Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Computational Geosciences
  3. Article

Reactive transport codes for subsurface environmental simulation

  • ORIGINAL PAPER
  • Open access
  • Published: 26 September 2014
  • Volume 19, pages 445–478, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Computational Geosciences Aims and scope Submit manuscript
Reactive transport codes for subsurface environmental simulation
Download PDF
  • C. I. Steefel1,
  • C. A. J. Appelo2,
  • B. Arora1,
  • D. Jacques3,
  • T. Kalbacher4,
  • O. Kolditz4,
  • V. Lagneau5,
  • P. C. Lichtner6,
  • K. U. Mayer7,
  • J. C. L. Meeussen8,
  • S. Molins1,
  • D. Moulton9,
  • H. Shao4,
  • J. Šimůnek10,
  • N. Spycher1,
  • S. B. Yabusaki11 &
  • …
  • G. T. Yeh12 
  • 12k Accesses

  • 6 Altmetric

  • Explore all metrics

Abstract

A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of the codes, along with a selective list of applications that highlight their capabilities and historical development.

Article PDF

Download to read the full article text

Similar content being viewed by others

Reactive Transport Modeling with a Coupled OpenFOAM®-PHREEQC Platform

Article 07 October 2022

A framework for reactive transport modeling using FEniCS–Reaktoro: governing equations and benchmarking results

Article 21 January 2020

Methods

Chapter © 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Li, L., Steefel, C.I., Yang, L.: Scale dependence of mineral dissolution rates within single pores and fractures. Geochim. Cosmochim. Acta. 72, 360–377 (2008)

    Google Scholar 

  2. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48, W03527 (2012)

    Google Scholar 

  3. Steefel, C.I., Molins, S., Trebotich, D.: Pore scale processes associated with subsurface CO 2 injection and sequestration. Rev. Mineral. Geochem. 77, 259–303 (2013)

    Google Scholar 

  4. Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., Zhang, C.: Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Comput. Geosci., 1–23 (2014)

  5. Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal. 19, 81–99 (1965)

    Google Scholar 

  6. Bowen, R.M.: On the stoichiometry of chemically reacting materials. Arch. Ration. Mech. Anal. 29, 114–124 (1968)

    Google Scholar 

  7. Hooyman, G.J.: On thermodynamic coupling of chemical reactions. Proc. Natl. Acad. Sci. 47, 1169–1173 (1961)

    Google Scholar 

  8. Kirkner, D.J., Reeves, H.: Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of chemistry on the choice of numerical algorithm I. Theory. Water Resour. Res. 24, 1719–1729 (1988)

    Google Scholar 

  9. Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta 49, 779–800 (1985)

    Google Scholar 

  10. Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)

    Google Scholar 

  11. Van Zeggeren, F., Storey, S.H.: The computation of chemical equilibria, p. 176. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  12. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  13. Davis, J.A., Meece, D.E., Kohler, M., Curtis, G.P.: Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim. Cosmochim. Acta 68, 3621–3641 (2004)

    Google Scholar 

  14. Kulik, D.A.: Thermodynamic concepts in modeling sorption at the mineral-water interface. Rev. Mineral. Geochem. 70, 125–180 (2009)

    Google Scholar 

  15. Dzombak, D.A., Morel, F.M.M.: Surface complexation modeling: hydrous ferric oxide, p. 393. Wiley, New York (1990)

    Google Scholar 

  16. Wang, Z., Giammar, D.E.: Mass action expressions for bidentate adsorption in surface complexation modeling: Theory and practice. Environ. Sci. Technol. 47, 3982–3996 (2013)

    Google Scholar 

  17. Davis, J.A., Coston, J.A., Kent, D.B., Fuller, C.C.: Application of the surface complexation concept to complex mineral assemblages. Environ. Sci. Technol. 32(19), 2820–2828 (1998)

    Google Scholar 

  18. Liu, C., Zachara, J.M., Qafoku, N.P., Wang, Z.: Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour. Res. 8, 44 (2008)

    Google Scholar 

  19. Vanselow, A.P.: Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites. Soil Sci. 33, 95–114 (1932)

    Google Scholar 

  20. Sposito, G.: The thermodynamics of soil solutions, p. 223. Oxford University Press, Oxford (1981)

    Google Scholar 

  21. Appelo, C.A.J., Postma, D.: Geochemistry, groundwater, and pollution. A.A. Balkema, Rotterdam, p. 649 (1993)

  22. Steefel, C.I., Carroll, S., Zhao, P., Roberts, S.: Cesium migration in Hanford sediment: A multi-site cation exchange model based on laboratory transport experiments. J. Contam. Hydrol. 67, 219–246 (2003)

    Google Scholar 

  23. Aagaard, P., Helgeson, H.C.: Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations. Am. J. Sci. 282(3), 237–285 (1982)

    Google Scholar 

  24. Lasaga, A.C.: Chemical kinetics of water-rock interactions. J. Geophys. Res. Solid Earth (1978–2012) 89(B6), 4009–4025 (1984)

    Google Scholar 

  25. Rittmann, B.E., McCarty, P.L.: Environmental biotechnology. McGraw Hill, New York (2001)

    Google Scholar 

  26. Jin, Q., Bethke, C.M.: Predicting the rate of microbial respiration in geochemical environments. Geochim. Cosmochim. Acta 69, 1133–1143 (2005)

    Google Scholar 

  27. Bear, J.: Dynamics of fluids in porous media, p. 764. Dover Publications (1972)

  28. Steefel, C.I., Maher, K.: Fluid-rock interaction: A reactive transport approach. Rev. Mineral. Geochem. 70, 485–532 (2009)

    Google Scholar 

  29. Neuman, S.P.: Saturated-unsaturated seepage by finite elements. J. Hydrol. Div. Am. Soc. Civ. Eng. 99(HY12), 2233–2250 (1973)

    Google Scholar 

  30. Panday, S., Huyakorn, P.S., Therrien, R., Nichols, R.L.: Improved three-dimensional finite-element techniques for field simulation of variably-saturated flow and transport. J. Contam. Hydrol. 12, 3–33 (1993)

