.

19.2.2 About legacy version compatibility

19.2.3 About executions

Why is there no line separating each row in the returned result of Nebula Graph 2.6.0?

This is caused by the release of Nebula Console 2.6.0, not the change of Nebula Graph core. And it will not affect the content of

the returned data itself.

About dangling edges

A dangling edge is an edge that only connects to a single vertex and only one part of the edge connects to the vertex.

Nebula Graph 2.6.0 allows dangling edges. And there is no MERGE  statements of openCypher. The guarantee for dangling edges

depends entirely on the application level. For more information, see INSERT VERTEX, DELETE VERTEX, INSERT EDGE, DELETE

EDGE.

If you find some errors in this topic:

Click the pencil  button at the top right side of this page.

Use markdown to fix this error. Then click "Commit changes" at the bottom, which will start a Github pull request.

Sign the CLA. This pull request will be merged after the acceptance of at least two reviewers.

Note

1. 

2. 

3. 

Neubla Graph 2.6.0 is not compatible with Nebula Graph 1.x nor 2.0-RC in both data formats and RPC-protocols, and vice versa. To

upgrade data formats, see Upgrade Nebula Graph to v2.0.0. Users must upgrade all clients.

X  version compatibility

Data formats of Neubla Graph 2.6.0 are compatible with Nebula Graph 2.0, while their clients are incompatible.

Y  version compatibility

19.2 FAQ

- 612/629 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula/issues/new


"How to resolve [ERROR (-1005)]: Used memory hits the high watermark(0.800000) of total system memory.?"

The reason for this error may be that system_memory_high_watermark_ratio  specifies the trigger threshold of the memory high

watermark alarm mechanism. The default value is 0.8 . If the system memory usage is higher than this value, an alarm mechanism

will be triggered, and Nebula Graph will stop querying.

Possible solutions are as follows:

Clean the system memory to make it below the threshold.

Modify the Graph configuration. Add the system_memory_high_watermark_ratio  parameter to the configuration files of all Graph

servers, and set it greater than 0.8 , such as 0.9 .

"How to resolve the error Storage Error E_RPC_FAILURE?"

The reason for this error is usually that the storaged process returns too many data back to the graphd process. Possible solutions

are as follows:

Modify configuration files: Modify the value of --storage_client_timeout_ms  in the nebula-graphd.conf  file to extend the

connection timeout of the Storage client. This configuration is measured in milliseconds (ms). For example, set --

storage_client_timeout_ms=60000 . If this parameter is not specified in the nebula-graphd.conf  file, specify it manually. Tip: Add --

local_config=true  at the beginning of the configuration file and restart the service.

Optimize the query statement: Reduce queries that scan the entire database. No matter whether LIMIT  is used to limit the

number of returned results, use the GO  statement to rewrite the MATCH  statement (the former is optimized, while the latter is

not).

Check whether the Storaged process has OOM. ( dmesg |grep nebula ).

Use better SSD or memory for the Storage Server.

Retry.

"How to resolve the error The leader has changed. Try again later?"

It is a known issue. Just retry 1 to N times, where N is the partition number. The reason is that the meta client needs some

heartbeats to update or errors to trigger the new leader information.

"How is the time spent value at the end of each return message calculated?"

Take the returned message of SHOW SPACES  as an example:

The first number 1235  shows the time spent by the database itself, that is, the time it takes for the query engine to receive a

query from the client, fetch the data from the storage server, and perform a series of calculations.

The second number 1934  shows the time spent from the client's perspective, that is, the time it takes for the client from

sending a request, receiving a response, and displaying the result on the screen.

"Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2?"

NO.

• 

• 

Only the Graph service supports system_memory_high_watermark_ratio , while the Storage and Meta services do not.

Note

• 

• 

• 

• 

• 

nebula> SHOW SPACES;
+--------------------+
| Name               |
+--------------------+
| "basketballplayer" |
+--------------------+
Got 1 rows (time spent 1235/1934 us)

• 

• 

19.2.3 About executions

- 613/629 - 2021 Vesoft Inc.



The Storage service guarantees its availability based on the Raft consensus protocol. The number of failed replicas must not

exceed half of the total replica number.

When the number of machines is 1, replica_factor  can only be set to 1 .

When there are enough machines and replica_factor=2 , if one replica fails, the Storage service fails. No matter replica_factor=3  or 

replica_factor=4 , if more than one replica fails, the Storage Service fails. To prevent unnecessary waste of resources, we

recommend that you set an odd replica number.

We suggest that you set replica_factor=3  for a production environment and replica_factor=1  for a test environment. Do not use an

even number.

"Is stopping or killing slow queries supported?"

Yes. For more information, see Kill query.

"Why are the query results different when using GO and MATCH to execute the same semantic query?"

The possible reasons are listed as follows.

GO  statements find the dangling edges.

RETURN  commands do not specify the sequence.

The dense vertex truncation limitation defined by max_edge_returned_per_vertex  in the Storage service is triggered.

Using different types of paths may cause different query results.

GO  statements use walk . Both vertices and edges can be repeatedly visited in graph traversal.

MATCH  statements are compatible with openCypher and use trail . Only vertices can be repeatedly visited in graph

traversal.

The example is as follows.

All queries that start from A  with 5 hops will end at C  ( A->B->C->D->E->C ). If it is 6 hops, the GO  statement will end at D

( A->B->C->D->E->C->D ), because the edge C->D  can be visited repeatedly. However, the MATCH  statement returns empty, because

edges cannot be visited repeatedly.

Therefore, using GO  and MATCH  to execute the same semantic query may cause different query results.

For more information, see Wikipedia.

"How to resolve [ERROR (-7)]: SyntaxError: syntax error near?"

In most cases, a query statement requires a YIELD  or a RETURN . Check your query statement to see if YIELD  or RETURN  is provided.

• 

• 

• 

• 

• 

• 

19.2.3 About executions

- 614/629 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path


"How to count the vertices/edges number of each tag/edge type?"

See show-stats.

"How to get all the vertices/edge of each tag/edge type?"

Create and rebuild the index.

Use LOOKUP  or MATCH . For example:

For more information, see INDEX , LOOKUP , and MATCH .

"How to get all the vertices/edges without specifying the types?"

By nGQL, you CAN NOT directly getting all the vertices without specifying the tags, neither the edges.

E.g., You CAN NOT run MATCH (n) RETURN (n) . An error like can’t solve the start vids from the sentence  will be returned.

You can use Nebula Algorithm.

Or get vertices by each tag, and then group them by yourself.

"How to resolve the error can’t solve the start vids from the sentence?"

The graphd process requires start vids  to begin a graph traversal. The start vids  can be specified by the user. For example:

It can also be found from a property index. For example:

Otherwise, an error like can’t solve the start vids from the sentence  will be returned.

"How to resolve the error Wrong vertex id type: 1001?"

Check whether the VID is INT64  or FIXED_STRING(N)  set by create space . For more information, see create space.

"How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit.?"

Check whether the length of the VID exceeds the limitation. For more information, see create space.

"How to resolve the error edge conflict or vertex conflict?"

Nebula Graph may return such errors when the Storage service receives multiple requests to insert or update the same vertex or

edge within milliseconds. Try the failed requests again later.

1. 

> CREATE TAG INDEX i_player ON player();
> REBUILD TAG INDEX i_player;

2. 

> LOOKUP ON player;
> MATCH (n:player) RETURN n;

> GO FROM ${vids} ...
> MATCH (src) WHERE id(src) == ${vids}
# The "start vids" are explicitly given by ${vids}.

# CREATE TAG INDEX i_player ON player(name(20));
# REBUILD TAG INDEX i_player;

> LOOKUP ON player WHERE player.name == "abc" | ... YIELD ...
> MATCH (src) WHERE src.name == "abc" ...
# The "start vids" are found from the property index "name".

19.2.3 About executions

- 615/629 - 2021 Vesoft Inc.



"How to resolve the error RPC failure in MetaClient: Connection refused?"

The reason for this error is usually that the metad service status is unusual, or the network of the machine where the metad and

graphd services are located is disconnected. Possible solutions are as follows:

Check the metad service status on the server where the metad is located. If the service status is unusual, restart the metad

service.

Use telnet meta-ip:port  to check the network status under the server that returns an error.

Check the port information in the configuration file. If the port is different from the one used when connecting, use the port

in the configuration file or modify the configuration.

"How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed: N6apache6thrift9transport19TTransportExceptionE: 

Timed Out in nebula-graph.INFO?"

The reason for this error may be that the amount of data to be queried is too large, and the storaged process has timed out.

Possible solutions are as follows:

When importing data, set Compaction manually to make read faster.

Extend the RPC connection timeout of the Graph service and the Storage service. Modify the value of --

storage_client_timeout_ms  in the nebula-storaged.conf  file. This configuration is measured in milliseconds (ms). The default

value is 60000ms.

"How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO, or HBProcessor.cpp:54] Reject 

wrong cluster host "x.x.x.x":9771! in nebula-metad.INFO?

The reason for this error may be that the user has modified the IP or the port information of the metad process, or the storage

service has joined other clusters before. Possible solutions are as follows:

Delete the cluster.id  file in the installation directory where the storage machine is deployed (the default installation directory is /

usr/local/nebula ), and restart the storaged service.

Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types, properties, and indexes?

No.

The names of graph spaces, tags, edge types, properties, and indexes must use English letters, numbers, or underlines. Non-

English characters are not currently supported.

Meanwhile, the above identifiers are case-sensitive and cannot use Keywords and reserved words.

"How to get the out-degree/the in-degree of a vertex with a given name"?

The out-degree of a vertex refers to the number of edges starting from that vertex, while the in-degree refers to the number of

edges pointing to that vertex.

"How to quickly get the out-degree and in-degree of all vertices?"

There is no such command.

You can use Nebula Algorithm.

