Abstract
We provide optimal parameter estimates and a priori error bounds for symmetric discontinuous Galerkin (DG) discretisations of the second-order indefinite time-harmonic Maxwell equations. More specifically, we consider two variations of symmetric DG methods: the interior penalty DG (IP-DG) method and one that makes use of the local lifting operator in the flux formulation. As a novelty, our parameter estimates and error bounds are (i) valid in the pre-asymptotic regime; (ii) solely depend on the geometry and the polynomial order; and (iii) are free of unspecified constants. Such estimates are particularly important in three-dimensional (3D) simulations because in practice many 3D computations occur in the pre-asymptotic regime. Therefore, it is vital that our numerical experiments that accompany the theoretical results are also in 3D. They are carried out on tetrahedral meshes with high-order (p=1, 2, 3, 4) hierarchic H(curl)-conforming polynomial basis functions.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58(14), 2103–2130 (2003)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)
Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2001). http://www.mcs.anl.gov/petsc
Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Proceedings of the 1997 2nd European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics (Antwerpen, Belgium), pp. 99–108 (1997)
Bossavit, A.: A rationale for ‘edge-elements’ in 3-D fields computations. IEEE Trans. Magn. 24(1), 74–79 (1988)
Bossavit, A.: Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’. IEEE Trans. Magn. 26(2), 702–705 (1990)
Bossavit, A.: On the representation of differential forms by potentials in dimension 3. In: Scientific computing in electrical engineering, Warnemünde, 2000. Lect. Notes Comput. Sci. Eng., vol. 18, pp. 97–104. Springer, Berlin (2001)
Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous finite elements for diffusion problems. In: Atti Convegno in onore di F. Brioschi, Milan, 1997, pp. 197–217. Istitutto Lombardo, Accademia di Scienza e Lettere, Milan, Italy, 1999
Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)
Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204(2), 317–333 (2007)
Buffa, A., Perugia, I., Warburton, T.: The mortar-discontinuous Galerkin method for the 2D Maxwell eigenproblem. J. Sci. Comput. 40(1–3), 86–114 (2009). Available at http://www.springerlink.com/content/85055g4h55622j19/
Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206(2), 843–872 (2007)
Ern, A., Guermond, J.-L.: Theory and Practise of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)
Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 362(1816), 493–524 (2004)
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Texts in Applied Mathematics, vol. 54. Springer, New York (2008). Algorithms, analysis, and applications
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)
Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100(3), 485–518 (2005)
Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42(1), 434–459 (2004)
Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation. J. Sci. Comput. 22/23, 315–346 (2005)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)
Nédélec, J.-C.: Mixed finite elements in R 3. Numer. Math. 35(3), 315–341 (1980)
Nédélec, J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50(1), 57–81 (1986)
Pesch, L., Bell, A., Sollie, H., Ambati, V.R., Bokhove, O., Van Der Vegt, J.J.W.: hpGEM—a software framework for discontinuous Galerkin finite element methods. ACM Trans. Math. Softw. 33(4), 23, 25 (2007)
Schötzau, D., Schwab, C., Toselli, A.: Stabilized hp-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13(10), 1413–1436 (2003)
Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)
Šolín, P., Segeth, K., Doležel, I.: Higher-Order Finite Element Methods. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004)
van der Vegt, J.J.W., Tomar, S.K.: Discontinuous Galerkin method for linear free-surface gravity waves. J. Sci. Comput. 22/23, 531–567 (2005)
Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3205–3223 (2006)
Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)
Whitney, H.: Geometric integration theory. Princeton University Press, Princeton (1957)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Sármány, D., Izsák, F. & van der Vegt, J.J.W. Optimal Penalty Parameters for Symmetric Discontinuous Galerkin Discretisations of the Time-Harmonic Maxwell Equations. J Sci Comput 44, 219–254 (2010). https://doi.org/10.1007/s10915-010-9366-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-010-9366-1