Abstract
We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptive methods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ainsworth M., Oden J.T.: A posteriori error estimation in finite element analysis. Wiley-Interscience [John Wiley & Sons], New-York (2000)
Bänsch E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181–191 (1991)
Bank R.: Hierarchical bases and the finite element method. Acta Numerica 5, 1–45 (1996)
Bank R., Smith R.: A posteriori error-estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921–935 (1993)
Bank R., Weiser A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283–301 (1985)
Bornemann F., Erdmann B., Kornhuber R.: A-posteriori error-estimates for elliptic problems in 2 and 3 space dimensions. SIAM J. Numer. Anal. 33, 1188–1204 (1996)
Carstensen C., Faermann B.: Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind. Eng. Anal. Bound. Elem. 25, 497–509 (2001)
Carstensen C., Maischak M., Praetorius D., Stephan E.P.: Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math. 97(3), 397–425 (2004)
Carstensen C., Praetorius D.: Averaging techniques for the effective numerical solution of Symm’s integral equation of the first kind. SIAM J. Sci. Comput. 27, 1226–1260 (2006)
Cascon J., Kreuzer C., Nochetto R., Siebert K.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)
Deuflhard P., Leinen P., Yserentant H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. in. Sci. and Eng. 1, 3–35 (1989)
Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)
Dörfler W., Nochetto R.: Small data oscillation implies the saturation assumption. Numer. Math. 91, 1–12 (2002)
Ferraz-Leite S., Praetorius D.: Simple a posteriori error estimators for the h-version of the boundary element method. Computing 83, 135–162 (2008)
Graham I., Hackbusch W., Sauter S.: Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25, 379–407 (2005)
Hairer E., Nørsett S., Wanner G.: Solving ordinary differential equations I. Nonstiff problems. Springer, New York (1987)
Kossaczky I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1995)
McLean W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)
Morin P., Nochetto R., Siebert K.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)
Sauter S., Schwab C.: Randelementmethoden: Analyse, Numerik und Implementierung schneller Algorithmen. Teubner Verlag, Wiesbaden (2004)
Sewell, E.: Automatic generation of triangulations for piecewise polynomial approximations. Ph.D. thesis, Purdue University, West Lafayette (1972)
Verfürth R.: A posteriori error estimation and adaptive mesh refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)
Verfürth R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner, Stuttgart (1996)
Acknowledgements
Parts of the results have been achieved during a research stay of C.O. and D.P. at the Hausdorff Institute for Mathematics in Bonn, which is thankfully acknowledged. S.F. acknowledges a grant of the graduate school Differential Equations – Models in Science and Engineering, funded by the Austrian Science Fund (FWF) under grant W800-N05. D.P. is partially supported through the research project Adaptive Boundary Element Method, funded by the Austrian Science Fund (FWF) under grant P21732.
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ferraz-Leite, S., Ortner, C. & Praetorius, D. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators. Numer. Math. 116, 291–316 (2010). https://doi.org/10.1007/s00211-010-0292-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-010-0292-9