• 

• 

• 

• 

• 

nebula > MATCH (s)-[e]->() WHERE id(s) == "given" RETURN count(e); #Out-degree
nebula > MATCH (s)<-[e]-() WHERE id(s) == "given" RETURN count(e); #In-degree

19.2.3 About executions

- 616/629 - 2021 Vesoft Inc.



"How to resolve [ERROR (-1005)]: Schema not exist: xxx?"

If the system returns Schema not exist  when querying, make sure that:

Whether there is a tag or an edge type in the Schema.

-Whether the name of the tag or the edge type is a keyword. If it is a keyword, enclose them with backquotes (`). For more

information, see Keywords.

19.2.4 About operation and maintenance

"The log files are too large. How to recycle the logs?"

By default, the logs of Nebula Graph are stored in /usr/local/nebula/logs/ . The INFO level log files are nebula-graphd.INFO, nebula-

storaged.INFO, nebula-metad.INFO . If an alarm or error occurs, the suffixes are modified as .WARNING  or .ERROR .

Nebula Graph uses glog to print logs. glog  cannot recycle the outdated files. You can use crontab to delete them by yourself. For

more information, see Glog should delete old log files automatically .

"How to check the Nebula Graph version?"

If the service is running: run command SHOW HOSTS META  in nebula-console . See SHOW HOSTS.

If the service is not running:

Different installation methods make the method of checking the version different. The instructions are as follows:

If the service is not running, run the command ./<binary_name> --version  to get the version and the Git commit IDs of the Nebula

Graph binary files. For example:

If you deploy Nebula Graph with Docker Compose

Check the version of Nebula Graph deployed by Docker Compose. The method is similar to the previous method, except that

you have to enter the container first. The commands are as follows:

If you install Nebula Graph with RPM/DEB package

Run rpm -qa |grep nebula  to check the version of Nebula Graph.

• 

• 

$ ./nebula-graphd --version
nebula-graphd version 2.5.0, Git: c397299c, Build Time: Aug 19 2021 11:20:18

• 

docker exec -it nebula-docker-compose_graphd_1 bash
cd bin/
./nebula-graphd --version

• 

19.2.4 About operation and maintenance

- 617/629 - 2021 Vesoft Inc.

https://github.com/google/glog
https://github.com/google/glog/issues/423
https://github.com/google/glog/issues/423


"How to scale out or scale in?"

Nebula Graph 2.6.0 does not provide any commands or tools to support automatic scale out/in. You can refer to the following

steps:

Scale out and scale in metad: The metad process can not be scaled out or scale in. The process cannot be moved to a new

machine. You cannot add a new metad process to the service.

Scale in graphd: Remove the IP of the graphd process from the code in the client. Close this graphd process.

Scale out graphd: Prepare the binary and config files of the graphd process in the new host. Modify the config files and add all

existing addresses of the metad processes. Then start the new graphd process.

Scale in storaged: (The number of replicas must be greater than 1) See Balance remove command. After the command is

finished, stop this storaged process.

Scale out storaged: (The number of replicas must be greater than 1) Prepare the binary and config files of the storaged process

in the new host, Modify the config files and add all existing addresses of the metad processes. Then start the new storaged

process.

You also need to run Balance Data and Balance leader after scaling in/out storaged.

"After changing the name of the host, the old one keeps displaying OFFLINE. What should I do?"

Hosts with the status of OFFLINE  will be automatically deleted after one day.

19.2.5 About connections

"Which ports should be opened on the firewalls?"

If you have not modified the predefined ports in the Configurations, open the following ports for the Nebula Graph services:

| Service | Port | |---------+---------------------------| | Meta | 9559, 9560, 19559, 19560 | | Graph | 9669, 19669, 19670 | | Storage | 9777 ~

9780, 19779, 19780 |

If you have customized the configuration files and changed the predefined ports, find the port numbers in your configuration files

and open them on the firewalls.

For those eco-tools, see the corresponding document.

"How to test whether a port is open or closed?"

You can use telnet as follows to check for port status.

For example:

1. 

You can use the Meta transfer script tool to migrate Meta services. Note that the Meta-related settings in the configuration files of

Storage and Graph services need to be modified correspondingly.

Note

2. 

3. 

4. 

5. 

telnet <ip> <port>

If you cannot use the telnet command, check if telnet is installed or enabled on your host.

Note

// If the port is open:
$ telnet 192.168.1.10 9669
Trying 192.168.1.10...
Connected to 192.168.1.10.
Escape character is '^]'.

19.2.5 About connections

- 618/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/scripts/meta-transfer-tools.sh


// If the port is closed or blocked:
$ telnet 192.168.1.10 9777
Trying 192.168.1.10...
telnet: connect to address 192.168.1.10: Connection refused

Last update: November 3, 2021 

19.2.5 About connections

- 619/629 - 2021 Vesoft Inc.



19.3 Ecosystem tools overview

19.3.1 Nebula Graph Studio

Nebula Graph Studio (Studio for short) is a graph database visualization tool that can be accessed through the Web. It can be used

with Nebula Graph DBMS to provide one-stop services such as composition, data import, writing nGQL queries, and graph

exploration. For details, see What is Nebula Graph Studio.

The core release number naming rule is X.Y.Z , which means Major version X , Medium version Y , and Minor version Z . The upgrade

requirements for the client are:

Upgrade the core from X.Y.Z1  to X.Y.Z2 : It means that the core is fully forward compatible and is usually used for bugfixes. It is

recommended to upgrade the minor version of the core as soon as possible. At this time, the client can stay not upgraded.

Upgrade the core from X.Y1.*  to X.Y2.* : It means that there is some incompatibility of API, syntax, and return value. It is usually

used to add functions, improve performance, and optimize code. The client needs to be upgraded to X.Y2.* .

Upgrade the core from X1.*.*  to X2.*.* : It means that there is a major incompatibility in storage formats, API, syntax, etc. You

need to use tools to upgrade the core data. The client must be upgraded.

The default core and client do not support downgrade: You cannot downgrade from X.Y.Z2  to X.Y.Z1 .

The release cycle of a Y  version is about 6 months, and its maintenance and support cycle is 6 months.

The version released at the beginning of the year is usually named X.0.0 , and in the middle of the year, it is named X.5.0 .

The file name contains RC  to indicate an unofficial version ( Release Candidate ) that is only used for preview. Its maintenance

period is only until the next RC or official version is released. Its client, data compatibility, etc. are not guaranteed.

The files with nightly , SNAPSHOT , or date are the nightly versions. There is no quality assurance and maintenance period.

Compatibility

• 

• 

• 

• 

• 

• 

• 

• 

All ecosystem tools of 1.x did not support Nebula Graph 2.x core.

Compatibility

19.3 Ecosystem tools overview

- 620/629 - 2021 Vesoft Inc.



19.3.2 Nebula Explorer

Nebula Explorer (Explorer for short) is a graph exploration visualization tool that can be accessed through the Web. It is used with

the Nebula Graph core to visualize interaction with graph data. Users can quickly become map experts, even without experience

in map data manipulation. For details, see What is Nebula Explorer.

19.3.3 Nebula Exchange

Nebula Exchange (Exchange for short) is an Apache Spark&trade application for batch migration of data in a cluster to Nebula

Graph in a distributed environment. It can support the migration of batch data and streaming data in a variety of different

formats. For details, see What is Nebula Exchange.

19.3.4 Nebula Operator

Nebula Operator (Operator for short) is a tool to automate the deployment, operation, and maintenance of Nebula Graph clusters

on Kubernetes. Building upon the excellent scalability mechanism of Kubernetes, Nebula Graph introduced its operation and

maintenance knowledge into the Kubernetes system, which makes Nebula Graph a real cloud-native graph database. For more

information, see What is Nebula Operator.

19.3.5 Nebula Importer

Nebula Importer (Importer for short) is a CSV file import tool for Nebula Graph. The Importer can read the local CSV file, and then

import the data into the Nebula Graph database. For details, see What is Nebula Importer.

19.3.6 Nebula Spark Connector

Nebula Spark Connector is a Spark connector that provides the ability to read and write Nebula Graph data in the Spark standard

format. Nebula Spark Connector consists of two parts, Reader and Writer. For details, see What is Nebula Spark Connector.

The release of the Studio is independent of Nebula Graph core, and its naming method is also not the same as the core naming rules.

The compatible relationship between them is as follows.

Note

Nebula Graph version Studio version(commit id)

2.6.0 3.1.0(3754219)

Nebula Graph version Explorer version (commit id)

2.6.0 2.0.0(3acdd02)

Nebula Graph version Exchange community version (commit id) FF
08

FF
09Exchange enterprise commit id

2.6.0 FF
08

FF
092.6.0 cb83202 FF

08
FF
092.6.0 9c54c97

Nebula Graph version FF
08

FF
09Operator version commit id

2.6.0 FF
08

FF
090.9.0 ba88e28

Nebula Graph version Importer version (commit id)

2.6.0 2.6.0(43234f3)

Nebula Graph version Spark Connector version (commit id)

2.6.0 2.6.0(cfe8ffc)

19.3.2 Nebula Explorer

- 621/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer/tree/v2.6.0


19.3.7 Nebula Flink Connector

Nebula Flink Connector is a connector that helps Flink users quickly access Nebula Graph. It supports reading data from the

Nebula Graph database or writing data read from other external data sources to the Nebula Graph database. For details, see What

is Nebula Flink Connector.

19.3.8 Nebula Algorithm

Nebula Algorithm (Algorithm for short) is a Spark application based on GraphX, which uses a complete algorithm tool to analyze

data in the Nebula Graph database by submitting a Spark task To perform graph computing, use the algorithm under the lib

repository through programming to perform graph computing for DataFrame. For details, see What is Nebula Algorithm.

19.3.9 Nebula Console

Nebula Console is the native CLI client of Nebula Graph. For how to use it, see Connect Nebula Graph.