    Google Scholar 

  31. Van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Google Scholar 

  32. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State Univ., Hydrology Paper No. 3, p. 27 (1964)

  33. Luckner, L., Van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)

    Google Scholar 

  34. Millington, R.J.: Gas diffusion in porous media. Science 130(3367), 100–102 (1959)

    Google Scholar 

  35. Mayer, K.U., Blowes, D.W., Frind, E.O.: Reactive transport modeling for the treatment of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour. Res. 37, 3091–3103 (2001)

    Google Scholar 

  36. Molins, S., Mayer, K.U.: Coupling between geochemical reactions and multicomponent gas diffusion and advection – a reactive transport modeling study. Water Resour. Res. 43, W05435 (2007)

    Google Scholar 

  37. Cheadle, M.J., Elliott, M.T., McKenzie, D.: Percolation threshold and permeability of crystallizing igneous rocks: The importance of textural equilibrium. Geology 32, 757–760 (2004)

    Google Scholar 

  38. Verma, A., Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. Solid Earth 93(B2), 1159–1173 (1988)

    Google Scholar 

  39. Vaughan, P.J.: Analysis of permeability reduction during flow of heated aqueous fluid through Westerly Granite. In: Tsang, C.-F. (ed.) Coupled processes associated with nuclear waste repositories. Academic Press, New York (1989)

  40. Slider, H.C.: Practical petroleum reservoir engineering methods, An Energy Conservation Science. Petroleum Publishing Company, Tulsa (1976)

    Google Scholar 

  41. Wu, Y.S.: On the effective continuum method for modeling multiphase flow, multicomponent transport, and heat transfer in fractured rock. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 299–312 (2000)

  42. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Google Scholar 

  43. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. SPE J. 3, 245–255 (1963)

  44. Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25, 14–26 (1985)

    Google Scholar 

  45. Snow, D.T.: A parallel plate model of fractured permeable media, Ph.D. dissertation, p. 331. University of California, Berkeley (1965)

    Google Scholar 

  46. Arora, B., Mohanty, B.P., McGuire, J.T.: Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resour. Res. 47, 1–17 (2011)

  47. Wu, Y.S., Di, Y., Kang, Z., Fakcharoenphol, P.: A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. J. Pet. Sci. Eng. 78, 13–22 (2011)

    Google Scholar 

  48. Aradóttir, E.S.P., Sigfússon, B., Sonnenthal, E.L., Björnsson, G., Jónsson, H.: Dynamics of basaltic glass dissolution–capturing microscopic effects in continuum scale models. Geochim. Cosmochim. Acta 121, 311–327 (2013)

    Google Scholar 

  49. Lichtner, P.C.: Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 281–298 (2000)

  50. Berkowitz, B.: Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 25, 861–884 (2002)

    Google Scholar 

  51. Šimu̇nek, J., Jarvis, N.J., Van Genuchten, M.T., Gärdenäs, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003)

    Google Scholar 

  52. MacQuarrie, K.T., Mayer, K.U.: Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Sci. Rev. 72, 189–227 (2005)

    Google Scholar 

  53. Somerton, W.H., El-Shaarani, A.H., Mobarak, S.M.: High temperature behavior of rocks associated with geothermal type reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers (1974)

  54. Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, vol. 34, pp. 83–125. Reviews in Mineralogy (1996)

  55. Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.R.: GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013)

    Google Scholar 

  56. Leal, A.M.M., Blunt, M.J., LaForce, T.C.: Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochim. Cosmochim. 131, 301–322 (2014)

    Google Scholar 

  57. Saaltink, M.W., Carrera, J., Ayora, C.: On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48, 213–235 (2001)

    Google Scholar 

  58. Calderhead, A., Mayer, K.U.: Comparison of the suitability of the global implicit method and the sequential non-iterative approach for multicomponent reactive transport modelling. In: Proceedings of 5th Joint IAH-CNC/CGS Conference, Québec City, Québec, Canada, pp. 24–28 (2004)

  59. Lichtner, P.C.: Time-space continuum description of fluid/rock interaction in permeable media. Water Resour. Res. 28, 3135–3155 (1992)

    Google Scholar 

  60. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQ C (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, Water-Resources Investigations, Report 99–4259, Denver, Co, USA, p. 312 (1999)

  61. Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43 (2013)

  62. Appelo, C.A.J., Parkhurst, D.L., Post, V.E.A.: Equations for calculating hydrogeochemical reactions of minerals and gases such as CO 2 at high pressures and temperatures. Geochim. Cosmochim. Acta 125, 49–67 (2014)

    Google Scholar 

  63. Thorstenson, D.C., Parkhurst, D.L.: Calculation of individual isotope equilibrium constants for geochemical reactions. Geochim. Cosmochim. Acta 11(68), 2449–2465 (2004)

    Google Scholar 

  64. Charlton, S.R., Parkhurst, D.L.: Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST. Groundwater 4(51), 623–628 (2013)

    Google Scholar 

  65. Šimu̇nek, J., Jacques, D., Šejna, M., van Genuchten, M.T.: The HP2 Program for HYDRUS (2D/3D): A coupled code for simulating two-dimensional variably-saturated water flow, heat transport, and biogeochemistry in porous media, Version 1.0, PC Progress, Prague, Czech Republic, p. 76 (2012)

  66. Šimu̇nek, J., Jacques, D., Langergraber, G., Bradford, S.A., Šejna, M., van Genuchten, M.T.: Numerical modeling of contaminant transport using HYDRUS and its specialized modules, Vol. 93, pp 265–284 (2013). ISSN: 0970-4140 Coden-JIISAD

  67. Parkhurst, D.L., Kipp, K.L., Charlton, S.R.: PHAST Version 2—a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions: U.S. Geological Survey Techniques and Methods 6–A35, p. 235 (2010)

  68. Prommer, H., Post, V.E.A.: PHT3D, A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual v2.10 (2010). http://www.pht3d.org

  69. Šiu̇nek, J., van Genuchten, M.T.: Modeling non-equilibrium flow and transport processes using HYDRUS. Vadose Zone J. 7(2), 782–797 (2008)

