Abstract
This work focuses on an ultrasonic guided wave structural health monitoring (SHM) system development for aircraft wing inspection. In part I of the study, a detailed description of a real aluminum wing specimen and some preliminary wave propagation tests on the wing panel are presented. Unfortunately, strong attenuation and scattering impede guided waves for large-area inspection. Nevertheless, small, low-cost and light-weight piezoelectric (PZT) discs were bonded to various parts of the aircraft wing, in a form of relatively sparse arrays, for simulated cracks and corrosion monitoring. The PZT discs take turns generating and receiving ultrasonic guided waves. Pair-wise through-transmission waveforms collected at normal conditions served as baselines, and subsequent signals collected at defected conditions such as rivet cracks or corrosion detected the presence of a defect and its location with a novel correlation analysis based technique called RAPID (reconstruction algorithm for probabilistic inspection of defects). The effectiveness of the algorithm was tested with several case studies in a laboratory environment. It showed good performance for defect detection, size estimation and localization in complex aircraft wing structures.