19.3.10 Nebula Docker Compose

Docker Compose can quickly deploy Nebula Graph clusters. For how to use it, please refer to Docker Compose Deployment Nebula

Graph.

19.3.11 Nebula Bench

Nebula Bench is used to test the baseline performance data of Nebula Graph. It uses the standard data set of LDBC v0.3.3.

Nebula Graph version Flink Connector version (commit id)

2.6.0 2.6.0(32b5225)

Nebula Graph version Algorithm version (commit id)

2.6.0 2.5.1(2c61ca5)

Nebula Graph version Console version (commit id)

2.6.0 2.6.0(0834198)

Nebula Graph version Docker Compose version (commit id)

2.6.0 2.6.0(a6e9d78)

Nebula Graph version Nebula Bench version (commit id)

2.6.0 1.0.0(661f871)

19.3.7 Nebula Flink Connector

- 622/629 - 2021 Vesoft Inc.

https://spark.apache.org/graphx/
https://github.com/vesoft-inc/nebula-docker-compose/tree/master
https://github.com/vesoft-inc/nebula-bench


19.3.12 API, SDK

19.3.13 Not Released

API

Rust Client

Node.js Client

HTTP Client

[Object Graph Mapping Library (OGM, or ORM)] Java, Python (TODO: in design)

Monitoring

Promethus connector

[Graph Computing] (TODO: in coding)

Test

Chaos Test

Backup & Restore

Select the latest version of X.Y.*  which is the same as the core version.

Compatibility

Nebula Graph version Language (commit id)

2.6.0 C++FF
08

FF
0900e2625

2.6.0 Go FF
08

FF
0902eb246

2.6.0 PythonFF
08

FF
09f9e8b11

2.6.0 Java FF
08

FF
098e171e4

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Last update: November 19, 2021 

19.3.12 API, SDK

- 623/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/v2.5.0
https://github.com/vesoft-inc/nebula-go/tree/v2.6.0
https://github.com/vesoft-inc/nebula-python/tree/v2.6.0
https://github.com/vesoft-inc/nebula-java/tree/v2.6.0
https://github.com/vesoft-inc/nebula-rust
https://github.com/vesoft-inc/nebula-node
https://github.com/vesoft-inc/nebula-http-gateway
https://github.com/vesoft-inc/nebula-stats-exporter
https://github.com/vesoft-inc/nebula-chaos


19.4 Import tools

There are many ways to write Nebula Graph 2.6.0:

Import with the command -f: This method imports a small number of prepared nGQL files, which is suitable to prepare for a

small amount of manual test data.

Import with Studio: This method uses a browser to import multiple csv files of this machine. A single file cannot exceed 100

MB, and its format is limited.

Import with Importer: This method imports multiple csv files on a single machine with unlimited size and flexible format.

Import with Exchange: This method imports from various distribution sources, such as Neo4j, Hive, MySQL, etc., which

requires a Spark cluster.

Import with Spark-connector/Flink-connector: This method has corresponding components (Spark/Flink) and writes a small

amount of code.

Import with C++/GO/Java/Python SDK: This method imports in the way of writing programs, which requires certain

programming and tuning skills.

The following figure shows the positions of these ways:

• 

• 

• 

• 

• 

• 

Last update: September 6, 2021 

19.4 Import tools

- 624/629 - 2021 Vesoft Inc.



19.5 How to Contribute

19.5.1 Before you get started

Commit an issue on the github or forum

You are welcome to contribute any code or files to the project. But firstly we suggest you raise an issue on the github or the forum

to start a discussion with the community. Check through the topic for Github.

Sign the Contributor License Agreement (CLA)

What is CLA?

Here is the vesoft inc. Contributor License Agreement.

Click the Sign in with GitHub to agree button to sign the CLA.

If you have any questions, send an email to info@vesoft.com .

19.5.2 Modify a single document

This manual is written in the Markdown language. Click the pencil  icon on the right of the document title to commit the

modification.

This method applies to modify a single document only.

19.5.3 Batch modify or add files

This method applies to contribute codes, modify multiple documents in batches, or add new documents.

19.5.4 Step 1: Fork in the github.com

The Nebula Graph project has many repositories. Take the nebula-graph repository for example:

Visit https://github.com/vesoft-inc/nebula.

Click the Fork  button to establish an online fork.

19.5.5 Step 2: Clone Fork to Local Storage

Define a local working directory.

Set user  to match the Github profile name.

Create your clone.

1. 

2. 

1. 

# Define the working directory.
working_dir=$HOME/Workspace

2. 

user={the Github profile name}

3. 

mkdir -p $working_dir
cd $working_dir
git clone https://github.com/$user/nebula-graph.git
# or: git clone git@github.com:$user/nebula-graph.git

cd $working_dir/nebula
git remote add upstream https://github.com/vesoft-inc/nebula.git
# or: git remote add upstream git@github.com:vesoft-inc/nebula.git

# Never push to upstream master since you do not have write access.
git remote set-url --push upstream no_push

# Confirm that the remote branch is valid.
# The correct format is:

19.5 How to Contribute

- 625/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/
https://www.apache.org/licenses/contributor-agreements.html
https://cla-assistant.io/vesoft-inc/
https://github.com/vesoft-inc
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula


(Optional) Define a pre-commit hook.

Please link the Nebula Graph pre-commit hook into the .git  directory.

This hook checks the commits for formatting, building, doc generation, etc.

Sometimes, the pre-commit hook cannot be executed. You have to execute it manually.

19.5.6 Step 3: Branch

Get your local master up to date.

Checkout a new branch from master.

19.5.7 Step 4: Develop

Code style

# origin    git@github.com:$(user)/nebula-graph.git (fetch)
# origin    git@github.com:$(user)/nebula-graph.git (push)
# upstream  https://github.com/vesoft-inc/nebula (fetch)
# upstream  no_push (push)
git remote -v

4. 

cd $working_dir/nebula-graph/.git/hooks
ln -s $working_dir/nebula-graph/.linters/cpp/hooks/pre-commit.sh .

cd $working_dir/nebula-graph/.git/hooks
chmod +x pre-commit

1. 

cd $working_dir/nebula
git fetch upstream
git checkout master
git rebase upstream/master

2. 

git checkout -b myfeature

Because the PR often consists of several commits, which might be squashed while being merged into upstream. We strongly suggest

you to open a separate topic branch to make your changes on. After merged, this topic branch can be just abandoned, thus you could

synchronize your master branch with upstream easily with a rebase like above. Otherwise, if you commit your changes directly into

master, you need to use a hard reset on the master branch. For example:

Note

git fetch upstream
git checkout master
git reset --hard upstream/master
git push --force origin master

• 

19.5.6 Step 3: Branch

- 626/629 - 2021 Vesoft Inc.



Nebula Graph adopts cpplint  to make sure that the project conforms to Google's coding style guides. The checker will be

implemented before the code is committed.

Unit tests requirements

Please add unit tests for the new features or bug fixes.

Build your code with unit tests enabled

For more information, see Install Nebula Graph by compiling the source code.

Run tests

In the root directory of nebula , run the following command:

19.5.8 Step 5: Bring Your Branch Update to Date

Users need to bring the head branch up to date after other contributors merge PR to the base branch.

19.5.9 Step 6: Commit

Commit your changes.

Users can use the command --amend  to re-edit the previous code.

19.5.10 Step 7: Push

When ready to review or just to establish an offsite backup, push your branch to your fork on github.com :

19.5.11 Step 8: Create a Pull Request

Visit your fork at https://github.com/$user/nebula-graph  (replace $user  here).

Click the Compare & pull request  button next to your myfeature  branch.

19.5.12 Step 9: Get a Code Review

Once your pull request has been created, it will be assigned to at least two reviewers. Those reviewers will do a thorough code

review to make sure that the changes meet the repository's contributing guidelines and other quality standards.

19.5.13 Add test cases

For detailed methods, see How to add test cases.

• 

• 

Make sure you have enabled the building of unit tests by setting -DENABLE_TESTING=ON .

Note

• 

cd nebula/build
ctest -j$(nproc)

# While on your myfeature branch.
git fetch upstream
git rebase upstream/master

git commit -a

git push origin myfeature

1. 

2. 

19.5.8 Step 5: Bring Your Branch Update to Date

- 627/629 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/tests/README.md#how-to-add-test-case


19.5.14 Donation

Step 1: Confirm the project donation

Contact the official Nebula Graph staff via email, WeChat, Slack, etc. to confirm the donation project. The project will be donated to

the Nebula Contrib organization.

Email address: info@vesoft.com

WeChat: NebulaGraphbot

Slack: Join Slack

Step 2: Get the information of the project recipient

The Nebula Graph official staff will give the recipient ID of the Nebula Contrib project.

Step 3: Donate a project

The user transfers the project to the recipient of this donation, and the recipient transfers the project to the Nebula Contrib

organization. After the donation, the user will continue to lead the development of community projects as a Maintainer.

For operations of transferring a repository on GitHub, see Transferring a repository owned by your user account.