    Google Scholar 

  70. Jacques, D., Šimu̇nek, J.: User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1, Description, Verification and Examples, Version 1.0, SCK⋅CEN-BLG-998, Waste and Disposal, SCK⋅CEN, Mol, Belgium, p. 79 (2005)

  71. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Contam. Hydrol. 88, 197–218 (2006)

    Google Scholar 

  72. Šimu̇nek, J., Hopmans, J.W.: Modeling compensated root water and nutrient uptake. Ecological Modeling 220, 505–521 (2009)

    Google Scholar 

  73. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T., Yu, L.: A coupled reactive transport model for contaminant leaching from cementitious waste matrices accounting for solid phase alterations. In: Proceedings Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium (2011)

  74. Celia, M.A., Bououtas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)

    Google Scholar 

  75. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Modelling coupled water flow, solute transport and geochemical reactions affection heavy metal migration in a Podzol soil. Geoderma 145, 449–461 (2008)

    Google Scholar 

  76. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Modeling coupled hydrogeologic and chemical processes: Long-term uranium transport following phosphorus fertilization. Vadose Zone J. 7(2), 698–711 (2008)

    Google Scholar 

  77. Jacques, D., Smith, C., Šimu̇nek, J., Smiles, D.: Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. J. Contam. Hydrol. 142–143, 109–125 (2012)

    Google Scholar 

  78. Bessinger, B.A., Marks, C.D.: Treatment of mercury-contaminated soils with activated carbon: A laboratory, field, and modeling study. Remediation (The journal of Environmental Cleanup Costs, Technologies, & Techniques), 21(1), 115–135 (2010). doi:10.1002/rem.20275

  79. Leterme, B., Jacques, D.: Modelling of mercury fate and transport in soil systems. In: Proceedings of the 12th International UFZ-Deltares Conference on Groundwater-Soil-Systems and Water Resource Management - AQUACONSOIL 2013 (2013). www.aquaconsoil.org/AquaConSoil2013/Proceedings.html

  80. Leterme, B., Blanc, P., Jacques, D.: A reactive transport model for mercury fate in soil – application to different anthropogenic pollution sources. Environmental Science and Pollution Research, (under review) (2014)

  81. Jacques, D., Maes, N., Perko, J., Seetharam, S.C. , Phung, Q.T., Patel, R., Soto, A., Liu, S., Wang, L., De Schutter, G., Ye, G., van Breugel, K.: Concrete in engineered barriers for radioactive waste disposal facilities - phenomenological study and assessment of long term performance. In: Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM2013-96282 (2013)

  82. Thaysen, E.M., Jacques, D., Jessen, S., Andersen, C.E., Laloy, E., Ambus, P., Postma, D., Jakobsen, I.: Controls on carbon dioxide fluxes across the unsaturated zone of cropped and unplanted soil mesocosms. Biogeosciences 11, 4251–4299 (2014)

    Google Scholar 

  83. Zheng, C, Wang, P.P.: MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user’s guide. Contract Report SERDP-99–1, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi (available at http://hydro.geo.ua.edu/mt3d) (1999)

  84. Prommer, H., Post, V.E.A.: PHT3D, A Reactive multicomponent transport model for saturated porous media. User’s Manual v2.10 (2010). http://www.pht3d.org

  85. Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41, 247–257 (2003)

    Google Scholar 

  86. Appelo, C.A.J., Rolle, M.: PHT3D: A reactive multicomponent transport model for saturated porous media. Ground Water 5(48), 627–632 (2010)

    Google Scholar 

  87. Zuurbier, K.G., Hartog, N., Valstar, J., Post, V.E.A., van Breukelen, B.M.: The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. J. Contam. Hydrol. 147, 1–13 (2013)

    Google Scholar 

  88. Wallis, I., Prommer, H., Post, V.E.A., Vandenbohede, A., Simmons, C.T.: Simulating MODFLOW-based reactive transport under radially symmetric flow conditions. Groundwater 51, 398–413 (2013)

    Google Scholar 

  89. Wu, M.Z., Reynolds, D.A., Prommer, H., Fourie, A., Thomas, D.G.: Numerical evaluation of voltage gradient constraints on electrokinetic injection of amendments. Adv. Water Resour. 38, 60–69 (2012)

    Google Scholar 

  90. Chiang, W.H., 2nd ed.: 3D Groundwater modeling with PMWIN, p. 397. Springer-Verlag, The Netherlands (2005)

    Google Scholar 

  91. Nagel, T, Shao, H., Singh, A.K., Watanabe, N., Roßkopf, C., Linder, M., Wörner, A., Kolditz, O.: Non-equilibrium thermochemical heat storage in porous media: Part 1 – conceptual model. Energy 60, 254–270 (2013)

    Google Scholar 

  92. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, HB, Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, N., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67, 589–599 (2012)

    Google Scholar 

  93. Rutqvist, J., Barr, D., Birkholzer, J.T., Chijimatsu, M., Kolditz, O., Liu, Q., Oda, Y., Wang, W., Zhang, C.: Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories. J. Nucl. Technol. 163, 101–109 (2008)

    Google Scholar 

  94. Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U-J., Kalbacher, T., Park, C-H., Sauer, U., Schütze, C., Shao, H.B., Singh, A.K., Taron, J., Wang, W., Watanabe, N.: A systematic benchmarking approach for geologic CO2 injection and storage. Environ. Earth Sci. 67, 613–632 (2012)

    Google Scholar 

  95. Mukhopadhyay, S., Birkholzer, J.T., Nicot, J.P., Hosseini, S.A.: A single site multi-model comparative study for CO2 injection field test: An introduction to Sim-SEQ. Environ. Earth Sci. 67, 601–611 (2012)

    Google Scholar 

  96. Kolditz, O., Shao, H., Görke, U-J., Wang, W. (eds.): Thermo-hydro-mechanical-chemical processes in fractured porous media. Lecture Notes in Computational Science and Engineering, Vol. 86. Springer, Heidelberg (2012)

