Issue 20, 2011

Peptidenanotubes: molecular organisations, self-assembly mechanisms and applications

Abstract

Peptide nanotubes are promising bio-inspired self-assemblies with a wide range of envisioned applications. The present review addresses the recent advances in their fundamental comprehension and mechanistic aspects of their latest downstream uses. Through well-documented examples, including the Lanreotide peptide monodisperse nanotubes, the molecular organisations and interactions underlying such well-defined hierarchical nanoarchitectures are in particular examined. The kinetic and thermodynamic aspects of the corresponding self-assembly processes are also considered, especially the intriguing mechanism of nanotube wall closure. The recently unravelled Lanreotide self-assembly mechanisms have revealed, for instance, the limiting role of electrostatic repulsion in this critical step. Within the numerous applications currently explored, particular attention is given to promising inorganic deposition processes using peptide nanotubes as scaffolds. In exceptional cases, inorganic nanotubes with tunable diameters could be synthesised viapeptide-based template-directed synthesis combined with peptide chemical design. Such examples highlight the importance of advanced molecular and mechanistic understanding of peptide nanotubes, particularly for bottom-up chemical design strategies and downstream applications. Although incomplete, the current fundamental comprehension of peptide nanotubes has already shown its potential by opening up new valuable routes in the field of biomimetic soft matter.

Graphical abstract: Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications

Article information

Article type
Review Article
Submitted
18 Apr 2011
Accepted
12 Jul 2011
First published
05 Aug 2011

Soft Matter, 2011,7, 9583-9594

Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications

C. Valéry, F. Artzner and M. Paternostre, Soft Matter, 2011, 7, 9583 DOI: 10.1039/C1SM05698K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements