Abstract
We consider a numerical scheme for a class of degenerate parabolic equations, including both slow and fast diffusion cases. A particular example in this sense is the Richards equation modeling the flow in porous media. The numerical scheme is based on the mixed finite element method (MFEM) in space, and is of one step implicit in time. The lowest order Raviart–Thomas elements are used. Here we extend the results in Radu et al. (SIAM J Numer Anal 42:1452–1478, 2004), Schneid et al. (Numer Math 98:353–370, 2004) to a more general framework, by allowing for both types of degeneracies. We derive error estimates in terms of the discretization parameters and show the convergence of the scheme. The features of the MFEM, especially of the lowest order Raviart–Thomas elements, are now fully exploited in the proof of the convergence. The paper is concluded by numerical examples.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Aavatsmark I. (2002). An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6: 404–432
Adams R.A. (1975). Sobolev Spaces. Academic Press, New York
Alt H.W. and Luckhaus S. (1983). Quasilinear elliptic-parabolic differential equations. Math. Z. 183: 311–341
Arbogast T., Wheeler M.F. and Zhang N.Y. (1996). A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33: 1669–1687
Baranger J., Maitre J.F. and Oudin F. (1996). Connection between finite volume and mixed finite element methods. M2N Math. Model. Numer. Anal. 30: 445–465
Barenblatt G.I. (1952). On some unsteady motion of a liquid or a gas in a porous medium. Prikl. Math. Meh. 16: 67–78
Barrett J.W. and Knabner P. (1997). Finite Element Approximation of The Transport of Reactive Solutes in Porous Media. Part II: Error Estimates for Equilibrium Adsorption Processes. SIAM J. Numer. Anal. 34: 455–479
Bastian P., Birken K., Johanssen K., Lang S., Neuss N., Rentz-Reichert H. and Wieners C. (1997). UG–a flexible toolbox for solving partial differential equations. Comput. Visualiz. Sci. 1: 27–40
Bause M. and Knabner P. (2004). Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv. Water Res. 27: 565–581
Bear J. and Bachmat Y. (1991). Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht
Brezzi F. and Fortin M. (1991). Mixed and Hybrid Finite Element Methods. Springer, New York
Ciarlet P.G. (1978). The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam
Knabner P. and Duijn C.J. (1991). Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: travelling waves. J. Reine Angew. Math. 415: 1–49
Ebmeyer C. (1998). Error estimates for a class of degenerate parabolic equations. SIAM J. Numer. Anal. 35: 1095–1112
Evans L.C. (1998). Partial Differential Equations. American Mathematical Society, Providence
Eymard R., Gutnic M. and Hillhorst D. (1999). The finite volume method for Richards equation. Comput. Geosci. 3: 256–294
Eymard R., Hilhorst D. and Vohralík M. (2006). A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105: 73–131
Ivanov A.V. and Jäger W. (2000). Existence and uniqueness of a regular solution of Cauchy-Dirichlet problem for equation of turbulent filtration. J. Math. Sci. (New York) 101: 3472–3502
Ladyzhenskaya O.A. and Ural’tseva N.N. (1968). Linear and Quasilinear Elliptic Equations. Academic Press, London
Lu Y. and Jäger W. (2001). On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffusion. J. Diff. Eqs. 170: 1–21
Nochetto R.H. and Verdi C. (1988). Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25: 784–814
Otto F. (1996). L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Diff. Eqs. 131: 20–38
Pop I.S. (2002). Error estimates for a time discretization method for the Richards’ equation. Comput. Geosci. 6: 141–160
Pop I.S. and Yong W.A. (2002). A numerical approach to degenerate parabolic equations. Numer. Math. 92: 357–381
Quarteroni A. and Valli A. (1994). Numerical Approximations of Partial Differential Equations. Springer, Heidelberg
Radu F.A., Pop I.S. and Knabner P. (2004). Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42: 1452–1478
Radu F.A., Pop I.S. and Knabner P. (2006). On the convergence of the Newton method for the mixed finite element discretization of a class of degenerate parabolic equation. In: Castro Bermudez de, A. (eds) Numerical Mathematics and Advanced Applications, pp 1194–1200. Springer, Heidelberg
Radu, F.A., Bause, M., Knabner, P., Friess, W., Metzmacher, I.: Numerical simulation of drug release from collagen matrices by enzymatic degradation. Comput. Visualiz. Sci. (2007, in press)
Rulla J. (1996). Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33: 68–87
Schneid E., Knabner P. and Radu F.A. (2004). A priori error estimates for a mixed finite element discretization of the Richards’ equation. Numer. Math. 98: 353–370
Schneid, E.: Hybrid-Gemischte Finite-Elemente-Diskretisierung der Richards-Gleichung (in German). Ph.D. thesis. University of Erlangen–Nürnberg (2000). also available at http://www.am.uni-erlangen.de/am1/publications/dipl_phd_thesis/dipl_phd_thesis.html
Schweizer B. (2007). Regularization of outflow problems in unsaturated porous media with dry regions. J. Diff. Eqs. 237: 278–306
Thomas, J.M.: Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes. Thése d’Etat. Université Pierre & Marie Curie, Paris 6 (1977)
Woodward C. and Dawson C. (2000). Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J. Numer. Anal. 37: 701–724
Yotov I. (1997). A mixed finite element discretization on non–matching multiblock grids for a degenerate parabolic equation arizing in porous media flow. East–West J. Numer. Math. 5: 211–230
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Radu, F.A., Pop, I.S. & Knabner, P. Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109, 285–311 (2008). https://doi.org/10.1007/s00211-008-0139-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0139-9