  97. Park, C-H., Beyer, C., Bauer, S., Kolditz, O.: A study of preferential flow in heterogeneous media using random walk particle tracking. Geosci. J. 12, 285–297 (2008)

    Google Scholar 

  98. Gräbe, A., Rink, K., Fischer, T., Sun, F., Wang, W., Rödiger, T., Siebert, C., Kolditz, O.: Numerical analysis of the groundwater regime in the Western Dead Sea Escarpment. Environ. Earth Sci. 69, 571–586 (2013)

    Google Scholar 

  99. Singh, A.K., Baumann, G., Henninges, J., Görke, U-J., Kolditz, O.: Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: A theoretical case study for the Altmark gas field. Environ. Earth Sci. 67, 497–509 (2012)

    Google Scholar 

  100. Wang, W., Rutqvist, J., Gorke, U-J., Birkholzer, J.T., Kolditz, O.: Non-isothermal flow in low permeable porous media: A comparison of unsaturated and two-phase flow approaches. Environ. Earth Sci. 62, 1197–1207 (2011)

    Google Scholar 

  101. Kolditz, O, de Jonge, J.: Non-isothermal two-phase flow in porous media. Comput. Mech. 33, 345–364 (2004)

    Google Scholar 

  102. Park, C.-H., Boettcher, N., Wang, W., Kolditz, O.: Are upwind techniques in multi-phase flow models necessary. J Comp. Phys. 230, 8304–8312 (2011)

    Google Scholar 

  103. Delfs, J.-O., Park, C.-H., Kolditz, O.: A sensitivity analysis of Hortonian flow. Adv. Water Resour. 32, 1386–1395 (2009)

    Google Scholar 

  104. Böttcher, N., Kolditz, O., Liedl, R.: Evaluation of equations of state for CO2 in numerical simulations. Environ. Earth Sci. 67, 481–495 (2012)

    Google Scholar 

  105. Watanabe, N., McDermott, C., Wang, W., Taniguchi, T., Kolditz, O.: Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media. Comput. Mech. 45, 263–280 (2010)

    Google Scholar 

  106. Kalbacher, T., Delfs, J.O., Shao, H., Wang, W., Walther, M., Samaniego, L., Schneider, C., Musolff, A., Centler, F., Sun, F., Hildebrandt, A., Liedl, R., Borchardt, D., Krebs, P., Kolditz, O.: The IWAS-ToolBox: Software coupling for an integrated water resources management. Environ. Earth Sci. 65, 1367–1380 (2012)

    Google Scholar 

  107. Xie, M., Bauer, S., Kolditz, O., Nowak, T., Shao, H.: Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam. Hydrol. 83, 122–147 (2006)

    Google Scholar 

  108. Shao, H., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Reactive transport of multiple non-ideal solid solutions. Appl. Geochem. 24, 1287–1300 (2009)

    Google Scholar 

  109. Beyer, C., Bauer, S., Kolditz, O.: Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J. Contam. Hydrol. 87, 73–95 (2006)

    Google Scholar 

  110. Centler, F., Shao, H., Park, C-H, de Biase, C., Kolditz, O., Thullner, M.: GeoSysBRNS – a flexible multi-dimensional reactive transport model for simulating biogeochemical subsurface processes. Comput. Geosci. 36, 397–405 (2010)

    Google Scholar 

  111. Rink, K., Kalbacher, T., Kolditz, O.: Visual data management for hydrological analysis. Environ. Earth Sci. 65, 1395–1403 (2012)

    Google Scholar 

  112. van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)

    Google Scholar 

  113. Wolery, T.: EQ3/6. A software package for geochemical modelling of aqueous systems: Package overview and installation guide (version 7.0). Technical Report UCRL-MA-110662 PT I ed. Lawrence Livermore National Laboratory, USA (1992)

    Google Scholar 

  114. van der Lee, J., Lagneau, V.: Rigorous methods for reactive transport in unsaturated porous medium coupled with chemistry and variable porosity. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 48, pp 861–868. Elsevier (2004)

  115. Lagneau, V., van der Lee, J.: Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement. J. Contam. Hydrol. 112, 118–129 (2010)

    Google Scholar 

  116. Debure, M., De Windt, L., Frugier, P., Gin, S.: HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions. J. Nucl. Mater. 443, 507–521 (2013)

    Google Scholar 

  117. De Windt, L., Marsal, F., Corvisier, J., Pellegrini, D.: Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste. Appl. Geochem. 41, 115–127 (2014)

    Google Scholar 

  118. Lagneau, V., Pipart, A., Catalette, H.: Reactive transport modelling and long term behaviour of CO2 sequestration in saline aquifers. Oil Gas Sci. Technol. 60, 231–247 (2005)

    Google Scholar 

  119. Jacquemet, N., Pironon, J., Lagneau, V., Saint-Marc, J.: Armouring of well cement in H 2S-CO 2 saturated brine by calcite coating – experiments and numerical modeling. Appl. Geochem. 27, 782–795 (2012)

    Google Scholar 

  120. De Windt, L., Devillers, P.: Modeling the degradation of Portland cement pastes by biogenic organic acids. Cem. Concr. Res. 40, 1165–1174 (2010)

    Google Scholar 

  121. De Windt, L., Deneele, D., Maubec, N.: Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling. Cem. Concr. Res. 59, 34–42 (2014)

    Google Scholar 

  122. Dabo, D, Badreddine, R, De Windt, L, Drouadaine, I.: Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J. Hazard. Mater. 172, 904–913 (2007)

    Google Scholar 

  123. De Windt, L., Badreddine, R., Lagneau, V.: Long-term reactive transport modelling of stabilized/solidified waste: From dynamic leaching tests to disposal scenarios. J. Hazard. Mater. 139, 529–536 (2007)

    Google Scholar 

  124. De Windt, L., Badreddine, R.: Modelling of long-term dynamic leaching tests applied to solidified/stabilised waste. Waste Manag. 27, 1638–1647 (2007)

