Change detection is a challenging task that has received much attention in the remote sensing field. Whereas numerous remote sensing change detection methods have been developed, the efficiency of these approaches is insufficient to meet the real-world applications’ requirements. Recently, deep learning methods have been largely used for remote sensing imagery change detection, most of these approaches are limited by their training dataset. However, adapting a pretrained convolutional neural network (CNN) on an image classification task to change detection is extremely challenging. An automatic land cover/use change detection approach based on fast and accurate frameworks for optical high-resolution remote sensing imagery is proposed. The fast framework is designed for applications that require immediate results with less complexity. The accurate framework is designed for applications that require high levels of precision, it decomposes large images into small processing blocks and forwards them into CNN. The proposed frameworks can learn transferable features from one task to another and escape the use of the expensive and inaccurate handcrafted features and the requirements of the big training dataset. A number of experiments were carried out to validate the proposed approach on three real bitemporal images. The experimental results illustrate the superiority of the proposed approach over other state-of-the-art methods. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 18 scholarly publications.
Remote sensing
Feature extraction
Image fusion
Curium
Image processing
Binary data
Image filtering