Last update: September 6, 2021 

19.5.14 Donation

- 628/629 - 2021 Vesoft Inc.

https://join.slack.com/t/nebulagraph/shared_invite/zt-7ybejuqa-NCZBroh~PCh66d9kOQj45g
https://docs.github.com/en/enterprise-server@3.0/github/administering-a-repository/managing-repository-settings/transferring-a-repository#transferring-a-repository-owned-by-your-user-account


 

https://docs.nebula-graph.io/2.6.0  

Nebula Graph Database Manual 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.6.0
https://docs.nebula-graph.io/2.6.0
https://docs.nebula-graph.io/2.6.0
https://docs.nebula-graph.io/2.6.0
https://docs.nebula-graph.io/2.6.0
https://docs.nebula-graph.io/2.6.0

	Nebula Graph Database Manual
	1. About
	2. Introduction
	2.1 What is Nebula Graph
	2.1.1 What is a graph database
	2.1.2 Benefits of Nebula Graph
	Open-source
	Outstanding performance
	High scalability
	Developer friendly
	Reliable access control
	Diversified ecosystem
	OpenCypher-compatible query language
	Future-oriented hardware with balanced reading and writing
	Easy data modeling and high flexibility
	High popularity

	2.1.3 Use cases
	Fraud detection
	Real-time recommendation
	Intelligent question-answer system
	Social networking

	2.1.4 Related links

	2.2 Data modeling
	2.2.1 Data structures
	2.2.2 Directed property graph

	2.3 Path types
	2.3.1 Walk
	2.3.2 Trail
	2.3.3 Path

	2.4 VID
	2.4.1 Features
	2.4.2 VID Operation
	2.4.3 VID Generation
	2.4.4 Define and modify the data type of VIDs
	2.4.5 Query start vid and global scan

	2.5 Nebula Graph architecture
	2.5.1 Architecture overview
	The Meta Service
	The Graph Service and the Storage Service

	2.5.2 Meta Service
	The architecture of the Meta Service
	Functions of the Meta Service
	MANAGES USER ACCOUNTS
	MANAGES PARTITIONS
	MANAGES GRAPH SPACES
	MANAGES SCHEMA INFORMATION
	MANAGES TTL-BASED DATA EVICTION
	MANAGES JOBS


	2.5.3 Graph Service
	The architecture of Graph Service
	Parser
	Validator
	Planner
	Executor
	Source code hierarchy

	2.5.4 Storage Service
	Advantages
	The architecture of Storage Service
	KVStore
	Data storage formats
	PROPERTY DESCRIPTIONS

	Data partitioning
	EDGE AND STORAGE AMPLIFICATION
	PARTITION ALGORITHM

	Raft
	RAFT IMPLEMENTATION
	MULTI GROUP RAFT
	BATCH
	LISTENER
	TRANSFER LEADERSHIP
	PEER CHANGES

	Differences with HDFS



	3. Quick start
	3.1 Quick start workflow
	3.1.1 Documents

	3.2 Step 1: Install Nebula Graph
	3.2.1 Prerequisites
	3.2.2 Download the package from cloud service
	3.2.3 Install Nebula Graph
	3.2.4 What's next

	3.3 Step 2: Manage Nebula Graph Service
	3.3.1 Syntax
	3.3.2 Start Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.3 Stop Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.4 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.5 What's next

	3.4 Step 3: Connect to Nebula Graph
	3.4.1 Nebula Graph clients
	3.4.2 Use Nebula Console to connect to Nebula Graph
	Prerequisites
	Steps

	3.4.3 Nebula Console commands
	Export a CSV file
	Export a DOT file
	Importing a testing dataset
	Run a command multiple times
	Sleep to wait

	3.4.4 Disconnect Nebula Console from Nebula Graph
	3.4.5 FAQ
	How can I install Nebula Console from the source code


	3.5 Step 4: Use nGQL (CRUD)
	3.5.1 Graph space and Nebula Graph schema
	3.5.2 Check the machine status in the Nebula Graph cluster
	Asynchronous implementation of creation and alteration

	3.5.3 Create and use a graph space
	nGQL syntax
	Examples

	3.5.4 Create tags and edge types
	nGQL syntax
	Examples

	3.5.5 Insert vertices and edges
	nGQL syntax
	Examples

	3.5.6 Read data
	nGQL syntax
	Examples of GO statement
	Example of FETCH statement

	3.5.7 Update vertices and edges
	nGQL syntax
	Examples

	3.5.8 Delete vertices and edges
	nGQL syntax
	Examples

	3.5.9 About indexes
	nGQL syntax
	Examples of LOOKUP and MATCH (index-based)


	3.6 nGQL cheatsheet
	3.6.1 Functions
	3.6.2 General queries statements
	3.6.3 Clauses and options
	3.6.4 Space statements
	3.6.5 TAG statements
	3.6.6 Edge type statements
	3.6.7 Vertex statements
	3.6.8 Edge statements
	3.6.9 Index
	3.6.10 Subgraph and path statements
	3.6.11 Query tuning statements
	3.6.12 Operation and maintenance statements


	4. nGQL guide
	4.1 nGQL overview
	4.1.1 Nebula Graph Query Language (nGQL)
	What is nGQL
	What can nGQL do
	Example data Basketballplayer
	Placeholder identifiers and values
	About openCypher compatibility
	NATIVE NGQL AND OPENCYPHER
	IS NGQL COMPATIBLE WITH OPENCYPHER 9 COMPLETELY?
	WHAT ARE THE MAJOR DIFFERENCES BETWEEN NGQL AND OPENCYPHER 9?
	WHERE CAN I FIND MORE NGQL EXAMPLES?
	DOES IT SUPPORT TINKERPOP GREMLIN?
	DOES NEBULA GRAPH SUPPORT W3C RDF (SPARQL) OR GRAPHQL?


	4.1.2 Patterns
	Patterns for vertices
	Patterns for related vertices
	Patterns for tags
	Patterns for properties
	Patterns for edges
	Variable-length pattern
	Assigning to path variables

	4.1.3 Comments
	Legacy version compatibility
	Examples
	OpenCypher compatibility

	4.1.4 Identifier case sensitivity
	Identifiers are Case-Sensitive
	Keywords and Reserved Words are Case-Insensitive
	Functions are Case-Insensitive

	4.1.5 Keywords
	Reserved keywords
	Non-reserved keywords

	4.1.6 nGQL style guide
	Newline
	Identifier naming
	Pattern
	String
	Statement termination


	4.2 Data types
	4.2.1 Numeric types
	Integer
	Floating-point number
	Reading and writing of data values

	4.2.2 Boolean
	4.2.3 String
	Declaration and literal representation
	String reading and writing
	Escape characters
	OpenCypher compatibility

	4.2.4 Date and time types
	OpenCypher Compatibility
	DATE
	TIME
	DATETIME
	TIMESTAMP
	Examples

	4.2.5 NULL
	Logical operations with NULL
	OpenCypher compatibility
	COMPARISONS WITH NULL
	OPERATIONS AND RETURN WITH NULL

	Examples
	USE NOT NULL
	USE NOT NULL AND SET THE DEFAULT


	4.2.6 Lists
	List operations
	INDEX SYNTAX

	Examples
	OpenCypher compatibility

	4.2.7 Sets
	OpenCypher compatibility

	4.2.8 Maps
	Literal maps
	OpenCypher compatibility

	4.2.9 Type Conversion/Type coercions
	Legacy version compatibility
	Type coercions functions
	Examples

	4.2.10 Geography
	Type description
	Examples


	4.3 Variables and composite queries
	4.3.1 Composite queries (clause structure)
	OpenCypher compatibility
	Composite queries are not transactional queries (as in SQL/Cypher)
	Examples

	4.3.2 User-defined variables
	OpenCypher compatibility
	Native nGQL
	Example

	4.3.3 Property reference
	Property reference for vertex
	FOR SOURCE VERTEX
	FOR DESTINATION VERTEX

	Property reference for edge
	FOR USER-DEFINED EDGE PROPERTY
	FOR BUILT-IN PROPERTIES

	Examples


	4.4 Operators
	4.4.1 Comparison operators
	OpenCypher compatibility
	Examples
	==
	>
	>=
	<
	<=
	!=
	IS [NOT] NULL
	IS [NOT] EMPTY


	4.4.2 Boolean operators
	Legacy version compatibility

	4.4.3 Pipe operators
	OpenCypher compatibility
	Syntax
	Examples
	Performance tips

	4.4.4 Reference operators
	OpenCypher compatibility
	Reference operator List
	Examples

	4.4.5 Set operators
	OpenCypher compatibility
	UNION, UNION DISTINCT, and UNION ALL
	EXAMPLES

	INTERSECT
	EXAMPLE

	MINUS
	EXAMPLE

	Precedence of the set operators and pipe operators
	EXAMPLES


	4.4.6 String operators
	Examples
	+
	CONTAINS
	(NOT) IN
	(NOT) STARTS WITH
	(NOT) ENDS WITH
	REGULAR EXPRESSIONS


	4.4.7 List operators
	Examples

	4.4.8 Operator precedence
	Examples
	OpenCypher compatibility


	4.5 Functions and expressions
	4.5.1 Built-in math functions
	Function descriptions
	Example

	4.5.2 Built-in string functions
	Explanations for the return of substr() and substring()

	4.5.3 Built-in date and time functions
	OpenCypher compatibility
	Examples

	4.5.4 Schema functions
	For nGQL statements
	For statements compatible with openCypher
	Examples

	4.5.5 CASE expressions
	The simple form of CASE expressions
	SYNTAX
	EXAMPLES

	The generic form of CASE expressions
	SYNTAX
	EXAMPLES

	Differences between the simple form and the generic form

	4.5.6 List functions
	Examples

	4.5.7 count() function
	Syntax
	EXAMPLES


	4.5.8 collect()
	Examples

	4.5.9 reduce() function
	OpenCypher Compatibility
	Syntax
	Examples

	4.5.10 hash function
	Legacy version compatibility
	Hash a number
	Hash a string
	Hash a list
	Hash a boolean
	Hash NULL
	Hash an expression

	4.5.11 concat function
	concat() function
	SYNTAX
	EXAMPLES

	concat_ws() function
	SYNTAX
	EXAMPLES


	4.5.12 Predicate functions
	Syntax
	Examples

	4.5.13 Geography functions
	Descriptions
	Examples

	4.5.14 User-defined functions
	OpenCypher compatibility


	4.6 General queries statements
	4.6.1 MATCH
	Syntax
	The workflow of MATCH
	OpenCypher compatibility
	Using patterns in MATCH statements
	PREREQUISITES
	MATCH VERTICES
	MATCH TAGS
	MATCH VERTEX PROPERTIES
	MATCH VIDS
	MATCH CONNECTED VERTICES
	MATCH PATHS
	MATCH EDGES
	MATCH EDGE TYPES
	MATCH EDGE TYPE PROPERTIES
	MATCH MULTIPLE EDGE TYPES
	MATCH MULTIPLE EDGES
	MATCH FIXED-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