    Google Scholar 

  125. Corvisier, J., Bonvalot, A.F., Lagneau, V., Chiquet, P., Renard, S., Sterpenich, J., Pironon, J.: Impact of co-injected gases on CO2 storage sites: Geochemical modeling of experimental results. Proceedings of the International Conference on Greenhouse Gas Technology 11, vol. 37, pp. 3699–3710. Energy Procedia, Kyoto (2013)

  126. Meeussen, J.C.: ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 37, 1175–1182 (2003)

    Google Scholar 

  127. Farmer, J.G., Graham, M.C., Thomas, R.P., Licona-Manzur, C., Paterson, E., Campbell, C.D., Geelhoed, J.S., Lumsdon, D.G., Meeussen, J.C.L., Roe, M.J., Conner, A., Fallick, A.E., Bewley, R.J.F.: Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ. Geochem. Health 21, 331–33 (1999)

    Google Scholar 

  128. Geelhoed, J.S., Meeussen, J.C.L., Hillier, S., Lumsdon, D.G., Thomas, R.P., Farmer, J.G., Paterson, E.: Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim. Cosmochim. Acta 66, 3927–3942 (2002)

    Google Scholar 

  129. Filius, J.D., Lumsdon, D.G., Meeussen, J.C.L., Hiemstra, T., Van Riemsdijk, W.H.: Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta 64, 51–60 (2000)

    Google Scholar 

  130. Weng, L., Hiemstra, T., Meeussen, J.C.L., Koopal, L., Van Riemsdijk, W.H.: Interactions of calcium and fulvic acid at the goethite-water interface. Geochim. Cosmochim. Acta 69, 325–339 (2005)

    Google Scholar 

  131. Van Riemsdijk, W.H., Koopal, L.K., Kinniburgh, D.G., Benedetti, M.F., Weng, L.: Modeling the interactions between humics, ions, and mineral surfaces. Environ. Sci. Technol. 40, 7473–7480 (2006)

    Google Scholar 

  132. Vink, J.P.M., Meeussen, J.C.L.: BIOCHEM–ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ. Pollut. 148, 833–841 (2007)

    Google Scholar 

  133. Nowack, B., Mayer, K.U., Oswald, S.E., Van Beinum, W., Appelo, C.A.J., Jacques, D., Seuntjens, P.: Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285, 305–321 (2006)

    Google Scholar 

  134. Van der Sloot, H.A., van Zomeren, A.: Characterisation leaching tests and associated geochemical speciation modelling to assess long term release behaviour from extractive wastes. Mine Water Environ. 31, 92–103 (2012)

    Google Scholar 

  135. Brown, K.G., Arnold, J., Sarkar, S., Flach, G., van der Sloot, H., Meeussen, J.C.L., Kosson, D.S.: Modeling carbonation of high-level waste tank integrity and closure. In EPJ Web of Conferences 56, 05003, EDP Sciences (2013)

  136. Sarkar, S., Kosson, D.S., Mahadevan, S., Meeussen, J.C.L., van der Sloot, H., Arnold, J.R., Brown, K.G.: Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials. Cem. Concr. Res. 42, 889–902 (2012)

    Google Scholar 

  137. Xu, T., Pruess, K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1, Methodology. Am. J. Sci. 301, 16–33 (2001)

    Google Scholar 

  138. Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic Media: Applications for geothermal injectivity and CO2 geologic sequestration. Comput. Geosci. 32, 145–165 (2006)

    Google Scholar 

  139. Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37, 763–774 (2011)

    Google Scholar 

  140. Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 user’s guide, version 2.0. Lawrence Berkeley Laboratory Report LBL-43134, Berkeley, CA, p. 192 (1999)

  141. Finsterle, S., Sonnenthal, E.L., Spycher, N.: Advances in subsurface modeling: The TOUGH suite of simulators. Comput. Geosci. 65, 2–12 (2014)

    Google Scholar 

  142. Pruess, K., Narasimhan, T.N.: On fluid reserves and the production of superheated steam from fractured, vapor-dominated geothermal reservoirs. J. Geophys. Res. 87, 9329–9339 (1982)

    Google Scholar 

  143. Dobson, P.F., Salah, S., Spycher, N., Sonnenthal, E.L.: Simulations of water rock interactions in the Yellowstone geothermal system using TOUGHREACT. Geothermics 33, 493–502 (2004)

    Google Scholar 

  144. Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at the Tiwi field, Philippines. Geothermics 33, 477–491 (2004)

    Google Scholar 

  145. Wanner, C., Peiffer, L., Sonnenthal, E.L., Spycher, N., Iovenitti, J., Kennedy, B.M.: Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry. Geothermics 51, 130–141 (2014)

    Google Scholar 

  146. Spycher, N., Sonnenthal, E.L., Apps, J.: Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada. J. Contam. Hydrol. 62–63, 653–674 (2003)

    Google Scholar 

  147. Sonnenthal, E.L., Ito, A., Spycher, N., Yui, M., Apps, J., Sugita, Y., Conrad, M., Kawakami, S.: Approaches to modeling coupled thermal, hydrological, and chemical processes In the Drift Scale Heater Test at Yucca Mountain. Int. J. Rock. Mech. Min. Sci. 42, 698–719 (2005)

    Google Scholar 

  148. Xu, T., Senger, R., Finsterle, S.: Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects. Appl. Geochem. 23, 3423–3433 (2008)

    Google Scholar 

  149. Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364, 58–72 (2009)

    Google Scholar 

  150. Xu, T., Apps, J.A., Pruess, K.: Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 217, 295–318 (2005)

    Google Scholar 

  151. Audigane, P, Gaus, I., Czernichowki-Lauriol, I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site. Am. J. Sci. 307, 974–1008 (2007)

    Google Scholar 

  152. Aradóttir, E.S.P., Sonnenthal, E.L., Björnsson, G., Jónsson, H.: Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int. J. Greenh. Gas. Con. 9, 24–40 (2012)

    Google Scholar 

  153. Zheng, L., Spycher, N., Birkholzer, J., Xu, T., Apps, J., Kharaka, Y.: On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int. J. Greenh. Gas. Con. 14, 113–127 (2013)

