Skip to main content
  • Research Article
  • Open access
  • Published:

A Fast Sphere Decoding Algorithm for Space-Frequency Block Codes

Abstract

The recently proposed space-frequency-coded MIMO-OFDM systems have promised considerable performance improvement over single-antenna systems. However, in order to make multiantenna OFDM systems an attractive choice for practical applications, implementation issues such as decoding complexity must be addressed successfully. In this paper, we propose a computationally efficient decoding algorithm for space-frequency block codes. The central part of the algorithm is a modulation-independent sphere decoding framework formulated in the complex domain. We develop three decoding approaches: a modulation-independent approach applicable to any memoryless modulation method, a QAM-specific and a PSK-specific fast decoding algorithm performing nearest-neighbor signal point search. The computational complexity of the algorithms is investigated via both analysis and simulation. The simulation results demonstrate that the proposed algorithm can significantly reduce the decoding complexity. We observe up to 75% reduction in the required FLOP count per code block compared to previously existing methods without noticeable performance degradation.

References

  1. Agrawal D, Tarokh V, Naguib A, Seshadri N: Space-time coded OFDM for high data-rate wireless communication over wideband channels. Proceedings of 48th IEEE Vehicular Technology Conference (VTC '98), May 1998, Ottawa, Ontario, Canada 3: 2232–2236.

    Google Scholar 

  2. Bölcskei H, Paulraj AJ: Space-frequency coded broadband OFDM systems. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '00), September 2000, Chicago, Ill, USA 1: 1–6.

    Article  Google Scholar 

  3. Gong Y, Letaief KB: An efficient space-frequency coded wideband OFDM system for wireless communications. Proceedings of IEEE International Conference on Communications (ICC '02), April–May 2002, New York, NY, USA 1: 475–479.

    Article  Google Scholar 

  4. Hong Z, Hughes BL: Robust space-time codes for broadband OFDM systems. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '02), March 2002, Orlando, Fla, USA 1: 105–108.

    Google Scholar 

  5. Liu Z, Xin Y, Giannakis GB: Space-time-frequency coded OFDM over frequency-selective fading channels. IEEE Transactions on Signal Processing 2002, 50(10):2465–2476. 10.1109/TSP.2002.803332

    Article  Google Scholar 

  6. Su W, Safar Z, Olfat M, Liu KJR: Obtaining full-diversity space-frequency codes from space-time codes via mapping. IEEE Transactions on Signal Processing 2003, 51(11):2905–2916. 10.1109/TSP.2003.818200

    Article  MathSciNet  Google Scholar 

  7. Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998, 16(8):1451–1458. 10.1109/49.730453

    Article  Google Scholar 

  8. Tarokh V, Jafarkhani H, Calderbank AR: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999, 45(5):1456–1467. 10.1109/18.771146

    Article  MathSciNet  Google Scholar 

  9. Viterbo E, Bouros J: A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory 1999, 45(5):1639–1642. 10.1109/18.771234

    Article  MathSciNet  Google Scholar 

  10. Chan AM, Lee I: A new reduced-complexity sphere decoder for multiple antenna systems. Proceedings of IEEE International Conference on Communications (ICC '02), April–May 2002, New York, NY, USA 1: 460–464.

    Article  Google Scholar 

  11. Agrell E, Eriksson T, Vardy A, Zeger K: Closest point search in lattices. IEEE Transactions on Information Theory 2002, 48(8):2201–2214. 10.1109/TIT.2002.800499

    Article  MathSciNet  Google Scholar 

  12. Damen MO, El Gamal H, Caire G: On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory 2003, 49(10):2389–2402. 10.1109/TIT.2003.817444

    Article  MathSciNet  Google Scholar 

  13. Vikalo H, Hassibi B: Maximum likelihood sequence detection of multiple antenna systems over dispersive channels via sphere decoding. EURASIP Journal on Applied Signal Processing 2002, 2002(5):525–531. 10.1155/S1110865702204011

    MATH  Google Scholar 

  14. Hochwald BM, ten Brink S: Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications 2003, 51(3):389–399. 10.1109/TCOMM.2003.809789

    Article  Google Scholar 

  15. Wong K-W, Tsui C-Y, Cheng RS-K, Mow W-H: A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '02), May 2002, Scottsdale, Ariz, USA 3: 273–276.

    Google Scholar 

  16. Widdup B, Woodward G, Knagge G: A highly-parallel VLSI architecture for a list sphere detector. Proceedings of IEEE International Conference on Communications (ICC '04), June 2004, Paris, France 5: 2720–2725.

    Google Scholar 

  17. Burg A, Wenk M, Zellweger M, Wegmueller M, Felber N, Fichtner W: VLSI implementation of the sphere decoding algorithm. Proceedings of 30th European Solid-State Circuits Conference (ESSCIRC '04), September 2004, Leuven, Belgium 303–306.

    Chapter  Google Scholar 

  18. Burg A, Borgmann M, Simon C, Wenk M, Zellweger M, Fichtner W: Performance tradeoffs in the VLSI implementation of the sphere decoding algorithm. Proceedings of 5th IEE International Conference on 3G Mobile Communication Technologies (IEE 3G '04), October 2004, London, UK 92–96.

    Google Scholar 

  19. Su W, Xia X-G: Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Transactions on Information Theory 2004, 50(10):2331–2347. 10.1109/TIT.2004.834740

    Article  MathSciNet  Google Scholar 

  20. Golub GH, Van Loan CF: Matrix Computations. Johns Hopkins University Press, Baltimore, Md, USA; 1996.

    MATH  Google Scholar 

  21. Fincke U, Pohst M: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 1985, 44(170):463–471. 10.1090/S0025-5718-1985-0777278-8

    Article  MathSciNet  Google Scholar 

  22. Hassibi B, Vikalo H: On the expected complexity of integer least-squares problems. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 2: 1497–1500.

    Google Scholar 

  23. Stüber GL: Principles of Mobile Communication. Kluwer Academic, Boston, Mass, USA; 2001.

    MATH  Google Scholar 

  24. Safar Z, Su W, Liu KJR: Fast sphere decoding of space-frequency block codes via nearest neighbor signal point search. Proceedings of 5th European Wireless Conference, Mobile and Wireless Systems beyond 3G (EW '04), February 2004, Barcelona, Spain

    Google Scholar 

  25. Safar Z, Su W, Liu KJR: A fast sphere decoding framework for space-frequency block codes. Proceedings of IEEE International Conference on Communications (ICC '04), June 2004, Paris, France 5: 2591–2595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Safar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Safar, Z., Su, W. & Liu, K.R. A Fast Sphere Decoding Algorithm for Space-Frequency Block Codes. EURASIP J. Adv. Signal Process. 2006, 097676 (2006). https://doi.org/10.1155/ASP/2006/97676

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/ASP/2006/97676

Keywords