	Common retrieving operations
	RETRIEVE VERTEX OR EDGE INFORMATION
	RETRIEVE VIDS
	RETRIEVE TAGS
	RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE
	RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE
	RETRIEVE EDGE TYPES
	RETRIEVE PATHS
	RETRIEVE VERTICES IN A PATH
	RETRIEVE EDGES IN A PATH
	RETRIEVE PATH LENGTH


	4.6.2 LOOKUP
	OpenCypher compatibility
	Precautions
	Prerequisites
	Syntax
	Limitations of using WHERE in LOOKUP
	Retrieve vertices
	Retrieve edges
	List vertices or edges with a tag or an edge type
	Count the numbers of vertices or edges

	4.6.3 GO
	OpenCypher compatibility
	Syntax
	Examples

	4.6.4 FETCH
	OpenCypher Compatibility
	Fetch vertex properties
	SYNTAX
	FETCH VERTEX PROPERTIES BY ONE TAG
	FETCH SPECIFIC PROPERTIES OF A VERTEX
	FETCH PROPERTIES OF MULTIPLE VERTICES
	FETCH VERTEX PROPERTIES BY MULTIPLE TAGS
	FETCH VERTEX PROPERTIES BY ALL TAGS

	Fetch edge properties
	SYNTAX
	FETCH ALL PROPERTIES OF AN EDGE
	FETCH SPECIFIC PROPERTIES OF AN EDGE
	FETCH PROPERTIES OF MULTIPLE EDGES

	Fetch properties based on edge rank
	Use FETCH in composite queries

	4.6.5 UNWIND
	Syntax
	Split a list
	Return a list with distinct items
	EXAMPLE 1

	Example 2

	4.6.6 SHOW
	SHOW CHARSET
	SYNTAX
	EXAMPLE

	SHOW COLLATION
	SYNTAX
	EXAMPLE

	SHOW CREATE SPACE
	SYNTAX
	EXAMPLE

	SHOW CREATE TAG/EDGE
	SYNTAX
	EXAMPLES

	SHOW HOSTS
	SYNTAX
	EXAMPLES

	SHOW INDEX STATUS
	SYNTAX
	EXAMPLES
	RELATED TOPICS

	SHOW INDEXES
	SYNTAX
	EXAMPLES

	SHOW PARTS
	SYNTAX
	EXAMPLES

	SHOW ROLES
	SYNTAX
	EXAMPLE

	SHOW SNAPSHOTS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	SHOW SPACES
	SYNTAX
	EXAMPLE

	SHOW STATS
	PREREQUISITES
	SYNTAX
	EXAMPLES

	SHOW TAGS/EDGES
	SYNTAX
	EXAMPLES

	SHOW USERS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	SHOW SESSIONS
	PRECAUTIONS
	SYNTAX
	EXAMPLES

	SHOW QUERIES
	PRECAUTIONS
	SYNTAX
	EXAMPLES

	SHOW META LEADER
	SYNTAX
	EXAMPLE



	4.7 Clauses and options
	4.7.1 GROUP BY
	OpenCypher Compatibility
	Syntax
	Examples
	Group and calculate with functions

	4.7.2 LIMIT AND SKIP
	LIMIT in native nGQL statements
	GENERAL LIMIT SYNTAX IN NATIVE NGQL STATEMENTS
	LIMIT IN GO STATEMENTS

	LIMIT in openCypher compatible statements
	EXAMPLES OF LIMIT
	EXAMPLES OF SKIP
	EXAMPLE OF SKIP AND LIMIT


	4.7.3 SAMPLE
	4.7.4 ORDER BY
	Native nGQL Syntax
	EXAMPLES

	OpenCypher Syntax
	EXAMPLES

	Order of NULL values

	4.7.5 RETURN
	OpenCypher compatibility
	Legacy version compatibility
	Map order description
	Return vertices
	Return edges
	Return properties
	Return all elements
	Rename a field
	Return a non-existing property
	Return expression results
	Return unique fields

	4.7.6 TTL
	OpenCypher Compatibility
	Precautions
	Data expiration and deletion
	VERTEX PROPERTY EXPIRATION
	EDGE PROPERTY EXPIRATION
	DATA DELETION

	TTL options
	Use TTL options
	SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS
	SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

	Remove a timeout

	4.7.7 WHERE
	OpenCypher compatibility
	Basic usage
	DEFINE CONDITIONS WITH BOOLEAN OPERATORS
	FILTER ON PROPERTIES
	FILTER ON DYNAMICALLY-CALCULATED PROPERTIES
	FILTER ON EXISTING PROPERTIES
	FILTER ON EDGE RANK

	Filter on strings
	STARTS WITH
	ENDS WITH
	CONTAINS
	NEGATIVE STRING MATCHING

	Filter on lists
	MATCH VALUES IN A LIST
	MATCH VALUES NOT IN A LIST


	4.7.8 YIELD
	OpenCypher compatibility
	YIELD clauses
	SYNTAX
	USE A YIELD CLAUSE IN A STATEMENT

	YIELD statements
	SYNTAX
	USE A YIELD STATEMENT IN A COMPOSITE QUERY
	USE A STANDALONE YIELD STATEMENT


	4.7.9 WITH
	OpenCypher compatibility
	Combine statements and form a composite query
	EXAMPLE 1
	EXAMPLE 2

	Filter composite queries
	Process the output before using collect()
	Use with RETURN


	4.8 Space statements
	4.8.1 CREATE SPACE
	Prerequisites
	Syntax
	CREATE GRAPH SPACES
	CLONE GRAPH SPACES

	Examples
	Implementation of the operation
	Check partition distribution

	4.8.2 USE
	Prerequisites
	Syntax
	Examples

	4.8.3 SHOW SPACES
	Syntax
	Example

	4.8.4 DESCRIBE SPACE
	Syntax
	Example

	4.8.5 DROP SPACE
	Prerequisites
	Syntax


	4.9 Tag statements
	4.9.1 CREATE TAG
	OpenCypher compatibility
	Prerequisites
	Syntax
	EXAMPLES

	Implementation of the operation

	4.9.2 DROP TAG
	Prerequisites
	Syntax
	Example

	4.9.3 ALTER TAG
	Prerequisites
	Syntax
	Examples
	Implementation of the operation

	4.9.4 SHOW TAGS
	Syntax
	Examples

	4.9.5 DESCRIBE TAG
	Prerequisite
	Syntax
	Example

	4.9.6 DELETE TAG
	Prerequisites
	Syntax
	Example

	4.9.7 Add and delete tags
	Examples


	4.10 Edge type statements
	4.10.1 CREATE EDGE
	OpenCypher compatibility
	Prerequisites
	Syntax
	EXAMPLES

	Implementation of the operation

	4.10.2 DROP EDGE
	Prerequisites
	Syntax
	Edge type name
	Example

	4.10.3 ALTER EDGE
	Prerequisites
	Syntax
	Example
	Implementation of the operation

	4.10.4 SHOW EDGES
	Syntax
	Example

	4.10.5 DESCRIBE EDGE
	Prerequisites
	Syntax
	Example


	4.11 Vertex statements
	4.11.1 INSERT VERTEX
	Prerequisites
	Syntax
	Examples

	4.11.2 DELETE VERTEX
	Syntax
	Examples
	Delete the process and the related edges

	4.11.3 UPDATE VERTEX
	Syntax
	Example

	4.11.4 UPSERT VERTEX
	Syntax
	Insert a vertex if it does not exist
	Update a vertex if it exists


	4.12 Edge statements
	4.12.1 INSERT EDGE
	Syntax
	Examples

	4.12.2 DELETE EDGE
	Syntax
	Examples

	4.12.3 UPDATE EDGE
	Syntax
	Example

	4.12.4 UPSERT EDGE
	Syntax
	Insert an edge if it does not exist
	Update an edge if it exists


	4.13 Native index statements
	4.13.1 Index overview
	Native indexes
	OPERATIONS ON NATIVE INDEXES

	Full-text indexes
	OPERATIONS ON FULL-TEXT INDEXES

	Null values
	Range queries

	4.13.2 CREATE INDEX
	Prerequisites
	Must-read for using indexes
	Syntax
	Create tag/edge type indexes
	Create single-property indexes
	Create composite property indexes

	4.13.3 SHOW INDEXES
	Syntax
	Examples

	4.13.4 SHOW CREATE INDEX
	Syntax
	Examples

	4.13.5 DESCRIBE INDEX
	Syntax
	Examples

	4.13.6 REBUILD INDEX
	Syntax
	Examples
	Legacy version compatibility

	4.13.7 SHOW INDEX STATUS
	Syntax
	Example

	4.13.8 DROP INDEX
	Prerequisite
	Syntax
	Example


	4.14 Full-text index statements
	4.14.1 Full-text index restrictions
	4.14.2 Deploy full-text index
	Precaution
	Deploy Elasticsearch cluster
	Sign in to the text search clients
	SYNTAX
	EXAMPLE

	Show text search clients
	SYNTAX
	EXAMPLE

	Sign out to the text search clients
	SYNTAX
	EXAMPLE


	4.14.3 Deploy Raft Listener for Nebula Storage service
	Prerequisites
	Precautions
	Deployment process
	STEP 1: INSTALL THE STORAGE SERVICE
	STEP 2: PREPARE THE CONFIGURATION FILE FOR THE LISTENER
	STEP 3: START LISTENERS
	STEP 4: ADD LISTENERS TO NEBULA GRAPH

	Show Listeners
	EXAMPLE

	Remove Listeners
	EXAMPLE

	Next

	4.14.4 Full-text indexes
	Prerequisite
	Precaution
	Natural language full-text search
	Syntax
	CREATE FULL-TEXT INDEXES
	SHOW FULL-TEXT INDEXES
	REBUILD FULL-TEXT INDEXES
	DROP FULL-TEXT INDEXES
	USE QUERY OPTIONS

	Examples


	4.15 Subgraph and path
	4.15.1 GET SUBGRAPH
	Syntax
	Examples
	FAQ
	WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT GREATER THAN STEP_COUNT?
	WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT LOWER THAN STEP_COUNT?