    Google Scholar 

  154. Dalkhaa, C., Shevalier, M., Nightingale, M.: Mayer, B.: 2-D reactive transport modeling of the fate of CO2 injected into a saline aquifer in the Wabamun Lake Area, Alberta, Canada. Appl. Geochem. 38, 10–23 (2013)

    Google Scholar 

  155. Wu, Y., Ajo-Franklin, J.B., Spycher, N., Hubbard, S.S., Zhang, G., Williams, K.H., Taylor, J., Fujita, Y., Smith, R.: Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem. Trans. 12 (2011)

  156. Meima, J.A., Graupner, T., Rammlmair, D.: Modeling the effect of stratification on cemented layer formation in sulfide-bearing mine tailings. Appl. Geochem. 27, 124–137 (2012)

    Google Scholar 

  157. Bea, S.A., Wainwright, H., Spycher, N., Faybishenko, B., Hubbard, S.S., Denham, M.E.: Identifying key controls on the behavior of an acidic-U (VI) plume in the Savannah River Site using reactive transport modeling. J. Contam. Hydrol. 151, 34–54 (2013)

    Google Scholar 

  158. Kim, J., Sonnenthal, E., Rutqvist, J.A.: A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs. Computers and Geosciences (2014)

  159. White, M.D., Oostrom, M.: STOMP subsurface transport over multiple phases version 4.0 user’s guide. Pacific Northwest National Laboratory, Washington (2006)

    Google Scholar 

  160. White, M.D., McGrail, B.P.: STOMP subsurface transport over multiple phases version 1.0, Addendum: ECKEChem equilibrium-conservation-kinetic equation chemistry and reactive transport. PNNL-15482. Pacific Northwest National Laboratory, Washington (2005)

    Google Scholar 

  161. Fang, Y.L., Yabusaki, S.B., Yeh, G.T.: A general simulator for reaction-based biogeochemical processes. Comput. Geosci. 32, 64–72 (2006)

    Google Scholar 

  162. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual, ANL–95/11 – revision 3.4. Argonne National Laboratory (2013)

  163. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Apra, E.: Advances, applications and performance of the Global Arrays Shared Memory Programming Toolkit. Int. J. High Perform. Comput. Appl. 20, 203–231 (2006)

    Google Scholar 

  164. Yeh, G.T., Tripathi, V.S.: HYDROGEOCHEM: A coupled model of HYDROlogical transport and GEOCHEMical equilibrium of multi component systems, ORNL 6371, Oak Ridge National Laboratory, p. 37831. Oak Ridge National Laboratory, Oak Ridge (1990)

  165. Yeh, G.T., Siegel, M.D., Li, M.H.: Numerical modeling of coupled fluid Fflows and reactive transport including fast and slow chemical reactions. J. Contam. Hydrol. 379–390(2001), 47 (2001)

    Google Scholar 

  166. Yeh, G.T., Li, Y., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport, and HYDROGEOCHEMical transport through saturated unsaturated media Version 4.0. ORNL/TM-2004/103, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)

  167. Yeh, G.T., Sun, J.T., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 5.0: A three dimensional model of coupled fluid flow, thermal transport, and HYDROGEOCHEMical transport through variably saturated conditions version 5.0. ORNL/TM-2004/107, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)

  168. Yeh, G.T., Tsai, C.H.: HYDROGEOCHEM 6.0: A two-dimensional model of coupled fluid flow, thermal transport, geomechanics, and HYDROGEOCHEMical transport through multiple phase systems version 6.0 (FACTM2D: A Model for multi-phase flow analysis and reactive chemical transport, thermal transport, and mechanics simulation, 2-dimensional version) - theoretical basis and numerical approximation. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)

  169. Yeh, G.T., Tsai, C.H., Ni, C.F.: HYDROGEOCHEM 6.0: A model to couple thermal-hydrology-mechanics-chemical (THMC) processes user guide. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)

  170. Yeh, G.T., Fang, Y.L., Zhang, F., Sun, J.T., Li, Y., Li, M.H., Siegel, M.D.: Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media. Comput. Geosci. 14, 149–170 (2010)

    Google Scholar 

  171. Yeh, G.T., Tripathi, V.J., Gwo, J.P., Cheng, H.P., Cheng, R.J., Salvage, K.M., Li, M.H., Fang, Y.L., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: Chapter 1: HYDROGEOCGEM: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. Groundwater reactive transport models. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Bentham e-Books. Bentham Science Publishers (2012). http://www.bentham.org

  172. Smith, J.M.: Chemical engineering kinetics, p. 676. R. R. Donnelley & Sons Company (1981)

  173. Chilakapati, A., Ginn, T., Szecsody, J.: An analysis of complex reaction networks in groundwater modeling. Water Resour. Res. 34, 1767–1780 (1998)

    Google Scholar 

  174. Fang, Y., Yeh, G.T., Burgos, W.D.: A New Paradigm to model reaction-based biogeochemical processes. Water Resour. Res. 39, 1083–1108 (2003)

    Google Scholar 

  175. Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43, W03429 (2007). doi:10.1029/2005WR004465

    Google Scholar 

  176. Yeh, G.T., Tsai, C.H., Fang, Y., Yabusaki, S., Li, M.H.: BIOGEOCHEM 1.5: A numerical model to simulate BIOGEOCHEMical reactions under multiple phase system. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)

  177. Yeh, G.T., Tsai, C.H.: User’s manual for BIOGEOCHEM 1.5. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)

  178. Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments of hydrogeochemical transport models of reactive multi-chemical components. Water Resour. Res. 25, 93–108 (1989)

    Google Scholar 

  179. Liu, I-S, Cipolatti, R.A., Rincon, M.A.: Successive linear approximation for finite elasticity. Comput. Appl. Math. 29, 465–478 (2010)

    Google Scholar 

  180. Yeh, G.T., Tripathi, V.S.: A model for simulating transport of reactive multispecies components: Model development and demonstration. Water Resour. Res. 27, 3075–3094 (1991)

