Open Access
2008 Quantifier Elimination for a Class of Intuitionistic Theories
Ben Ellison, Jonathan Fleischmann, Dan McGinn, Wim Ruitenburg
Notre Dame J. Formal Logic 49(3): 281-293 (2008). DOI: 10.1215/00294527-2008-012

Abstract

From classical, Fraïissé-homogeneous, ( ω )-categorical theories over finite relational languages, we construct intuitionistic theories that are complete, prove negations of classical tautologies, and admit quantifier elimination. We also determine the intuitionistic universal fragments of these theories.

Citation

Download Citation

Ben Ellison. Jonathan Fleischmann. Dan McGinn. Wim Ruitenburg. "Quantifier Elimination for a Class of Intuitionistic Theories." Notre Dame J. Formal Logic 49 (3) 281 - 293, 2008. https://doi.org/10.1215/00294527-2008-012

Information

Published: 2008
First available in Project Euclid: 15 July 2008

zbMATH: 1159.03021
MathSciNet: MR2428555
Digital Object Identifier: 10.1215/00294527-2008-012

Subjects:
Primary: 03C10 , 03F55
Secondary: 03C35 , 03C90 , 03F05

Keywords: Fraïssé homogeneous , intuitionistic predicate logic , Kripke model , normal forms , quantifier elimination

Rights: Copyright © 2008 University of Notre Dame

Vol.49 • No. 3 • 2008
Back to Top