	4.15.2 FIND PATH
	Syntax
	Limitations
	Examples
	FAQ
	DOES IT SUPPORT THE WHERE CLAUSE TO ACHIEVE CONDITIONAL FILTERING DURING GRAPH TRAVERSAL?



	4.16 Query tuning statements
	4.16.1 EXPLAIN and PROFILE
	Execution Plan
	Syntax
	Output formats
	The row format
	The dot format


	4.17 Operation and maintenance statements
	4.17.1 BALANCE syntax
	4.17.2 Job manager and the JOB statements
	SUBMIT JOB COMPACT
	EXAMPLE

	SUBMIT JOB FLUSH
	EXAMPLE

	SUBMIT JOB STATS
	EXAMPLE

	SHOW JOB
	EXAMPLE
	JOB STATUS

	SHOW JOBS
	EXAMPLE

	STOP JOB
	EXAMPLE

	RECOVER JOB
	EXAMPLE

	FAQ
	HOW TO TROUBLESHOOT JOB PROBLEMS?


	4.17.3 Kill queries
	Syntax
	Examples



	5. Deployment and installation
	5.1 Prepare resources for compiling, installing, and running Nebula Graph
	5.1.1 Reading guide
	5.1.2 Requirements for compiling the Nebula Graph source code
	Hardware requirements for compiling Nebula Graph
	Supported operating systems for compiling Nebula Graph
	Software requirements for compiling Nebula Graph
	Prepare software for compiling Nebula Graph

	5.1.3 Requirements and suggestions for installing Nebula Graph in test environments
	Hardware requirements for test environments
	Supported operating systems for test environments
	Suggested service architecture for test environments

	5.1.4 Requirements and suggestions for installing Nebula Graph in production environments
	Hardware requirements for production environments
	Supported operating systems for production environments
	Suggested service architecture for production environments

	5.1.5 Capacity requirements for running a Nebula Graph cluster
	5.1.6 FAQ
	About storage devices
	About CPU architecture


	5.2 Compile and install Nebula Graph
	5.2.1 Install Nebula Graph by compiling the source code
	Prerequisites
	Installation steps
	Update the master branch
	Next
	CMake variables
	USAGE OF CMAKE VARIABLES
	CMAKE_INSTALL_PREFIX
	ENABLE_WERROR
	ENABLE_TESTING
	ENABLE_ASAN
	CMAKE_BUILD_TYPE
	CMAKE_C_COMPILER/CMAKE_CXX_COMPILER
	ENABLE_CCACHE
	NEBULA_THIRDPARTY_ROOT

	Examine problems

	5.2.2 Install Nebula Graph with RPM or DEB package
	Prerequisites
	Download the package from cloud service
	Install Nebula Graph
	What's next

	5.2.3 Install Nebula graph with the tar.gz file
	Installation steps
	Next to do

	5.2.4 Deploy Nebula Graph with Docker Compose
	Prerequisites
	How to deploy and connect to Nebula Graph
	Check the Nebula Graph service status and ports
	Check the service data and logs
	Stop the Nebula Graph services
	Modify configurations
	FAQ
	HOW TO FIX THE DOCKER MAPPING TO EXTERNAL PORTS?
	HOW TO UPGRADE OR UPDATE THE DOCKER IMAGES OF NEBULA GRAPH SERVICES
	ERROR: TOOMANYREQUESTS WHEN DOCKER-COMPOSE PULL
	HOW TO UPDATE THE NEBULA CONSOLE CLIENT
	WHY CAN’T I CONNECT TO NEBULA GRAPH VIA PORT 3699 AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY (NEBULA GRAPH 2.0.0-RC)?
	WHY CAN'T I ACCESS THE DATA AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY? (JAN 4, 2021)
	WHY CAN'T I ACCESS THE DATA AFTER UPDATING THE NEBULA-DOCKER-COMPOSE REPOSITORY? (JAN 27, 2021)

	Related documents

	5.2.5 Deploy a Nebula Graph cluster with RPM/DEB package on multiple servers
	Deployment
	Prerequisites
	Manual deployment process
	STEP 1: INSTALL NEBULA GRAPH
	STEP 2: MODIFY THE CONFIGURATIONS
	STEP 3: START THE CLUSTER
	STEP 4: CHECK THE CLUSTER STATUS



	5.3 Manage Nebula Graph Service
	5.3.1 Syntax
	5.3.2 Start Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	5.3.3 Stop Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	5.3.4 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	5.3.5 What's next

	5.4 Connect to Nebula Graph
	5.4.1 Nebula Graph clients
	5.4.2 Use Nebula Console to connect to Nebula Graph
	Prerequisites
	Steps

	5.4.3 Nebula Console commands
	Export a CSV file
	Export a DOT file
	Importing a testing dataset
	Run a command multiple times
	Sleep to wait

	5.4.4 Disconnect Nebula Console from Nebula Graph
	5.4.5 FAQ
	How can I install Nebula Console from the source code


	5.5 Upgrade
	5.5.1 Upgrade Nebula Graph to v2.6.0
	Limitations
	Installation paths
	OLD INSTALLATION PATH
	NEW INSTALLATION PATH

	Upgrade steps
	Upgrade failure and rollback
	Appendix 1: Test Environment
	Appendix 2: Nebula Graph V2.0.0 code address and commit ID
	FAQ
	CAN I WRITE THROUGH THE CLIENT DURING THE UPGRADE?
	CAN I UPGRADE OTHER OLD VERSIONS EXCEPT FOR V1.2.X AND V2.0.0-RC TO V2.6.0?
	HOW TO UPGRADE IF A MACHINE HAS ONLY THE GRAPH SERVICE, BUT NOT THE STORAGE SERVICE?
	HOW TO RESOLVE THE ERROR PERMISSION DENIED?
	IS THERE ANY CHANGE IN GFLAGS?
	WHAT ARE THE DIFFERENCES BETWEEN DELETING DATA THEN INSTALLING THE NEW VERSION AND UPGRADING ACCORDING TO THIS TOPIC?
	IS THERE A TOOL OR SOLUTION FOR VERIFYING DATA CONSISTENCY AFTER THE UPGRADE?


	5.5.2 Upgrade Nebula Graph v2.0.x to v2.6.0
	Upgrade steps with RPM/DEB packages
	Upgrade steps by compiling the new source code
	Upgrade steps by deploying Docker Compose


	5.6 Uninstall Nebula Graph
	5.6.1 Prerequisite
	5.6.2 Step 1: Delete data files of the Storage and Meta Services
	5.6.3 Step 2: Delete the installation directories
	Uninstall Nebula Graph deployed with source code
	Uninstall Nebula Graph deployed with RPM packages
	Uninstall Nebula Graph deployed with DEB packages
	Uninstall Nebula Graph deployed with Docker Compose



	6. Configurations and logs
	6.1 Configurations
	6.1.1 Configurations
	Get the configuration list and descriptions
	Get configurations
	Configuration files
	Modify configurations

	6.1.2 Meta Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Storage configurations
	Misc configurations
	RocksDB options configurations

	6.1.3 Graph Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Query configurations
	Networking configurations
	Charset and collate configurations
	Authorization configurations
	Memory configurations
	Experimental configurations
	EXPERIMENTAL FEATURES


	6.1.4 Storage Service configurations
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Raft configurations
	Disk configurations
	misc configurations
	RocksDB options
	For super-Large vertices
	Storage configurations for large dataset

	6.1.5 Kernel configurations
	Resource control
	ULIMIT PRECAUTIONS
	ULIMIT -C
	ULIMIT -N

	Memory
	VM.SWAPPINESS
	VM.MIN_FREE_KBYTES
	VM.MAX_MAP_COUNT
	VM.DIRTY_*
	TRANSPARENT HUGE PAGE

	Networking
	NET.IPV4.TCP_SLOW_START_AFTER_IDLE
	NET.CORE.SOMAXCONN
	NET.IPV4.TCP_MAX_SYN_BACKLOG
	NET.CORE.NETDEV_MAX_BACKLOG
	NET.IPV4.TCP_KEEPALIVE_*
	NET.IPV4.TCP_RMEM/WMEM
	SCHEDULER

	Other parameters
	KERNEL.CORE_PATTERN

	Modify parameters
	SYSCTL
	PRLIMIT



	6.2 Log management
	6.2.1 Logs
	Log directory
	Parameter descriptions
	Check the severity level
	Change the severity level
	RocksDB logs



	7. Monitor and metrics
	7.1 Query Nebula Graph metrics
	7.1.1 Metrics
	7.1.2 Query metrics over HTTP
	Syntax
	Examples


	7.2 RocksDB statistics
	7.2.1 Enable RocksDB
	7.2.2 Get RocksDB statistics
	7.2.3 Examples


	8. Data security
	8.1 Authentication and authorization
	8.1.1 Authentication
	Local authentication
	ENABLE LOCAL AUTHENTICATION

	LDAP authentication
	ENABLE LDAP AUTHENTICATION


	8.1.2 User management
	CREATE USER
	GRANT ROLE
	REVOKE ROLE
	SHOW ROLES
	CHANGE PASSWORD
	ALTER USER
	DROP USER
	SHOW USERS