    Google Scholar 

  181. Gwo, J.P., D’Azevedo, E.F., Frenzel, H., Mayes, M., Yeh, G.T., Jardine, P.M., Salvage, K.M., Hoffman, F.M.: HBGC123D: A high performance computer model of coupled hydrogeological and bigeochemical processes. Comput. Geosci. 27, 1231–1242 (2001)

    Google Scholar 

  182. Yeh, G.T., Gwo, J.P., Siegel, M.D., Li, M.H., Fang, Y.L., Zhang, F., Luo, W.S., Yabusaki, S.B.: Innovative mathematical modeling in environmental remediation. J. Environ. Radioact. (2011). doi:10.1016/j.jenvrad.2011.06.010

    Google Scholar 

  183. Kent, D.B., Davis, J.A., Anderson, L.C.D., Rea, B.A., Waite, T.D.: Transport of chromium and selenium in the suboxic zone of a shallow aquifer: Influence of redox and adsorption reactions. Water Resour. Res. 30, 1099–1114 (1994)

    Google Scholar 

  184. Abrams, R.H.: A compartmentalized approach to simulating redox zones in contaminated aquifers. PhD Dissertation, Department of Geological and Environmental Sciences, Stanford University, Palo Alto, California (1999)

  185. Bahr, J.M.: Keating, E.H.:. Redox geochemistry of shallow groundwater discharging to Allequash Creek in northern Wisconsin. WRC GRR 95-08. Water Resources Center, University of Wisconsin-Madison, p. 41 (1995)

  186. Tournassat, C., Appelo, C.A.J.: Modelling approaches for anion-exclusion in compacted Na-bentonite. Geochim. Cosmochim. Acta 75, 3698–3710 (2011)

    Google Scholar 

  187. Steefel, C.I., Van Cappellen, P.: A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990)

    Google Scholar 

  188. Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)

    Google Scholar 

  189. Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58, 3592–3612 (1994)

    Google Scholar 

  190. Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry. J. Hydrol. 209, 186–199 (1998)

    Google Scholar 

  191. Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: II. Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209, 200–224 (1998)

  192. Giambalvo, E.R., Steefel, C.I., Fisher, A.T., Rosenberg, N.D., Wheat, C.G.: Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 66, 1739–1757 (2002)

    Google Scholar 

  193. Maher, K., Steefel, C.I., DePaolo, D., Viani, B.: The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochim. Cosmochim. Acta 70, 337–363 (2006)

    Google Scholar 

  194. Maher, K., Steefel, C.I., White, A.F., Stonestrom, D.A.: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. Geochim. Cosmochim. Acta 73, 2804–2831 (2009)

    Google Scholar 

  195. Navarre-Sitchler, A., Steefel, C.I., Sak, P.B., Brantley, S.L.: A reactive transport model for weathering rind formation on basalt. Geochim. Cosmochim. Acta 75, 7644–7667 (2011)

    Google Scholar 

  196. Navarre-Sitchler, A., Steefel, C.I., Yang, L., Tomutsa, L., Brantley, S.L.: Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J. Geophys. Res., 114 (2009). doi:10.1029/2008JF001060

  197. Li, L., Gawande, N., Kowalsky, M.B., Steefel, C.I., Hubbard, S.S.: Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale. Environ. Sci. Technol. 45, 9959–9966 (2011)

    Google Scholar 

  198. Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S.: Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during uranium bioremediation at Rifle, Colorado. J. Contam. Hydrol. 11, 45–63 (2010)

    Google Scholar 

  199. Li, L., Steefel, C.I., Williams, K.H., Wilkins, M.J., Hubbard, S.S.: Mineral transformation and biomass accumulation during uranium bioremediation, Rifle, Colorado. Environ. Sci. Technol. 43, 5429–5435 (2009)

    Google Scholar 

  200. Druhan, J.L., Steefel, C.I., Molins, S., Williams, K.H., Conrad, M.E., DePaolo, D.J.: Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fraction. Environ. Sci. Technol. 46, 8895–8902 (2012)

    Google Scholar 

  201. Druhan, J.L., Steefel, C.I., Conrad, M.E., DePaolo, D.J.: A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ 34S fractionation. Geochim. Cosmochim. Acta 124, 366–393 (2014)

    Google Scholar 

  202. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1174 (2002). doi:10.1029/2001WR000862.

    Google Scholar 

  203. Cheng, L.: Dual porosity reactive transport modeling, PhD thesis. University of Sheffield, UK (2006)

    Google Scholar 

  204. Cheng, L., Lerner, D., Thornton, S., Mayer, K.U.: Managing MTBE attenuation in a dual porosity chalk aquifer – field observations and modelling results. Proceedings of ModelCARE 2009 Groundwater and the Environment, p. 341. IAHS Publishing, Wuhan (2009)

  205. Amos, R.T., Mayer, K.U.: Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modeling. J. Contam. Hydrol. 87, 123–154 (2006)

    Google Scholar 

  206. Amos, R.T., Mayer, K.U.: Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modelling, Environ. Sci. Technol. 40, 5361–5367 (2006)

    Google Scholar 

  207. Molins, S., Mayer, K.U., Scheutz, C., Kjeldsen, P.: Role of transport mechanisms in the attenuation of landfill gas in cover soils: A multicomponent modelling study. J. Environ. Qual. 37, 459–468 (2008)

    Google Scholar 

  208. Molins, S., Mayer, K.U., Amos, R.T., Bekins, B.A.: Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport. J. Contam. Hydrol. 112, 15–29 (2010)

    Google Scholar 

  209. Henderson, T., Mayer, K.U., Parker, B., Al, T.: Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J. Contam. Hydrol. 106, 195–211 (2009)

    Google Scholar 

  210. Bea, S.A., Mayer, K.U., MacQuarrie, K.T.B.: Modelling reactive transport in sedimentary rock environments - Phase II MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario. Technical report: NWMO TR-2011-13 (2011)

  211. Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system to high ionic strengths at 25 oC. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Google Scholar 

  212. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Google Scholar 

  213. Monnin, C.: Density calculation and concentration scale conversions for natural waters. Comput. Geosci. 20, 1435–1445 (1994)

