Abstract
Background Isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures – including novel digital tracing approaches and less intensive physical distancing – may be required to reduce transmission.
Methods Using a model of individual-level transmission stratified by setting (household, work, school, other) based on BBC Pandemic data from 40,162 UK participants, we simulated the impact of a range of different testing, isolation, tracing and physical distancing scenarios. As well as estimating reduction in effective reproduction number, we estimated, for a given level of COVID-19 incidence, the number of contacts that would be newly quarantined each day under different strategies.
Results Under optimistic but plausible assumptions, we estimated that combined testing and tracing strategies would reduce transmission more than mass testing or self-isolation alone (50–65% compared to 2–30%). If limits are placed on gatherings outside of home/school/work (e.g. maximum of 4 daily contacts in other settings), then manual contact tracing of acquaintances only could have a similar effect on transmission reduction as detailed contact tracing. In a scenario where there were 10,000 new symptomatic cases per day, we estimated in most contact tracing strategies, 140,000 to 390,000 contacts would be newly quarantined each day.
Conclusions Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimates that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number that is below one in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control.
Funding Wellcome Trust, EPSRC, European Commission.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work was supported by Wellcome Trust (206250/Z/17/Z), European Commission (101003688) and EPSRC (EP/N509620/1).
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
CMMID COVID-19 working group members (order selected at random): Jon C Emery, Graham Medley, James D Munday, Timothy W Russell, Quentin J Leclerc, Charlie Diamond, Simon R Procter, Amy Gimma, Fiona Yueqian Sun, Hamish P Gibbs, Alicia Rosello, Kevin van Zandvoort, Stéphane Hué, Sophie R Meakin, Arminder K Deol, Gwen Knight, Thibaut Jombart, Anna M Foss, Nikos I Bosse, Katherine E. Atkins, Billy J Quilty, Rachel Lowe, Kiesha Prem, Stefan Flasche, Carl A B Pearson, Rein M G J Houben, Emily S Nightingale, Akira Endo, Damien C Tully, Yang Liu, Julian Villabona-Arenas, Kathleen O’Reilly, Sebastian Funk, Rosalind M Eggo, Mark Jit, Eleanor M Rees, Joel Hellewell, Samuel Clifford, Christopher I Jarvis, Sam Abbott, Megan Auzenbergs, Nicholas G. Davies, David Simons
Data Availability
Data and code are fully available.