	8.1.3 Roles and privileges
	Built-in roles
	Role privileges and allowed nGQL

	8.1.4 OpenLDAP authentication
	Authentication method
	SIMPLEBINDAUTH
	SEARCHBINDAUTH

	Prerequisites
	Procedures


	8.2 Backup and restore data with snapshots
	8.2.1 Prerequisites
	8.2.2 Precautions
	8.2.3 Snapshot form and path
	8.2.4 Create snapshots
	8.2.5 View snapshots
	8.2.6 Delete snapshots
	8.2.7 Restore data with snapshots

	8.3 Group&Zone
	8.3.1 Background
	8.3.2 Scenarios
	8.3.3 Precautions
	8.3.4 Syntax
	ADD ZONE
	ADD HOST...INTO ZONE
	DROP HOST...FROM ZONE
	SHOW ZONES
	DESCRIBE ZONE
	DROP ZONE
	ADD GROUP
	ADD ZONE...INTO GROUP
	DROP ZONE...FROM GROUP
	SHOW GROUPS
	DESCRIBE GROUP
	DROP GROUP


	8.4 SSL encryption
	8.4.1 Precaution
	8.4.2 Parameters
	8.4.3 Certificate modes
	8.4.4 Encryption policies
	8.4.5 Steps


	9. Practices
	9.1 Compaction
	9.1.1 Automatic compaction
	9.1.2 Full compaction
	9.1.3 Operation suggestions
	9.1.4 FAQ
	"Where are the logs related to Compaction stored?"
	"Can I do full compactions for multiple graph spaces at the same time?"
	"How much time does it take for full compactions?"
	"Can I modify --rate_limit dynamically?"
	"Can I stop a full compaction after it starts?"


	9.2 Storage load balance
	9.2.1 Balance partition distribution
	Examples

	9.2.2 Stop data balancing
	9.2.3 RESET a balance task
	9.2.4 Remove storage servers
	Example

	9.2.5 Balance leader distribution
	Example


	9.3 Graph data modeling suggestions
	9.3.1 Model for performance
	Design and evaluate the most important queries
	No predefined bonds between Tags and Edge types
	Tags/Edge types predefine a set of properties
	Control changes in the business model and the data model
	Breadth-first traversal over depth-first traversal
	Edge directions
	Set tag properties appropriately
	Use indexes correctly
	Design VIDs appropriately
	Long texts

	9.3.2 Dynamic graphs (sequence graphs) are not supported

	9.4 System design suggestions
	9.4.1 QPS or low-latency first
	9.4.2 Horizontal or vertical scaling
	9.4.3 Data transmission and optimization
	9.4.4 Query preheating and data preheating

	9.5 Execution plan
	9.6 Processing super vertices
	9.6.1 Principle introduction
	Indexes for duplicate properties
	Suggested solutions
	SOLUTIONS AT THE DATABASE END
	SOLUTIONS AT THE APPLICATION END



	9.7 Best practices
	9.7.1 Scenarios
	9.7.2 Kernel
	9.7.3 Ecosystem tool


	10. Client
	10.1 Clients overview
	10.2 Nebula CPP
	10.2.1 Prerequisites
	10.2.2 Compatibility with Nebula Graph
	10.2.3 Install Nebula CPP
	10.2.4 Use Nebula CPP
	Core of the example code


	10.3 Nebula Java
	10.3.1 Prerequisites
	10.3.2 Compatibility with Nebula Graph
	10.3.3 Download Nebula Java
	10.3.4 Use Nebula Java
	Core of the example code


	10.4 Nebula Python
	10.4.1 Prerequisites
	10.4.2 Compatibility with Nebula Graph
	10.4.3 Install Nebula Python
	Install Nebula Python with pip
	Install Nebula Python from the source code

	10.4.4 Core of the example code
	Connect to the Graph Service
	Connect to the Storage Server


	10.5 Nebula Go
	10.5.1 Prerequisites
	10.5.2 Compatibility with Nebula Graph
	10.5.3 Download Nebula Go
	10.5.4 Install or update
	10.5.5 Core of the example code


	11. Nebula Graph Studio
	11.1 Change Log
	11.1.1 v3.1.0 (2021.10.29)
	11.1.2 v3.0.0 (2021.08.13)

	11.2 About Nebula Graph Studio
	11.2.1 What is Nebula Graph Studio
	Released versions
	Features
	Scenarios
	Authentication

	11.2.2 Explanations of terms
	11.2.3 Limitations
	Nebula Graph versions
	Architecture
	Upload data
	Data backup
	nGQL statements
	Browser

	11.2.4 Check updates
	11.2.5 Shortcuts

	11.3 Deploy and connect
	11.3.1 Deploy Studio
	RPM-based Studio
	PREREQUISITES
	INSTALL
	UNINSTALL
	EXCEPTION HANDLING

	tar-based Studio
	PREREQUISITES
	INSTALL
	PROCEDURE
	STOP SERVICE

	Docker-based Studio
	PREREQUISITES
	PROCEDURE

	Next to do

	11.3.2 Deploy Studio with Helm
	Prerequisites
	Install
	Uninstall
	Next to do
	Configuration

	11.3.3 Connect to Nebula Graph
	Prerequisites
	Procedure
	Next to do

	11.3.4 Clear connection
	Clear connection


	11.4 Quick start
	11.4.1 Design a schema
	11.4.2 Create a schema
	Prerequisites
	Create a schema with Schema
	Create a schema with Console
	Next to do

	11.4.3 Import data
	Prerequisites
	Procedure
	Next to do

	11.4.4 Query graph data

	11.5 Operation guide
	11.5.1 Use Schema
	Operate graph spaces
	STUDIO VERSION
	PREREQUISITES
	CREATE A GRAPH SPACE
	DELETE A GRAPH SPACE
	NEXT TO DO

	Operate tags
	STUDIO VERSION
	PREREQUISITES
	CREATE A TAG
	EDIT A TAG
	DELETE A TAG
	NEXT TO DO

	Operate edge types
	STUDIO VERSION
	PREREQUISITES
	CREATE AN EDGE TYPE
	EDIT AN EDGE TYPE
	DELETE AN EDGE TYPE
	NEXT TO DO

	Operate Indexes
	STUDIO VERSION
	PREREQUISITES
	CREATE AN INDEX
	VIEW INDEXES
	DELETE AN INDEX


	11.5.2 Use Console
	Console
	Open in Explore
	SUPPORTED VERSIONS
	PREREQUISITES
	QUERY AND VISUALIZE EDGE DATA
	QUERY AND VISUALIZE VERTEX DATA
	NEXT TO DO

	View subgraphs
	STUDIO VERSION
	PREREQUISITES
	PROCEDURE
	NEXT TO DO



	11.6 Troubleshooting
	11.6.1 Connecting to the database error
	Problem description
	Possible causes and solutions
	STEP1: CONFIRM THAT THE FORMAT OF THE HOST FIELD IS CORRECT
	STEP2: CONFIRM THAT THE USERNAME AND PASSWORD ARE CORRECT
	STEP3: CONFIRM THAT NEBULA GRAPH SERVICE IS NORMAL
	STEP4: CONFIRM THE NETWORK CONNECTION OF THE GRAPH SERVICE IS NORMAL


	11.6.2 Cannot access to Studio
	Problem description
	Possible causes and solutions
	STEP1: CONFIRM SYSTEM ARCHITECTURE
	STEP2: CHECK IF THE STUDIO SERVICE STARTS NORMALLY
	STEP3: CONFIRM ADDRESS
	STEP4: CONFIRM NETWORK CONNECTION


	11.6.3 FAQ


	12. Nebula Importer
	12.1 Nebula Importer
	12.1.1 Scenario
	12.1.2 Advantage
	12.1.3 Prerequisites
	12.1.4 Steps
	Source code compile and run
	No network compilation mode
	Run in Docker mode

	12.1.5 Configuration File Description
	Basic configuration
	Client configuration
	File configuration
	FILE AND LOG CONFIGURATION
	SCHEMA CONFIGURATION


	12.1.6 About the CSV file header

	12.2 Configuration with Header
	12.2.1 Sample files
	12.2.2 Header format description
	12.2.3 Sample configuration

	12.3 Configuration without Header
	12.3.1 Sample files
	12.3.2 Sample configuration


	13. Nebula Exchange
	13.1 Introduction
	13.1.1 What is Nebula Exchange
	Scenarios
	Advantages
	Data source

	13.1.2 Limitations
	Nebula Graph releases
	Environment
	Software dependencies


	13.2 Compile Exchange
	13.2.1 Prerequisites
	13.2.2 Steps
	13.2.3 Failed to download the dependency package

	13.3 Exchange configurations
	13.3.1 Options for import
	13.3.2 Parameters in the configuration file
	Spark configurations
	Hive configurations (optional)
	Nebula Graph configurations
	Vertex configurations
	GENERAL PARAMETERS
	SPECIFIC PARAMETERS OF PARQUET/JSON/ORC DATA SOURCES
	SPECIFIC PARAMETERS OF CSV DATA SOURCES
	SPECIFIC PARAMETERS OF HIVE DATA SOURCES
	SPECIFIC PARAMETERS OF MAXCOMPUTE DATA SOURCES
	SPECIFIC PARAMETERS OF NEO4J DATA SOURCES
	SPECIFIC PARAMETERS OF MYSQL DATA SOURCES
	SPECIFIC PARAMETERS OF CLICKHOUSE DATA SOURCES
	SPECIFIC PARAMETERS OF HBASE DATA SOURCES
	SPECIFIC PARAMETERS OF PULSAR DATA SOURCES
	SPECIFIC PARAMETERS OF KAFKA DATA SOURCES
	SPECIFIC PARAMETERS OF SST DATA SOURCES