    Google Scholar 

  214. Neuzil, C.: Hydromechanical coupling in geologic processes. Hydrogeol. J. 11, 41–83 (2003)

    Google Scholar 

  215. Bea, S., Wilson, S., Mayer, K.U., Dipple, G., Power, I., Gamazo, P.: Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadose Zone J. 11, 1–17 (2012)

    Google Scholar 

  216. Sihota, N.J., Mayer, K.U.: Characterizing vadose zone hydrocarbon biodegradation using CO 2-effluxes, isotopes, and reactive transport modeling. Vadose Zone J., 11 (2012). doi:10.2136/vzj2011.0204

  217. Miller, G.R., Rubin, Y., Mayer, K.U., Benito, P.H.: Modeling vadose zone processes during land application of food-processing waste water in California’s Central Valley. J. Environ. Qual. 37, 43–57 (2008)

    Google Scholar 

  218. Gérard, F., Tinsley, M., Mayer, K.U.: Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties and intensive water content monitoring. Soil Sci. Soc. Am. J. 68, 1526–1538 (2004)

    Google Scholar 

  219. Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J.: PFLOTRAN User manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes (2013)

  220. Goode, D.J.: Direct simulation of groundwater age. Water Resour. Res. 32, 289–296 (1996)

    Google Scholar 

  221. Hammond, G.E., Lichtner, P.C.: Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high performance computing. Wat. Res. Res 46, 1–31 (2010)

    Google Scholar 

  222. Lichtner, P.C., Karra, S.: Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application to CO2 sequestration and enhanced geothermal energy using PFLOTRAN. In: Al-Khoury, R., Bundschuh, J. (eds.) Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage, pp 81–136. CRC Press (2014)

  223. Karra, S., Painter, S.L., Lichtner, P.C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions. Cryosphere Discuss. 8, 149–185 (2014)

  224. de Vries, L.M., Molinero, J., Ebrahimi, H., Svensson, U., Lichtner, P.: High performance reactive transport simulation of hyperalkaline plume migration in fractured rocks. Mineral. Mag. 77, 982 (2013)

    Google Scholar 

  225. Navarre-Sitchler, A.K., Maxwell, R.M., Siirila, E.R., Hammond, G.E., Lichtner, P.C.: Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration. Adv. Water Resour. 53, 45–55 (2013)

    Google Scholar 

  226. Steefel, C.I, DePaolo, D., Lichtner, P.C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)

    Google Scholar 

  227. Gibson, B.D., Amos, R.T., Blowes, D.W.: S-34/S-32 fractionation during sulfate reduction in groundwater treatment systems: Reactive transport modeling. Env. Sci. Technol. 45, 2863–2870 (2011)

    Google Scholar 

  228. Greskowiak, J., Prommer, J.H., Liu, C., Post, V.E.A., Ma, R., Zheng, C., Zheng, C., Zachara, J.M.: Comparison of parameter sensitivities between a laboratory and field-scale model of uranium transport in a dual domain, distributed rate reactive system. Water Resour. Res. 46, 9: W09509 (2010)

  229. Doherty, J.: PEST: A unique computer program for model-independent parameter optimisation. Water Down Under 94: Groundwater/Surface Hydrology Common Interest Papers; Preprints of Papers, p. 551 (1994)

Download references

Author information

Authors and Affiliations

  1. Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA

    C. I. Steefel, B. Arora, S. Molins & N. Spycher

  2. Hydrochemical Consultant, Valeriusstraat 11, 1071 MB, Amsterdam, the Netherlands

    C. A. J. Appelo

  3. Institute for Environment, Health, and Safety, Belgian Nuclear Research Center, Mol, Belgium

    D. Jacques

  4. Department of Environmental Informatics, Helmholtz Centre for Environmental Research, Leipzig, Germany

    T. Kalbacher, O. Kolditz & H. Shao

  5. University, Centre de Géosciences, 35 rue Saint Honoré, 77305, Fontainebleau Cedex, France

    V. Lagneau

  6. Lichtner OFM Research, Santa Fe, NM, USA

    P. C. Lichtner

  7. Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada

    K. U. Mayer

  8. WU Environmental Sciences, University of Wageningen, Wageningen, the Netherlands

    J. C. L. Meeussen

  9. Mathematical Modeling and Analysis, Los Alamos National Laboratory, Los Alamos, NM, USA

    D. Moulton

  10. Department of Environmental Sciences, UC Riverside, Riverside, CA, USA

    J. Šimůnek

  11. Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA

    S. B. Yabusaki

  12. National Central University, Jhongli, Taiwan

    G. T. Yeh

Authors
  1. C. I. Steefel
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. C. A. J. Appelo
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. B. Arora
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. D. Jacques
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. T. Kalbacher
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. O. Kolditz
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. V. Lagneau
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. P. C. Lichtner
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. K. U. Mayer
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. J. C. L. Meeussen
    View author publications

    You can also search for this author inPubMed Google Scholar

  11. S. Molins
    View author publications

    You can also search for this author inPubMed Google Scholar

  12. D. Moulton
    View author publications

    You can also search for this author inPubMed Google Scholar

  13. H. Shao
    View author publications

    You can also search for this author inPubMed Google Scholar

  14. J. Šimůnek
    View author publications

    You can also search for this author inPubMed Google Scholar

  15. N. Spycher
    View author publications

    You can also search for this author inPubMed Google Scholar

  16. S. B. Yabusaki
    View author publications

    You can also search for this author inPubMed Google Scholar

  17. G. T. Yeh
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to C. I. Steefel.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steefel, C.I., Appelo, C.A.J., Arora, B. et al. Reactive transport codes for subsurface environmental simulation. Comput Geosci 19, 445–478 (2015). https://doi.org/10.1007/s10596-014-9443-x

Download citation

  • Received: 24 April 2014

  • Accepted: 26 August 2014

  • Published: 26 September 2014

  • Issue Date: June 2015

  • DOI: https://doi.org/10.1007/s10596-014-9443-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Reactive transport
  • Modeling
  • Environmental simulation
  • Computer software
  • Code benchmark
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature