- Research Article
- Open access
- Published:
Separation and Localisation of P300 Sources and Their Subcomponents Using Constrained Blind Source Separation
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 082912 (2006)
Abstract
Separation and localisation of P300 sources and their constituent subcomponents for both visual and audio stimulations is investigated in this paper. An effective constrained blind source separation (CBSS) algorithm is developed for this purpose. The algorithm is an extension of the Infomax BSS system for which a measure of distance between a carefully measured P300 and the estimated sources is used as a constraint. During separation, the proposed CBSS method attempts to extract the corresponding P300 signals. The locations of the corresponding sources are then estimated with some indeterminancy in the results. It can be seen that the locations of the sources change for a schizophrenic patient. The experimental results verify the statistical significance of the method and its potential application in the diagnosis and monitoring of schizophrenia.
References
Dien J, Spencer K, Donchin E: Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research 2003,17(3):637–650. 10.1016/S0926-6410(03)00188-5
Frodl-Bauch T, Bottlender R, Hegerl U: Neurochemical substrates and neuroanatomical generators of the event-related P300. Neuropsychobiology 1999,40(2):86–94. 10.1159/000026603
Kok A, Ramautar J, De Ruiter M, Band G, Ridderinkhof K: ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology 2004,41(1):9–20. 10.1046/j.1469-8986.2003.00127.x
Polich J: Clinical application of the P300 event-related brain potential. Physical Medicine and Rehabilitation Clinics of North America 2004,15(1):133–161. 10.1016/S1047-9651(03)00109-8
Friedman D, Cycowicz Y, Gaeta H: The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neuroscience & Biobehavioral Reviews 2001,25(4):355–373. 10.1016/S0149-7634(01)00019-7
Comerchero M, Polich J: P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology 1999,110(1):24–30. 10.1016/S0168-5597(98)00033-1
Niedermeyer E, da Silva FL: Electroencephalography, Basic Problems, Clinical Applications, and Related Fields. 4th edition. Lippincott Williams & Wilkins, Philadelphia, Pa, USA; 1999.
Turetsky B, Colbath E, Gur R: P300 subcomponent abnormalities in schizophrenia: I. Physiological evidence for gender and subtype specific differences in regional pathology. Biological Psychiatry 1998,43(2):84–96. 10.1016/S0006-3223(97)00258-8
Turetsky B, Cannon T, Gur R: P300 subcomponent abnormalities in schizophrenia: III. Deficits in unaffected siblings of schizophrenic probands. Biological Psychiatry 2000,47(5):380–390. 10.1016/S0006-3223(99)00290-5
Jeon Y-W, Polich J: Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 2003,40(5):684–701. 10.1111/1469-8986.00070
Cichocki A, Amari S-I: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, New York, NY, USA; 2002.
Mosher JC, Lewis PC, Leahy RM: Multiple dipole modeling and localization from spatio-temporal MEGdata. IEEE Transactions on Biomedical Engineering 1992,39(6):541–557. 10.1109/10.141192
Mosher JC, Leahy RM: EEG and MEG source localization using recursively applied (RAP)music. Proceedings of the 13th Asilomar Conference on Signals, Systems and Computers, November 1996, Pacific Grove, Calif, USA 2: 1201–1207.
Makeig S, Bell AJ, Jung T-P, Sejnowski TJ: Independent component analysis of electroencephalographic data. In Advances in Neural Information Processing Systems. Volume 8. MIT Press, Cambridge, Mass, USA; 1996:145–151.
Makeig S, Jung T-P, Bell AJ, Ghahremani D, Sejnowski TJ: Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences of the United States of America 1997,94(20):10979–10984. 10.1073/pnas.94.20.10979
Bell AJ, Sejnowski TJ: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995,7(6):1129–1159. 10.1162/neco.1995.7.6.1129
Lu W, Rajapakse JC: Constrained ICA. In Advances in Neural Information Processing Systems. Volume 13. MIT Press, Cambridge, Mass, USA; 2000.
Lu W, Rajapakse JC: Approach and applications of constrained ICA. IEEE Transactions on Neural Networks 2005,16(1):203–212. 10.1109/TNN.2004.836795
Cichocki A, Unbehauen R, Rummert E: Robust learning algorithm for blind separation of signals. Electronics Letters 1994,30(17):1386–1387. 10.1049/el:19940956
Cichocki A, Unbehauen R: Neural Networks for Optimisation and Signal Processing. John Wiley & Sons, New York, NY, USA; 1994.
Mosher JC, Leahy RM, Lewis PS: EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering 1999,46(3):245–259. 10.1109/10.748978
Von Ellenrieder N, Muravchik CH, Nehorai A: A meshless method for solving the EEG forward problem. IEEE Transactions on Biomedical Engineering 2005,52(2):249–257. 10.1109/TBME.2004.840499
Bénar C-G, Gunn RN, Grova C, Champagne B, Gotman J: Statistical maps for EEG dipolar source localization. IEEE Transactions on Biomedical Engineering 2005,52(3):401–413. 10.1109/TBME.2004.841263
Sarvas J: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Medicine and Biology 1987,32(1):11–22. 10.1088/0031-9155/32/1/004
Coope ID: Reliable computation of the points of intersection of n spheres in n-space. ANZIAM Journal 2000,42(5):461–477.
Karoumi B, Laurent A, Rosenfeld F, et al.: Alteration of event related potentials in siblings discordant for schizophrenia. Schizophrenia Research 2000,41(2):325–334. 10.1016/S0920-9964(99)00062-6
Yordanova J, Kolev V: The relationship between P300 and event-related theta EEG activity. Psycoloquy 1996.,7(25, Memory Brain (7)):
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Spyrou, L., Jing, M., Sanei, S. et al. Separation and Localisation of P300 Sources and Their Subcomponents Using Constrained Blind Source Separation. EURASIP J. Adv. Signal Process. 2007, 082912 (2006). https://doi.org/10.1155/2007/82912
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/82912