	Edge configurations
	GENERAL PARAMETERS



	13.4 Use Nebula Exchange
	13.4.1 Import data from CSV files
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: PROCESS CSV FILES
	STEP 3: MODIFY CONFIGURATION FILES
	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.2 Import data from JSON files
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: PROCESS JSON FILES
	STEP 3: MODIFY CONFIGURATION FILES
	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.3 Import data from ORC files
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: PROCESS ORC FILES
	STEP 3: MODIFY CONFIGURATION FILES
	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.4 Import data from Parquet files
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: PROCESS PARQUET FILES
	STEP 3: MODIFY CONFIGURATION FILES
	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.5 Import data from HBase
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.6 Import data from MySQL
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.7 Import data from ClickHouse
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.8 Import data from Neo4j
	Implementation method
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: CONFIGURING SOURCE DATA
	STEP 3: MODIFY CONFIGURATION FILES
	Exec configuration
	tags.vertex or edges.vertex configuration
	check_point_path configuration

	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.9 Import data from Hive
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: USE SPARK SQL TO CONFIRM HIVE SQL STATEMENTS
	STEP 3: MODIFY CONFIGURATION FILE
	STEP 4: IMPORT DATA INTO NEBULA GRAPH
	STEP 5: (OPTIONAL) VALIDATE DATA
	STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.10 Import data from MaxCompute
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.11 Import data from Pulsar
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.12 Import data from Kafka
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: MODIFY CONFIGURATION FILES
	STEP 3: IMPORT DATA INTO NEBULA GRAPH
	STEP 4: (OPTIONAL) VALIDATE DATA
	STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH


	13.4.13 Import data from SST files
	Precautions
	Background information
	Scenarios
	Implementation methods
	Data set
	Environment
	Prerequisites
	Steps
	STEP 1: CREATE THE SCHEMA IN NEBULA GRAPH
	STEP 2: PROCESS CSV FILES
	STEP 3: MODIFY CONFIGURATION FILES
	STEP 4: GENERATE THE SST FILE
	STEP 5: IMPORT THE SST FILE
	STEP 6: (OPTIONAL) VALIDATE DATA
	STEP 7: (OPTIONAL) REBUILD INDEXES IN NEBULA GRAPH



	13.5 Exchange FAQ
	13.5.1 Compilation
	Some packages not in central repository failed to download, error: Could not resolve dependencies for project xxx

	13.5.2 Execution
	How to submit in Yarn-Cluster mode?
	Error: method name xxx not found
	Error: NoSuchMethod, MethodNotFound (Exception in thread "main" java.lang.NoSuchMethodError, etc)
	When Exchange imports Hive data, error: Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found
	Run error: com.facebook.thrift.protocol.TProtocolException: Expected protocol id xxx
	Error: Exception in thread "main" com.facebook.thrift.protocol.TProtocolException: The field 'code' has been assigned the invalid value -4

	13.5.3 Configuration
	Which configuration fields will affect import performance?

	13.5.4 Others
	Which versions of Nebula Graph are supported by Exchange?
	What is the relationship between Exchange and Spark Writer?



	14. Nebula Operator
	14.1 What is Nebula Operator
	14.1.1 Concept of Nebula Operator
	14.1.2 How it works
	14.1.3 Features of Nebula Operator
	14.1.4 Limitations
	Version limitations
	Feature limitations


	14.2 Overview of using Nebula Operator
	14.3 Deploy Nebula Operator
	14.3.1 Background
	14.3.2 Prerequisites
	Install software
	Description of software

	14.3.3 Steps
	Install Nebula Operator
	Customize Helm charts
	Update Nebula Operator
	Upgrade Nebula Operator
	Uninstall Nebula Operator

	14.3.4 What's next

	14.4 Deploy clusters
	14.4.1 Deploy Nebula Graph clusters with Kubectl
	Prerequisites
	Create clusters
	Scaling clusters
	SCALE OUT CLUSTERS
	SCALE IN CLUSTERS

	Delete clusters
	What's next

	14.4.2 Deploy Nebula Graph clusters with Helm
	Prerequisite
	Create clusters
	Scaling clusters
	Delete clusters
	What's next
	Configuration parameters of the nebula-cluster Helm chart


	14.5 Configure clusters
	14.5.1 Customize configuration parameters for a Nebula Graph cluster
	Prerequisites
	Steps
	Learn more

	14.5.2 Reclaim PVs
	Prerequisites
	Steps

	14.5.3 Balance storage data after scaling out
	Prerequisites
	Steps


	14.6 Upgrade Nebula Graph clusters created with Nebula Operator
	14.6.1 Limits
	14.6.2 Upgrade a Nebula Graph cluster with Kubectl
	Prerequisites
	Steps

	14.6.3 Upgrade a Nebula Graph cluster with Helm
	Prerequisites
	Steps


	14.7 Connect to Nebula Graph databases with Nebular Operator
	14.7.1 Prerequisites
	14.7.2 Connect to Nebula Graph databases from within a Nebula Graph cluster
	14.7.3 Connect to Nebula Graph databases from outside a Nebula Graph cluster via NodePort
	14.7.4 Connect to Nebula Graph databases from outside a Nebula Graph cluster via Ingress

	14.8 Self-healing
	14.8.1 Prerequisites
	14.8.2 Steps

	14.9 FAQ
	14.9.1 Does Nebula Operator support the v1.x version of Nebula Graph?
	14.9.2 Does Nebula Operator support the rolling upgrade feature for Nebula Graph clusters?
	14.9.3 Is cluster stability guaranteed if using local storage?
	14.9.4 How to ensure the stability of a cluster when scaling the cluster?


	15. Nebula Algorithm
	15.1 Prerequisites
	15.2 Limitations
	15.3 Supported algorithms
	15.4 Implementation methods
	15.5 Get Nebula Algorithm
	15.5.1 Compile and package
	15.5.2 Download maven from the remote repository

	15.6 How to use
	15.6.1 Use algorithm interface (recommended)
	15.6.2 Submit the algorithm package directly


	16. Nebula Spark Connector
	16.1 Use cases
	16.2 Benefits
	16.3 Get Nebula Spark Connector
	16.3.1 Compile package
	16.3.2 Download maven remote repository

	16.4 How to use
	16.4.1 Reading data from Nebula Graph
	16.4.2 Write data into Nebula Graph


	17. Nebula Flink Connector
	17.1 Use cases

	18. Nebula Bench
	18.1 Scenario
	18.2 Test process

	19. Appendix
	19.1 Nebula Graph 2.6.0 release notes
	19.1.1 Feature
	19.1.2 Enhancement
	19.1.3 Bug fix
	19.1.4 Legacy versions

	19.2 FAQ
	19.2.1 About manual updates
	"Why is the behavior in the manual not consistent with the system?"

	19.2.2 About legacy version compatibility
	19.2.3 About executions
	Why is there no line separating each row in the returned result of Nebula Graph 2.6.0?
	About dangling edges
	"How to resolve [ERROR (-1005)]: Used memory hits the high watermark(0.800000) of total system memory.?"
	"How to resolve the error Storage Error E_RPC_FAILURE?"
	"How to resolve the error The leader has changed. Try again later?"
	"How is the time spent value at the end of each return message calculated?"
	"Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2?"
	"Is stopping or killing slow queries supported?"
	"Why are the query results different when using GO and MATCH to execute the same semantic query?"
	"How to resolve [ERROR (-7)]: SyntaxError: syntax error near?"
	"How to count the vertices/edges number of each tag/edge type?"
	"How to get all the vertices/edge of each tag/edge type?"
	"How to get all the vertices/edges without specifying the types?"
	"How to resolve the error can’t solve the start vids from the sentence?"
	"How to resolve the error Wrong vertex id type: 1001?"
	"How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit.?"
	"How to resolve the error edge conflict or vertex conflict?"
	"How to resolve the error RPC failure in MetaClient: Connection refused?"
	"How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed: N6apache6thrift9transport19TTransportExceptionE: Timed Out in nebula-graph.INFO?"
	"How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO, or HBProcessor.cpp:54] Reject wrong cluster host "x.x.x.x":9771! in nebula-metad.INFO?
	Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types, properties, and indexes?
	"How to get the out-degree/the in-degree of a vertex with a given name"?
	"How to quickly get the out-degree and in-degree of all vertices?"
	"How to resolve [ERROR (-1005)]: Schema not exist: xxx?"

	19.2.4 About operation and maintenance
	"The log files are too large. How to recycle the logs?"
	"How to check the Nebula Graph version?"
	"How to scale out or scale in?"
	"After changing the name of the host, the old one keeps displaying OFFLINE. What should I do?"

	19.2.5 About connections
	"Which ports should be opened on the firewalls?"
	"How to test whether a port is open or closed?"


	19.3 Ecosystem tools overview
	19.3.1 Nebula Graph Studio
	19.3.2 Nebula Explorer
	19.3.3 Nebula Exchange
	19.3.4 Nebula Operator
	19.3.5 Nebula Importer
	19.3.6 Nebula Spark Connector
	19.3.7 Nebula Flink Connector
	19.3.8 Nebula Algorithm
	19.3.9 Nebula Console
	19.3.10 Nebula Docker Compose
	19.3.11 Nebula Bench
	19.3.12 API, SDK
	19.3.13 Not Released

	19.4 Import tools
	19.5 How to Contribute
	19.5.1 Before you get started
	Commit an issue on the github or forum
	Sign the Contributor License Agreement (CLA)

	19.5.2 Modify a single document
	19.5.3 Batch modify or add files
	19.5.4 Step 1: Fork in the github.com
	19.5.5 Step 2: Clone Fork to Local Storage
	19.5.6 Step 3: Branch
	19.5.7 Step 4: Develop
	19.5.8 Step 5: Bring Your Branch Update to Date
	19.5.9 Step 6: Commit
	19.5.10 Step 7: Push
	19.5.11 Step 8: Create a Pull Request
	19.5.12 Step 9: Get a Code Review
	19.5.13 Add test cases
	19.5.14 Donation
	Step 1: Confirm the project donation
	Step 2: Get the information of the project recipient
	Step 3: Donate a project




